Suspension assembly having a microactuator electrically connected to a gold coating on a stainless steel surface

Information

  • Patent Grant
  • 9099131
  • Patent Number
    9,099,131
  • Date Filed
    Wednesday, August 28, 2013
    11 years ago
  • Date Issued
    Tuesday, August 4, 2015
    9 years ago
Abstract
A novel suspension assembly includes a suspension assembly mounting plate, a microactuator mounting structure extending from the suspension assembly mounting plate, a load beam extending from the microactuator mounting structure, and a laminated flexure attached to the load beam. The laminated flexure includes a tongue that has a read head bonding surface. The suspension assembly includes a stainless steel surface having a gold coating, and a piezoelectric microactuator attached to the microactuator mounting structure and electrically connected to the gold coating.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates generally to the field of information storage devices, and more particularly to microactuators and suspension assemblies that are used to position read heads in information storage devices.


2. Background of the Art


Information storage devices are used to retrieve and/or store data in computers and other consumer electronics devices. A magnetic hard disk drive is an example of an information storage device that includes one or more heads that can both read and write, but other information storage devices also include heads—sometimes including heads that cannot write. For convenience, all heads that can read are referred to as “read heads” herein, regardless of other devices and functions the read head may also perform (e.g. writing, flying height control, touch down detection, lapping control, etc).


In a modern magnetic hard disk drive device, each read head is a sub-component of a head gimbal assembly (HGA). The read head typically includes a slider and a read/write transducer. The read/write transducer typically comprises a magneto-resistive read element (e.g. so-called giant magneto-resistive read element, or a tunneling magneto-resistive read element) and an inductive write structure comprising a flat coil deposited by photolithography and a yoke structure having pole tips that face a disk media.


The HGA typically also includes a suspension assembly that includes a mounting plate, a load beam, and a laminated flexure to carry the electrical signals to and from the read head. The read head is typically bonded to a tongue feature of the laminated flexure. The HGA, in turn, is a sub-component of a head stack assembly (HSA) that typically includes a plurality of HGAs, a rotary actuator, and a flex cable. The mounting plate of each suspension assembly is attached to an arm of the rotary actuator (e.g. by swaging), and each of the laminated flexures includes a flexure tail that is electrically connected to the HSA's flex cable (e.g. by solder bonding).


Modern laminated flexures typically include electrically conductive copper traces that are isolated from a stainless steel support layer by a polyimide dielectric layer. So that the signals from/to the head can reach the flex cable on the actuator body, each HGA flexure includes a flexure tail that extends away from the head along the actuator arm and ultimately attaches to the flex cable adjacent the actuator body. That is, the flexure includes electrically conductive traces that are electrically connected to a plurality of electrically conductive bonding pads on the head, and extend from adjacent the head to terminate at electrical connection points at the flexure tail.


The position of the HSA relative to the spinning disks in a disk drive, and therefore the position of the read heads relative to data tracks on the disks, is actively controlled by the rotary actuator which is typically driven by a voice coil motor (VCM). Specifically, electrical current passed through a coil of the VCM applies a torque to the rotary actuator, so that the read head can seek and follow desired data tracks on the spinning disk.


However, the industry trend towards increasing areal data density has necessitated substantial reduction in the spacing between data tracks on the disk. Also, disk drive performance requirements, especially requirements pertaining to the time required to access desired data, have not allowed the rotational speed of the disk to be reduced. In fact, for many disk drive applications, the rotational speed has been significantly increased. A consequence of these trends is that increased bandwidth is required for servo control of the read head position relative to data tracks on the spinning disk.


One solution that has been proposed in the art to increase disk drive servo bandwidth is dual-stage actuation. Under the dual-stage actuation concept, the rotary actuator that is driven by the VCM is employed as a coarse actuator (for large adjustments in the HSA position relative to the disk), while a so-called “microactuator” having higher bandwidth but lesser stroke is used as a fine actuator (for smaller adjustments in the read head position). Various microactuator designs have been proposed in the art for the purpose of dual-stage actuation in disk drive applications. Some of these designs utilize one or more piezoelectric microactuators that are affixed to a stainless steel component of the suspension assembly (e.g. the mounting plate or an extension thereof, and/or the load beam or an extension thereof, and/or an intermediate stainless steel part connecting the mounting plate to the load beam).


However, if the microactuator is electrically connected to a stainless steel surface of the suspension assembly (e.g. for grounding), an electrochemical reaction may cause an oxidation layer to form on the stainless steel at the connection location. The oxidation layer may be insulative and interfere with desired electrical conduction, and may be exacerbated by hot and humid conditions. Over time, the desired response of the microactuator to applied signals may become diminished, leading to reduced or impaired performance of the information storage device and/or data loss.


Therefore, there is a need in the information storage device arts for a suspension assembly design that can improve integration with a microactuator (e.g. piezoelectric micro actuator).


SUMMARY

A novel suspension assembly includes a suspension assembly mounting plate, a microactuator mounting structure extending from the suspension assembly mounting plate, a load beam extending from the microactuator mounting structure, and a laminated flexure attached to the load beam. The laminated flexure includes a tongue that has a read head bonding surface. The suspension assembly includes a stainless steel surface having a gold coating, and a microactuator attached to the microactuator mounting structure and electrically connected to the gold coating.





BRIEF DESCRIPTION OF DRAWINGS


FIG. 1 is top view of a disk drive capable of including an embodiment of the present invention.



FIG. 2 is a bottom perspective view of a head gimbal assembly (HGA) capable of including an embodiment of the present invention.



FIG. 3 is an expanded view of the region labeled 3 in FIG. 2.



FIG. 4 is a top perspective view of a suspension assembly according to an embodiment of the present invention, after placement of the microactuator but before electrical connection of the microactuator.



FIG. 5 is an expanded view of the region labeled 5 in FIG. 4.



FIG. 6 is an expanded view of the region labeled 5 in FIG. 4, except after electrical connection of the microactuator.



FIG. 7 is an expanded view of the region labeled 5 in FIG. 4, except before placement of the microactuator.



