Information storage devices are used to retrieve and/or store data in computers and other consumer electronics devices. A magnetic hard disk drive is an example of an information storage device that includes one or more heads that can both read and write, but other information storage devices also include heads—sometimes including heads that cannot write. For convenience, all heads that can read are referred to as “read heads” herein, regardless of other devices and functions the read head may also perform (e.g. writing, flying height control, touch down detection, lapping control, etc).
In a modern magnetic hard disk drive device, each read head is a sub-component of a head gimbal assembly (HGA). The read head typically includes a slider and a read/write transducer. The read/write transducer typically comprises a magneto-resistive read element (e.g. so-called giant magneto-resistive read element, or a tunneling magneto-resistive read element) and an inductive write structure comprising a flat coil deposited by photolithography and a yoke structure having pole tips that face a disk media.
The HGA typically also includes a suspension assembly that includes a mounting plate, a load beam, and a laminated flexure to carry the electrical signals to and from the read head. The read head is typically bonded to a tongue feature of the laminated flexure. The HGA, in turn, is a sub-component of a head stack assembly (HSA) that typically includes a plurality of HGAs, a rotary actuator, and a flex cable. The mounting plate of each suspension assembly is attached to an arm of the rotary actuator (e.g. by swaging), and each of the laminated flexures includes a flexure tail that is electrically connected to the HSA's flex cable (e.g. by solder bonding).
Modern laminated flexures typically include electrically conductive copper traces that are isolated from a stainless steel support layer by a polyimide dielectric layer. So that the signals from/to the head can reach the flex cable on the actuator body, each HGA flexure includes a flexure tail that extends away from the head along the actuator arm and ultimately attaches to the flex cable adjacent the actuator body. That is, the flexure includes electrically conductive traces that are electrically connected to a plurality of electrically conductive bonding pads on the head, and extend from adjacent the head to terminate at electrical connection points at the flexure tail.
The position of the HSA relative to the spinning disks in a disk drive, and therefore the position of the read heads relative to data tracks on the disks, is actively controlled by the rotary actuator which is typically driven by a voice coil motor (VCM). Specifically, electrical current passed through a coil of the VCM applies a torque to the rotary actuator, so that the read head can seek and follow desired data tracks on the spinning disk.
However, the industry trend towards increasing areal data density has necessitated substantial reduction in the spacing between data tracks on the disk. Also, disk drive performance requirements, especially requirements pertaining to the time required to access desired data, have not allowed the rotational speed of the disk to be reduced. In fact, for many disk drive applications, the rotational speed has been significantly increased. A consequence of these trends is that increased bandwidth is required for servo control of the read head position relative to data tracks on the spinning disk.
One solution that has been proposed in the art to increase disk drive servo bandwidth is dual-stage actuation. Under the dual-stage actuation concept, the rotary actuator that is driven by the VCM is employed as a coarse actuator (for large adjustments in the HSA position relative to the disk), while a so-called “microactuator” having higher bandwidth but lesser stroke is used as a fine actuator (for smaller adjustments in the read head position). Various microactuator designs have been proposed in the art for the purpose of dual-stage actuation in disk drive applications. Some of these designs utilize one or more piezoelectric microactuators that are affixed to a stainless steel component of the suspension assembly (e.g. the mounting plate or an extension thereof, and/or the load beam or an extension thereof, and/or an intermediate stainless steel part connecting the mounting plate to the load beam).
However, if the microactuator is electrically connected to a stainless steel surface of the suspension assembly (e.g. for grounding), an electrochemical reaction may cause an oxidation layer to form on the stainless steel at the connection location. The oxidation layer may be insulative and interfere with desired electrical conduction, and may be exacerbated by hot and humid conditions. Over time, the desired response of the microactuator to applied signals may become diminished, leading to reduced or impaired performance of the information storage device and/or data loss.
Therefore, there is a need in the information storage device arts for a suspension assembly design that can improve integration with a microactuator by improving the grounding of the microactuator.
The disk drive 100 further includes a rotary coarse actuator 110 that is rotably mounted on disk drive base 102. The rotary coarse actuator 110 includes an actuator arm 114 that supports a head gimbal assembly (HGA) 118. Voice coil motor 112 rotates the actuator 110 through a limited angular range so that the HGA 118 may be desirably positioned relative to one or more tracks of information on the disk 104. Preferably the disk drive 100 will include one HGA 118 per disk surface, but depopulated disk drives are also contemplated in which fewer HGAs are used. Under non-operating conditions the HGAs may be parked on ramp 120, for example to avoid contact with the disk 104 when it is not spinning. Electrical signals to/from the HGA 118 are carried to other drive electronics, in part via a flex cable (not shown) and a flex cable bracket 116.