FIG. 8 is a top plan view of a suspension assembly component that includes a mounting plate and a microactuator mounting structure, according to an embodiment of the present invention.





DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS


FIG. 1 is top view of a disk drive 100 that is capable of including an embodiment of the present invention. The disk drive 100 includes a disk drive base 102. The disk drive 100 further includes a spindle 106, rotably mounted on the disk drive base 102, for rotating a disk 104 that is mounted on the spindle 106. The rotation of the disks 104 establishes air flow through optional recirculation filter 108. In certain embodiments, disk drive 100 may have only a single disk 104, or alternatively, two or more disks.


The disk drive 100 further includes a rotary coarse actuator 110 that is rotably mounted on disk drive base 102. The rotary coarse actuator 110 includes an actuator arm 114 that supports a head gimbal assembly (HGA) 118. Voice coil motor 112 rotates the actuator 110 through a limited angular range so that the HGA 118 may be desirably positioned relative to one or more tracks of information on the disk 104. Preferably the disk drive 100 will include one HGA 118 per disk surface, but depopulated disk drives are also contemplated in which fewer HGAs are used. Under non-operating conditions the HGAs may be parked on ramp 120, for example to avoid contact with the disk 104 when it is not spinning. Electrical signals to/from the HGA 118 are carried to other drive electronics, in part via a flex cable (not shown) and a flex cable bracket 116.



FIG. 2 is a bottom perspective view of an HGA 200 that is capable of including an embodiment of the present invention. Now referring additionally to FIG. 2, the HGA 200 includes a load beam 202, and a read head 210 for reading and writing data from and to a magnetic disk (e.g. disk 104). The read head 210 includes a slider substrate having an air bearing surface (the label 210 points to this surface) and an opposing top surface (not visible in the view of FIG. 2). The slider substrate preferably comprises AlTiC, although another ceramic or silicon might also be used. The slider substrate of the read head 210 also includes a trailing face 212 that includes a read/write transducer (too small to be practically shown in the view of FIG. 2, but disposed on the trailing face 212). In certain embodiments, the read/write transducer is preferably an inductive magnetic write transducer merged with a magneto-resistive read transducer. The purpose of the load beam 202 is to provide limited vertical compliance for the read head 210 to follow vertical undulations of the surface of a disk (e.g. disk 104 of FIG. 1) as it rotates, and to preload the air bearing surface of the read head 210 against the disk surface by a preload force that is commonly referred to as the “gram load.”


In the embodiment of FIG. 2, the HGA 200 also includes a laminated flexure 204 attached to the load beam 202. The laminated flexure 204 includes a tongue 206 that has a read head bonding surface. The head 210 is attached to the read head bonding surface of the tongue 206 of the laminated flexure 204. Only a portion of the tongue 206 is visible in the view of FIG. 2 because the read head 210 partially obscures it. A first purpose of the laminated flexure 204 is to provide compliance for the head 210 to follow pitch and roll angular undulations of the surface of the disk (e.g. disk 104) as it rotates, while restricting relative motion between the read head 210 and the load beam 202 in the lateral direction and about a yaw axis. A second purpose of the laminated flexure 204 is to provide a plurality of electrical paths to facilitate signal transmission to/from the read head 210. For that second purpose, the laminated flexure 204 includes a plurality of electrically conductive traces 218 that are defined in an electrically conductive (e.g. copper) sub-layer of the laminated flexure 204. Electrically conductive traces 218 are isolated from a support layer (e.g. stainless steel) by a dielectric layer (e.g. polyimide).


In the embodiment of FIG. 2, the load beam 202 includes hinge plates 222 and 224, and is attached to a mounting plate 220 via the hinge plates 222 and 224 and a microactuator mounting structure 300. These components may be made of stainless steel, and their attachments to each other may be made by a plurality of spot welds, for example. Alternatively, the load beam 202 may have integral hinge plate regions rather than being assembled with separate hinge plate components, so that the load beam 202 and its hinge plates would be a single component having material continuity.


The load beam 202 with its hinge plates 222, 224 (if any), the microactuator mounting structure 300, and the mounting plate 220, may together be referred to as a “suspension assembly.” Accordingly, the mounting plate 220 may also be referred to as a suspension assembly mounting plate 220. In certain preferred embodiments, the suspension assembly mounting plate 220 includes a swage boss 226 to facilitate attachment of the suspension assembly to an actuator arm (e.g. actuator arm 114). In that case, the suspension assembly mounting plate 220 may also be referred to as a “swage mounting plate.” Note that, after the laminated flexure 204 is attached to the load beam 202, the laminated flexure 204 may be considered to also pertain to the “suspension assembly.” However, before the laminated flexure 204 is attached to the load beam 202, the term “suspension assembly” may refer to only the load beam 202 with its hinge plates 222, 224 (if any), and the mounting plate 220.



FIG. 3 is an expanded view of the region of the HGA 200 that is labeled 3 in FIG. 2. Now referring additionally to FIG. 3, a microactuator mounting structure 300 is seen to extend from the suspension assembly mounting plate 220. In the embodiment of FIG. 3, the microactuator mounting structure 300 is seen to be a separate sub-component that is attached to the suspension assembly mounting plate 220 (e.g. by a plurality of spot welds). However, alternatively the microactuator mounting structure 300 and the suspension assembly mounting plate 220 may be a single component having material continuity rather than being an assembly of subcomponents.


The microactuator mounting structure 300 may include at least one compliant arm 310 so that the microactuator can move a distal portion 318 relative to an anchored portion 316 of the microactuator mounting structure 300. For example, in the embodiment of FIG. 3, the microactuator mounting structure 300 includes two compliant arms 310 and 312, so that the microactuator mounting structure encompasses a window 314. The window 314 is dimensioned so that it can be spanned by microactuator 330. Alternatively, however, the microactuator mounting structure 300 can be designed to have a single compliant arm (e.g. centered on a longitudinal axis of the suspension assembly) so that the microactuator mounting structure 300 would be generally I-shaped between distal and root portions. Such embodiments may have two microactuators on either side of the I-shape that span the distance from the distal portion to the root portion.


In the embodiment of FIG. 3, the load beam 202 extends from the distal portion 318 of the microactuator mounting structure 300, in that the load beam 202 includes the hinge plates 222 and 224 that are attached to and extend from the distal portion 318 of the microactuator mounting structure 300. In alternative embodiments, the hinge plates 222, 224 and the load beam 202 can be a single component having material continuity (rather than being an assembly of subcomponents as shown in FIG. 3).



FIG. 4 is a top perspective view of a suspension assembly 400 according to an embodiment of the present invention, after placement of a microactuator 430 but before electrical connection of the microactuator 430. In the embodiment of FIG. 4, the suspension assembly 400 includes a load beam 402 and a laminated flexure 404 attached to the load beam 402. The load beam 402 includes hinge plates 422 and 424, and is attached to a suspension assembly mounting plate 420 via the hinge plates 422 and 424. These components may be made of stainless steel, and their attachments to each other may be made by spot welding, for example. Alternatively, the load beam 402 may have integral hinge plate regions rather than being assembled with separate hinge plate components, so that the load beam 402 and its hinge plates would be a single component having material continuity. In certain preferred embodiments, the suspension assembly mounting plate 420 includes a swage boss 426 to facilitate attachment of the suspension assembly to an actuator arm (e.g. actuator arm 114).



FIG. 5 is an expanded view of the region of the suspension assembly 400 that is labeled 5 in FIG. 4. Now referring additionally to FIG. 5, the suspension assembly mounting plate 420 can be seen to include a microactuator mounting structure 500 extending from the suspension assembly mounting plate 420. In the embodiment of FIG. 5, the microactuator mounting structure 500 includes a partially etched well 540 into which the microactuator 430 may be placed. In certain preferred embodiments, the microactuator 430 is adhered to the microactuator mounting structure 500 by an adhesive (e.g. UV cured epoxy, thermal set epoxy, etc), and such adhesive or another encapsulate material may be disposed around the periphery of the microactuator 430 and within the partially etched well to help prevent particle shedding.


In the embodiment of FIG. 5, the microactuator mounting structure 500 includes at least one compliant arm 510 so that the microactuator 430 can move a distal portion 518 relative to an anchored portion 516 of the microactuator mounting structure 500. For example, in the embodiment of FIG. 5, the microactuator mounting structure 500 includes two compliant arms 510 and 512, so that the microactuator mounting structure encompasses a window 514. The window 514 is dimensioned so that it can be spanned by microactuator 430. Alternatively, however, the microactuator mounting structure 500 can be designed to have a single compliant arm so that the microactuator mounting structure 500 would be generally I-shaped between distal and root portions. Such embodiments may have two microactuators on either side of the I-shape that span the distance from the distal portion to the root portion.


In the embodiment of FIG. 5, the load beam 402 extends from the distal portion 518 of the microactuator mounting structure 500, in that the load beam 402 includes the hinge plates 422 and 424 that are attached to and extend from the distal portion 518 of the microactuator mounting structure 500. In alternative embodiments, the hinge plates 422, 424 and the load beam 402 can be a single component having material continuity (rather than being an assembly of subcomponents as shown in FIG. 5). In the embodiment of FIG. 5, the distal portion 518 of the microactuator mounting structure 500 may optionally include a adhesive-limiting trench 570 to help prevent adhesive from reaching (and potentially undesirably affecting the structural characteristics of) the hinge plates 422, 424.


In the embodiment of FIG. 5, the microactuator mounting structure 500 of the suspension assembly 400 includes a stainless steel surface having two regions 550 and 552 that are coated with gold. Alternatively, one or more gold coatings can be disposed on a stainless steel surface of the suspension assembly mounting plate 420 outside but adjacent the anchored portion 516 of the microactuator mounting structure 500. Alternatively, a gold coating may be disposed on a stainless steel surface of each of the hinge plates 422, 424, outside but adjacent the distal portion 518 of the microactuator mounting structure 500. In either of these alternative embodiments, what is desired is that the gold coatings be disposed near enough to the microactuator 430 to facilitate electrical connection thereto. Preferably but not necessarily, the two gold-coated regions 550 and 552 of the stainless steel surface of the microactuator mounting structure 500 include partial etched trenches 560 and 562, respectively.


In the embodiment of FIG. 5, the microactuator 430 includes top electrodes 432 and 436, separated by an isolation region 434. However, in the view of FIG. 5, the top electrodes 432 and 436 are not electrically connected to the two gold-coated regions 550 and 552 of the stainless steel surface of the microactuator mounting structure 500. In certain preferred embodiments, the microactuator 430 is a piezoelectric microactuator that is polarized differently beneath the top electrode 432 than it is beneath the top electrode 436, to facilitate differential motion despite the application of a common electrical field from a common bottom electrode (not shown). In certain other embodiments, the microactuator is a piezoelectric microactuator that is polarized similarly beneath the top electrode 432 and the top electrode 436, with differential motion being created by the application of different or opposite voltages to one opposing bottom electrode (not shown) versus another.



FIG. 6 is an expanded view of the region labeled 5 in FIG. 4 (of the suspension assembly 400), except after electrical connection of the top electrodes 432 and 436 of the microactuator 430 to the two gold-coated regions 550 and 552 of the stainless steel surface of the microactuator mounting structure 500. FIG. 7 is an expanded view of the region labeled 5 in FIG. 4 (of the suspension assembly 400), except before placement of the microactuator 430.


Specifically, and now referring additionally to FIGS. 6 and 7, the top electrodes 432 and 436 of the microactuator 430 have been electrically connected to the two gold-coated regions 550 and 552 of the stainless steel surface of the microactuator mounting structure 500, by beads 650 and 652 of epoxy adhesive that is doped with silver particles. Alternatively, solder or gold wire stitching may be used to make the electrical connections. However, if solder is used and the microactuator is a piezoelectric microactuator, then it may be desirable for the solder to be a low temp-melting-point since it should not need to get so hot that the piezoelectric material (e.g. PZT) is depolarized.


In certain embodiments, the gold coating in gold-coated regions 550 and 552 may advantageously diminish or prevent an electrochemical reaction that could cause an undesirable oxidation layer to form on the stainless steel surface at the connection locations, and thereby improve the reliability of the electrical connections. Note that the partial etched trenches 560 and 562 may also improve the reliability of the electrical connection of the top electrodes 432 and 436 of the microactuator 430 to the two gold-coated regions 550 and 552.


In certain embodiments, the microactuator may include two piezoelectric elements, each connected to at least one of the plurality of conductive traces (e.g. conductive traces 218). In such embodiments, each piezoelectric element can be separately or differently energized to create a desired motion of the distal portion of the microactuator mounting portion relative to the anchor portion thereof. In another embodiment, the microactuator includes one piezoelectric element (as shown in FIG. 5) having bottom electrodes that are electrically connected to two of the plurality of conductive traces. In such an embodiment, a different voltage can be applied to different portions of the piezoelectric element to create a desired motion of the distal portion of the microactuator mounting portion relative to the anchor portion thereof. In a preferred embodiment, the microactuator 430 includes one piezoelectric element having a common bottom electrode that is electrically connected to only a single one of the plurality of conductive traces (with the top electrode or electrodes connected to ground via the suspension assembly stainless steel structure). In such an embodiment, the piezoelectric element is preferably polarized differently beneath one surface electrode versus another, to facilitate differential motion despite the application of a common voltage from the single conductive trace. Note that in the aforementioned embodiments, the side of the piezoelectric microactuator that is grounded may be grounded via connection to the stainless steel parts of the suspension assembly (used as the ground conductor rather than or in addition to a ground trace of the laminated flexure).



FIG. 8 is a top plan view of a suspension assembly component 800 according to an embodiment of the present invention. The suspension assembly component 800 includes a mounting plate portion 820 and a microactuator mounting structure 801 extending from the mounting plate portion 820. In the embodiment of FIG. 8, the mounting plate portion 820 and the microactuator mounting structure 801 are shown to be a single component having material continuity rather than being an assembly of subcomponents.


In the embodiment of FIG. 8, the microactuator mounting structure 801 includes a partially etched well 840 into which a microactuator may be placed. The microactuator mounting structure 801 includes at least one compliant arm 810 so that a microactuator can move a distal portion 818 relative to an anchored portion 816 of the microactuator mounting structure 801. For example, in the embodiment of FIG. 8, the microactuator mounting structure 801 includes two compliant arms 810 and 812, so that the microactuator mounting structure encompasses a window 814. The window 814 is dimensioned so that it can be spanned by a microactuator.


In the embodiment of FIG. 8, the distal portion 818 of the microactuator mounting structure 801 includes a stainless steel surface having two regions 850 and 852 that are coated with gold. Alternatively, one or more gold coatings can be disposed on a stainless steel surface of the mounting plate portion 820, for example outside but adjacent the anchored portion 816 of the microactuator mounting structure 801. In either of these alternative embodiments, what is desired is that the gold coatings be disposed near enough to the partially etched well 840 to facilitate electrical connection to a microactuator placed therein. Preferably but not necessarily, the two gold-coated regions 850 and 852 of the stainless steel surface of the microactuator mounting structure 801 include partial etched trenches 860 and 862, respectively, which may increase the reliability of electrical connections made thereto. In the embodiment of FIG. 8, the distal portion 818 of the microactuator mounting structure 801 may optionally also include an adhesive-limiting trench 870.


In the foregoing specification, the invention is described with reference to specific exemplary embodiments, but those skilled in the art will recognize that the invention is not limited to those. It is contemplated that various features and aspects of the invention may be used individually or jointly and possibly in a different environment or application. The specification and drawings are, accordingly, to be regarded as illustrative and exemplary rather than restrictive. “Comprising,” “including,” and “having,” are intended to be open-ended terms.

Claims
  • 1. A suspension assembly comprising: a suspension assembly mounting plate; a microactuator mounting structure extending from the suspension assembly mounting plate;a load beam extending from the microactuator mounting structure; anda laminated flexure attached to the load beam, the laminated flexure including a tongue that has a read head bonding surface;wherein the suspension assembly includes a stainless steel surface having a gold coating, and further comprises a microactuator attached to the microactuator mounting structure and electrically connected to the gold coating,wherein the stainless steel surface is a stainless steel surface of the suspension assembly mounting plate.
  • 2. A head gimbal assembly (HGA) comprising: a suspension assembly, the suspension assembly including a suspension assembly mounting plate; a microactuator mounting structure extending from the suspension assembly mounting plate;a load beam extending from the microactuator mounting structure; anda laminated flexure attached to the load beam, the laminated flexure including a tongue;wherein the suspension assembly includes a stainless steel surface having a gold coating, and further comprises a microactuator attached to the microactuator mounting structure and electrically connected to the gold coating; and a read head bonded to the tongue,wherein the stainless steel surface is a stainless steel surface of the suspension assembly mounting plate.
  • 3. A disk drive comprising: a disk drive base;a spindle attached to the disk drive base;a disk mounted on the spindle;a coarse actuator attached to the disk drive base, the coarse actuator including an actuator arm;a suspension assembly, the suspension assembly including a suspension assembly mounting plate attached to the actuator arm; a microactuator mounting structure extending from the suspension assembly mounting plate;a load beam extending from the microactuator mounting structure; anda laminated flexure attached to the load beam, the laminated flexure including a tongue;wherein the suspension assembly includes a stainless steel surface having a gold coating, and further comprises a microactuator attached to the microactuator mounting structure and electrically connected to the gold coating; anda read head bonded to the tongue,wherein the stainless steel surface is a stainless steel surface of the suspension assembly mounting plate.
CROSS REFERENCE TO RELATED APPLICATION(S)

This application is a divisional of U.S. application Ser. No. 12/725,730, filed Mar. 17, 2010, the disclosure of which is hereby incorporated by reference in its entirety.

US Referenced Citations (410)
Number Name Date Kind
4422906 Kobayashi Dec 1983 A
4659438 Kuhn et al. Apr 1987 A
5235482 Schmitz Aug 1993 A
5320272 Melton et al. Jun 1994 A
5521778 Boutaghou et al. May 1996 A
5608591 Klaassen Mar 1997 A
5657186 Kudo et al. Aug 1997 A
5694270 Sone et al. Dec 1997 A
5754368 Shiraishi et al. May 1998 A
5773889 Love et al. Jun 1998 A
5796552 Akin, Jr. et al. Aug 1998 A
5812344 Balakrishnan Sep 1998 A
5818662 Shum Oct 1998 A
5898544 Krinke et al. Apr 1999 A
5914834 Gustafson Jun 1999 A
6046887 Uozumi et al. Apr 2000 A
6046889 Berding et al. Apr 2000 A
6052890 Malagrino, Jr. et al. Apr 2000 A
6061206 Foisy et al. May 2000 A
6101876 Brooks et al. Aug 2000 A
6147831 Kennedy et al. Nov 2000 A
6151189 Brooks Nov 2000 A
6151197 Larson et al. Nov 2000 A
6156982 Dawson Dec 2000 A
6185067 Chamberlain Feb 2001 B1
6185074 Wang et al. Feb 2001 B1
6208486 Gustafson et al. Mar 2001 B1
6215616 Phan et al. Apr 2001 B1
6215622 Ruiz et al. Apr 2001 B1
6229673 Shinohara et al. May 2001 B1
6249404 Doundakov et al. Jun 2001 B1
6272694 Weaver et al. Aug 2001 B1
6278587 Mei Aug 2001 B1
6288866 Butler et al. Sep 2001 B1
6292333 Blumentritt et al. Sep 2001 B1
6307715 Berding et al. Oct 2001 B1
6330132 Honda Dec 2001 B1
6344950 Watson et al. Feb 2002 B1
6349017 Schott Feb 2002 B1
6349464 Codilian et al. Feb 2002 B1
6388873 Brooks et al. May 2002 B1
6417979 Patton, III et al. Jul 2002 B1
6421208 Oveyssi Jul 2002 B1
6441998 Abrahamson Aug 2002 B1
6459549 Tsuchiya et al. Oct 2002 B1
6462914 Oveyssi et al. Oct 2002 B1
6466398 Butler et al. Oct 2002 B1
6469871 Wang Oct 2002 B1
6490228 Killam Dec 2002 B2
6502300 Casey et al. Jan 2003 B1
6519116 Lin et al. Feb 2003 B1
6529345 Butler et al. Mar 2003 B1
6529351 Oveyssi et al. Mar 2003 B1
6535358 Hauert et al. Mar 2003 B1
6539609 Palmer et al. Apr 2003 B2
6545382 Bennett Apr 2003 B1
6549381 Watson Apr 2003 B1
6560065 Yang et al. May 2003 B1
6571460 Casey et al. Jun 2003 B1
6574073 Hauert et al. Jun 2003 B1
6580574 Codilian Jun 2003 B1
6594111 Oveyssi et al. Jul 2003 B1
6600631 Berding et al. Jul 2003 B1
6603620 Berding Aug 2003 B1
6618222 Watkins et al. Sep 2003 B1
6624966 Ou-Yang et al. Sep 2003 B1
6624980 Watson et al. Sep 2003 B1
6624983 Berding Sep 2003 B1
6628473 Codilian et al. Sep 2003 B1
6647621 Roen et al. Nov 2003 B1
6654200 Alexander et al. Nov 2003 B1
6657811 Codilian Dec 2003 B1
6661597 Hanan et al. Dec 2003 B1
6661603 Watkins et al. Dec 2003 B1
6661617 Wissman et al. Dec 2003 B1
6674600 Codilian et al. Jan 2004 B1
6690637 Codilian Feb 2004 B1
6693767 Butler Feb 2004 B1
6693773 Sassine Feb 2004 B1
6697217 Codilian Feb 2004 B1
6698286 Little et al. Mar 2004 B1
6700736 Wu et al. Mar 2004 B1
6704167 Scura et al. Mar 2004 B1
6707637 Codilian et al. Mar 2004 B1
6707641 Oveyssi et al. Mar 2004 B1
6710980 Hauert et al. Mar 2004 B1
6710981 Oveyssi et al. Mar 2004 B1
6728062 Ou-Yang et al. Apr 2004 B1
6728063 Gustafson et al. Apr 2004 B1
6731470 Oveyssi May 2004 B1
6735033 Codilian et al. May 2004 B1
6735052 Dunn et al. May 2004 B2
6741428 Oveyssi May 2004 B1
6751051 Garbarino Jun 2004 B1
6754042 Chiou et al. Jun 2004 B1
6757132 Watson et al. Jun 2004 B1
6759784 Gustafson et al. Jul 2004 B1
6781780 Codilian Aug 2004 B1
6781787 Codilian et al. Aug 2004 B1
6781791 Griffin et al. Aug 2004 B1
6790066 Klein Sep 2004 B1
6791791 Alfred et al. Sep 2004 B1
6791801 Oveyssi Sep 2004 B1
6795262 Codilian et al. Sep 2004 B1
6798603 Singh et al. Sep 2004 B1
6801389 Berding et al. Oct 2004 B1
6801404 Oveyssi Oct 2004 B1
6816342 Oveyssi Nov 2004 B1
6816343 Oveyssi Nov 2004 B1
6825622 Ryan et al. Nov 2004 B1
6826009 Scura et al. Nov 2004 B1
6831539 Hipwell, Jr. et al. Dec 2004 B1
6831810 Butler et al. Dec 2004 B1
6833978 Shum et al. Dec 2004 B2
6839199 Alexander, Jr. et al. Jan 2005 B1
6844996 Berding et al. Jan 2005 B1
6847504 Bennett et al. Jan 2005 B1
6847506 Lin et al. Jan 2005 B1
6856075 Houk et al. Feb 2005 B1
6856491 Oveyssi Feb 2005 B1
6856492 Oveyssi Feb 2005 B2
6862154 Subrahmanyam et al. Mar 2005 B1
6862156 Lin et al. Mar 2005 B1
6862176 Codilian et al. Mar 2005 B1
6865049 Codilian et al. Mar 2005 B1
6865055 Ou-Yang et al. Mar 2005 B1
6867946 Berding et al. Mar 2005 B1
6867950 Lin Mar 2005 B1
6876514 Little Apr 2005 B1
6879466 Oveyssi et al. Apr 2005 B1
6888697 Oveyssi May 2005 B1
6888698 Berding et al. May 2005 B1
6891696 Ou-Yang et al. May 2005 B1
6898052 Oveyssi May 2005 B1
6900961 Butler May 2005 B1
6906880 Codilian Jun 2005 B1
6906897 Oveyssi Jun 2005 B1
6908330 Garrett et al. Jun 2005 B2
6922308 Butler Jul 2005 B1
6930848 Codilian et al. Aug 2005 B1
6930857 Lin et al. Aug 2005 B1
6934126 Berding et al. Aug 2005 B1
6937444 Oveyssi Aug 2005 B1
6940698 Lin et al. Sep 2005 B2
6941642 Subrahmanyam et al. Sep 2005 B1
6947251 Oveyssi et al. Sep 2005 B1
6950275 Ali et al. Sep 2005 B1
6950284 Lin Sep 2005 B1
6950288 Yao et al. Sep 2005 B2
6952318 Ngo Oct 2005 B1
6954329 Ojeda et al. Oct 2005 B1
6958884 Ojeda et al. Oct 2005 B1
6958890 Lin et al. Oct 2005 B1
6961212 Gustafson et al. Nov 2005 B1
6961218 Lin et al. Nov 2005 B1
6963469 Gustafson et al. Nov 2005 B1
6965500 Hanna et al. Nov 2005 B1
6967800 Chen et al. Nov 2005 B1
6967804 Codilian Nov 2005 B1
6970329 Oveyssi et al. Nov 2005 B1
6972924 Chen et al. Dec 2005 B1
6972926 Codilian Dec 2005 B1
6975476 Berding Dec 2005 B1
6979931 Gustafson et al. Dec 2005 B1
6980391 Haro Dec 2005 B1
6980401 Narayanan et al. Dec 2005 B1
6982853 Oveyssi et al. Jan 2006 B1
6989953 Codilian Jan 2006 B1
6990727 Butler et al. Jan 2006 B1
6996893 Ostrander et al. Feb 2006 B1
7000309 Klassen et al. Feb 2006 B1
7006324 Oveyssi et al. Feb 2006 B1
7013731 Szeremeta et al. Mar 2006 B1
7031104 Butt et al. Apr 2006 B1
7035053 Oveyssi et al. Apr 2006 B1
7050270 Oveyssi et al. May 2006 B1
7057852 Butler et al. Jun 2006 B1
7062837 Butler Jun 2006 B1
7064921 Yang et al. Jun 2006 B1
7064922 Alfred et al. Jun 2006 B1
7064928 Fu et al. Jun 2006 B2
7064932 Lin et al. Jun 2006 B1
7085098 Yang et al. Aug 2006 B1
7085108 Oveyssi et al. Aug 2006 B1
7092216 Chang et al. Aug 2006 B1
7092251 Henry Aug 2006 B1
7099099 Codilian et al. Aug 2006 B1
7113371 Hanna et al. Sep 2006 B1
7142397 Venk Nov 2006 B1
7145753 Chang et al. Dec 2006 B1
RE39478 Hatch et al. Jan 2007 E
7161768 Oveyssi Jan 2007 B1
7161769 Chang et al. Jan 2007 B1
7177119 Bennin et al. Feb 2007 B1
7180711 Chang et al. Feb 2007 B1
7193819 Chen et al. Mar 2007 B1
7209317 Berding et al. Apr 2007 B1
7209319 Watkins et al. Apr 2007 B1
D542289 Diebel May 2007 S
7212377 Ou-Yang et May 2007 B1
7215513 Chang et al. May 2007 B1
7215514 Yang et al. May 2007 B1
7218481 Bennin et al. May 2007 B1
7224551 Ou-Yang et al. May 2007 B1
D543981 Diebel Jun 2007 S
7227725 Chang et al. Jun 2007 B1
7239475 Lin et al. Jul 2007 B1
7271978 Santini et al. Sep 2007 B1
7274534 Choy et al. Sep 2007 B1
7280311 Ou-Yang et al. Oct 2007 B1
7280317 Little et al. Oct 2007 B1
7280319 McNab Oct 2007 B1
7292406 Huang Nov 2007 B1
7298584 Yamada et al. Nov 2007 B1
7307817 Mei Dec 2007 B1
7322241 Kai Jan 2008 B2
7327537 Oveyssi Feb 2008 B1
7339268 Ho et al. Mar 2008 B1
7342746 Lin Mar 2008 B1
RE40203 Hatch et al. Apr 2008 E
7353524 Lin et al. Apr 2008 B1
7369368 Mohajerani May 2008 B1
7372670 Oveyssi May 2008 B1
7375929 Chang et al. May 2008 B1
7379266 Ou-Yang et al. May 2008 B1
7381904 Codilian Jun 2008 B1
7382582 Cuevas Jun 2008 B1
7385784 Berding et al. Jun 2008 B1
7385788 Kubota et al. Jun 2008 B2
7388731 Little et al. Jun 2008 B1
7391594 Fu et al. Jun 2008 B2
7403357 Williams Jul 2008 B1
7417830 Kulangara Aug 2008 B1
7420771 Hanke et al. Sep 2008 B1
7434987 Gustafson et al. Oct 2008 B1
7436625 Chiou et al. Oct 2008 B1
7440234 Cheng et al. Oct 2008 B1
7459835 Mei et al. Dec 2008 B1
7477488 Zhang et al. Jan 2009 B1
7477489 Chen et al. Jan 2009 B1
7484291 Ostrander et al. Feb 2009 B1
7505231 Golgolab et al. Mar 2009 B1
7509859 Kai Mar 2009 B2
7529064 Huang et al. May 2009 B1
7538981 Pan May 2009 B1
7561374 Codilian et al. Jul 2009 B1
7567410 Zhang et al. Jul 2009 B1
7576955 Yang et al. Aug 2009 B1
7593181 Tsay et al. Sep 2009 B1
7605999 Kung et al. Oct 2009 B1
7609486 Little Oct 2009 B1
7610672 Liebman Nov 2009 B1
7625654 Vyas et al. Dec 2009 B2
7629539 Ishii et al. Dec 2009 B2
7633721 Little et al. Dec 2009 B1
7633722 Larson et al. Dec 2009 B1
7649254 Graydon et al. Jan 2010 B2
7656609 Berding et al. Feb 2010 B1
7660075 Lin et al. Feb 2010 B1
7672083 Yu et al. Mar 2010 B1
7684155 Huang et al. Mar 2010 B1
7686555 Larson et al. Mar 2010 B1
7709078 Sevier et al. May 2010 B1
7715149 Liebman et al. May 2010 B1
7729091 Huang et al. Jun 2010 B1
7751145 Lin et al. Jul 2010 B1
7826177 Zhang et al. Nov 2010 B1
7832082 Hentges et al. Nov 2010 B1
7852601 Little Dec 2010 B1
7864488 Pan Jan 2011 B1
7872344 Fjelstad et al. Jan 2011 B2
7898770 Zhang et al. Mar 2011 B1
7903369 Codilian et al. Mar 2011 B1
7907369 Pan Mar 2011 B1
7911742 Chang et al. Mar 2011 B1
7914926 Kimura et al. Mar 2011 B2
7926167 Liebman et al. Apr 2011 B1
7929252 Hentges et al. Apr 2011 B1
7957095 Tsay et al. Jun 2011 B1
7957102 Watson et al. Jun 2011 B1
7961436 Huang et al. Jun 2011 B1
8004782 Nojaba et al. Aug 2011 B1
8009384 Little Aug 2011 B1
8018687 Little et al. Sep 2011 B1
8031431 Berding et al. Oct 2011 B1
8064168 Zhang et al. Nov 2011 B1
8064170 Pan Nov 2011 B1
8068314 Pan et al. Nov 2011 B1
8081401 Huang et al. Dec 2011 B1
8089730 Pan et al. Jan 2012 B1
8100017 Blick et al. Jan 2012 B1
8116038 Zhang et al. Feb 2012 B1
8125740 Yang et al. Feb 2012 B1
8142671 Pan Mar 2012 B1
8149542 Ando Apr 2012 B2
8156633 Foisy Apr 2012 B1
8159785 Lee et al. Apr 2012 B1
8174797 Iriuchijima May 2012 B2
8189298 Lee et al. May 2012 B1
8194348 Jacoby et al. Jun 2012 B2
8194354 Zhang et al. Jun 2012 B1
8194355 Pan et al. Jun 2012 B1
8199441 Nojima Jun 2012 B2
8203806 Larson et al. Jun 2012 B2
8223453 Norton et al. Jul 2012 B1
8228631 Tsay et al. Jul 2012 B1
8228642 Hahn et al. Jul 2012 B1
8233239 Teo et al. Jul 2012 B1
8248731 Fuchino Aug 2012 B2
8248733 Radavicius et al. Aug 2012 B1
8248734 Fuchino Aug 2012 B2
8248735 Fujimoto et al. Aug 2012 B2
8248736 Hanya et al. Aug 2012 B2
8259417 Ho et al. Sep 2012 B1
8274760 Zhang et al. Sep 2012 B1
8276256 Zhang et al. Oct 2012 B1
8279560 Pan Oct 2012 B1
8284514 Garbarino Oct 2012 B1
8289646 Heo et al. Oct 2012 B1
8300352 Larson et al. Oct 2012 B1
8305708 Tacklind Nov 2012 B2
8320086 Moradnouri et al. Nov 2012 B1
8322021 Berding et al. Dec 2012 B1
8339748 Shum et al. Dec 2012 B2
8345387 Nguyen Jan 2013 B1
8363351 Little Jan 2013 B1
8369044 Howie et al. Feb 2013 B2
8411389 Tian et al. Apr 2013 B1
8416522 Schott et al. Apr 2013 B1
8416534 Heo et al. Apr 2013 B1
8422171 Guerini Apr 2013 B1
8422175 Oveyssi Apr 2013 B1
8432641 Nguyen Apr 2013 B1
8437101 German et al. May 2013 B1
8438721 Sill May 2013 B1
8446688 Quines et al. May 2013 B1
8451559 Berding et al. May 2013 B1
8467153 Pan et al. Jun 2013 B1
8472131 Ou-Yang et al. Jun 2013 B1
8477460 Liebman Jul 2013 B1
8488270 Brause et al. Jul 2013 B2
8488280 Myers et al. Jul 2013 B1
8499652 Tran et al. Aug 2013 B1
8514514 Berding et al. Aug 2013 B1
8530032 Sevier et al. Sep 2013 B1
8542465 Liu et al. Sep 2013 B2
8547664 Foisy et al. Oct 2013 B1
8553356 Heo et al. Oct 2013 B1
8553364 Schreiber et al. Oct 2013 B1
8553366 Hanke Oct 2013 B1
8553367 Foisy et al. Oct 2013 B1
8616900 Lion Dec 2013 B1
8665555 Young et al. Mar 2014 B1
8665567 Shum et al. Mar 2014 B2
8667667 Nguyen et al. Mar 2014 B1
8693139 Tian et al. Apr 2014 B2
8693140 Weiher et al. Apr 2014 B1
8699179 Golgolab et al. Apr 2014 B1
8702998 Guerini Apr 2014 B1
8705201 Casey et al. Apr 2014 B2
8705209 Seymour et al. Apr 2014 B2
8717706 German et al. May 2014 B1
8743509 Heo et al. Jun 2014 B1
8755148 Howie et al. Jun 2014 B1
8756776 Chen et al. Jun 2014 B1
8760800 Brown et al. Jun 2014 B1
8760814 Pan et al. Jun 2014 B1
8760816 Myers et al. Jun 2014 B1
8773812 Gustafson et al. Jul 2014 B1
8780491 Perlas et al. Jul 2014 B1
8780504 Teo et al. Jul 2014 B1
8792205 Boye-Doe et al. Jul 2014 B1
8797677 Heo et al. Aug 2014 B2
8797689 Pan et al. Aug 2014 B1
8824095 Dougherty Sep 2014 B1
8824098 Huang et al. Sep 2014 B1
8885299 Bennin et al. Nov 2014 B1
20020075606 Nishida et al. Jun 2002 A1
20020118492 Watanabe et al. Aug 2002 A1
20030089520 Ooyabu et al. May 2003 A1
20030135985 Yao et al. Jul 2003 A1
20040181932 Yao et al. Sep 2004 A1
20040221447 Ishii et al. Nov 2004 A1
20060274452 Arya Dec 2006 A1
20070227769 Brodsky et al. Oct 2007 A1
20080247131 Hitomi et al. Oct 2008 A1
20090135523 Nishiyama et al. May 2009 A1
20090176120 Wang Jul 2009 A1
20090190263 Miura et al. Jul 2009 A1
20090294740 Kurtz et al. Dec 2009 A1
20100067151 Okawara et al. Mar 2010 A1
20100073825 Okawara Mar 2010 A1
20100097726 Greminger et al. Apr 2010 A1
20100143743 Yamasaki et al. Jun 2010 A1
20100177445 Fuchino Jul 2010 A1
20100195252 Kashima Aug 2010 A1
20100220414 Klarqvist et al. Sep 2010 A1
20100246071 Nojima et al. Sep 2010 A1
20100271735 Schreiber Oct 2010 A1
20110013319 Soga et al. Jan 2011 A1
20110212281 Jacoby et al. Sep 2011 A1
20110228425 Liu et al. Sep 2011 A1
20110242708 Fuchino Oct 2011 A1
20110279929 Kin Nov 2011 A1
20120002329 Shum et al. Jan 2012 A1
20120113547 Sugimoto May 2012 A1
20130038964 Garbarino et al. Feb 2013 A1
20130091698 Banshak, Jr. et al. Apr 2013 A1
20130155546 Heo et al. Jun 2013 A1
20130290988 Watson et al. Oct 2013 A1
Foreign Referenced Citations (5)
Number Date Country
2001-057039 Feb 2001 JP
2001-307442 Nov 2001 JP
2002-050140 Feb 2002 JP
2004-300489 Oct 2004 JP
2007-115864 May 2007 JP
Non-Patent Literature Citations (19)
Entry
U.S. Appl. No. 61/396,239, filed May 24, 2010, (16 pages).
U.S. Appl. No. 13/114,212, filed May 24, 2011, (23 pages).
Office Action dated Apr. 25, 2012 U.S Appl. No. 12/725,730, 14 pages.
Office Action dated Oct. 2, 2012 U.S Appl. No. 12/725,730, 31 pages.
Ex parte Quayle dated Mar. 28, 2013 U.S Appl. No. 12/725,730, 7 pages.
Notice of Allowance dated May 23, 2013 U.S Appl. No. 12/725,730, 8 pages.
CN Office Action dated Sep. 17, 2014, includes translation and SIPO Search Report, in Chinese Application 201110068572.X, 18 pages.
Cheng et al, “Vapor deposited thin gold coatings for high temperature electrical contacts”, Proc. 42nd IEEE Holm Conf. of Electrical Contacts (1996) p. 404-413.
Cheng, Yang-Tse, “Vapor deposited thin gold coatings for high temperature electrical contacts”, Electrical Contacts, 1996, Joint with the 18th International Conference on Electrical Contacts, Proceedings of the Forty-Second IEEE Holm Conference, Sep. 16-20, 1996 (abstract only).
Fu, Yao, “Design of a Hybrid Magnetic and Piezoelectric Polymer Microactuator”, a thesis submitted to Industrial Research Institute Swinburne (IRIS), Swinburne University of Technology, Hawthorn, Victoria, Australia, Dec. 2005.
Harris, N. R. et al., “A Multilayer Thick-film PZT Actuator for MEMs Applications”, Sensors and Actuators A: Physical, vol. 132, No. 1, Nov. 8, 2006, pp. 311-316.
Jing, Yang, “Fabrication of piezoelectric ceramic micro-actuator and its reliability for hard disk drives”, Ultrasonics, Ferroelectrics and Frequency Control, IEEE, vol. 51, No. 11, Nov. 2004, pp. 1470-1476.
Kon, Stanley et al., “Piezoresistive and Piezoelectric MEMS Strain Sensors for Vibration Detection”, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2007, Proc. Of SPIE vol. 6529, 11 pages.
Li, Longqiu et al., “An experimental study of the dimple-gimbal interface in a hard disk drive”, Microsyst Technol (2011) 17:863-868.
Pichonat, Tristan et al., “Recent developments in MEMS-based miniature fuel cells”, DTIP of MEMS & MOEMS, Apr. 2006, 6 pages.
Raeymaekers, B. et al., “Investigation of fretting wear at the dimple/gimbal interface in a hard disk drive suspension”, Wear, vol. 268, Issues 11-12, Feb. 16, 2010, pp. 1347-1353.
Raeymaekers, Bart et al., “Fretting Wear Between a Hollow Sphere and Flat Surface”, Proceedings of the STLE/ASME International Joint Tribology Conference, Oct. 19-21, 2009, Memphis, TN USA, 4 pages.
Rajagopal, Indira et al., “Gold Plating of Critical Components for Space Applications: Challenges and Solutions”, Gold Bull., 1992, 25(2), pp. 55-66.
Yoon, Wonseok et al., “Evaluation of coated metallic bipolar plates for polymer electrolyte membrane fuel cells”, The Journal of Power Sources, vol. 179, No. 1, Apr. 15, 2008, pp. 265-273.
Divisions (1)
Number Date Country
Parent 12725730 Mar 2010 US
Child 14012449 US