In the embodiment of
In the embodiment of
The load beam 202 with its hinge plates 222, 224 (if any), the microactuator mounting structure 300, and the mounting plate 220, may together be referred to as a “suspension assembly.” Accordingly, the mounting plate 220 may also be referred to as a suspension assembly mounting plate 220. In certain preferred embodiments, the suspension assembly mounting plate 220 includes a swage boss 226 to facilitate attachment of the suspension assembly to an actuator arm (e.g. actuator arm 114). In that case, the suspension assembly mounting plate 220 may also be referred to as a “swage mounting plate.” Note that, after the laminated flexure 204 is attached to the load beam 202, the laminated flexure 204 may be considered to also pertain to the “suspension assembly.”
In particular, mounting plate 304 may include a pair of approximately square-shaped microactuator mounting structures 340 and 342 that are formed in the mounting plate 304. Microactuators 312 and 313 may each be mounted in a microactuator mounting structure 340 and 342, respectively. As is known in the art, microactuators are typically used to position a read head. Further, epoxy lines 330 and 332 of epoxy 329 may each be bonded to a microactuator and may extend through the through-hole 306 to bond to a flexure, in which, the epoxy 329 extends through an opening of the flexure to a gold-plated ground trace of the flexure such that the microactuator is grounded to the flexure. It should be appreciated to those of skill in the art that a single microactuator may be mounted to the mounting plate, a pair of microactuators may be mounted to the mounting plate, or any suitable number of microactuators may be mounted to the mounting plate.
With reference also to
Thus, in one embodiment, a pair of epoxy lines 330 and 332 of epoxy 329 may be bonded to the microactuators 312 and 313 and may extend through the through-hole 306 to bond to the flexure 204. In particular, as will be described in more detail hereinafter, the epoxy 329 may extend through an opening of the flexure to the ground trace of the flexure such that the microactuator 312 and 313 are grounded to the flexure 204.
In one embodiment, the microactuators 312 and 313 are piezoelectric (PZT) microactuators. The piezoelectric microactuators 312 and 313 may be gold (Au) plated. Further, in one embodiment, the epoxy 329 may include silver (Ag) and is conductive. However, it should be appreciated that any sort of suitable epoxy or solder that is conductive may be utilized.
With reference now to
With reference also to
Thus, in one embodiment, an Ag epoxy 502 may be used to ground the microactuators by extending from the microactuators through a through-hole of the mounting plate 504 and through an opening 507 of the flexure 204 to extend through the steel layer 508 and the insulator layer 512 of the flexure 204 to ground to the ground trace of the exposed gold-plated 520 copper layer 514 of the flexure. Accordingly, there is a direct grounding of the microactuators to the ground trace of the flexure by simply extending an epoxy through a through-hole of the mounting plate. This is advantageous in that it solves problems associated with microactuators that are currently being bonded to the steel of the mounting plate and does so utilizing the current flexure cable with virtually no additional cost or design/process changes.
Additional embodiments are hereinafter described to let air out so that epoxy can flow down more easily to more easily contact the gold-plated copper layer.
Turning to
In the foregoing specification, the invention is described with reference to specific exemplary embodiments, but those skilled in the art will recognize that the invention is not limited to those. It is contemplated that various features and aspects of the invention may be used individually or jointly and possibly in a different environment or application. The specification and drawings are, accordingly, to be regarded as illustrative and exemplary rather than restrictive. “Comprising,” “including,” and “having,” are intended to be open-ended terms.
This application is a continuation of U.S. application Ser. No. 14/146,710 filed on Jan. 2, 2014, entitled “SUSPENSION ASSEMBLY HAVING A MICROACTUATOR GROUNDED TO A FLEXURE” to Wing Chun Shum et al., which is a continuation of U.S. application Ser. No. 12/827,813 filed on Jun. 30, 2010, entitled “SUSPENSION ASSEMBLY HAVING A MICROACTUATOR GROUNDED TO A FLEXURE” to Wing Chun Shum et al., both of which are hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
4422906 | Kobayashi | Dec 1983 | A |
4659438 | Kuhn et al. | Apr 1987 | A |
5320272 | Melton et al. | Jun 1994 | A |
5521778 | Boutaghou et al. | May 1996 | A |
5608591 | Klaassen | Mar 1997 | A |
5657186 | Kudo et al. | Aug 1997 | A |
5694270 | Sone et al. | Dec 1997 | A |
5754368 | Shiraishi et al. | May 1998 | A |
5773889 | Love et al. | Jun 1998 | A |
5796552 | Akin, Jr. et al. | Aug 1998 | A |
5812344 | Balakrishnan | Sep 1998 | A |
5818662 | Shum | Oct 1998 | A |
5898544 | Krinke et al. | Apr 1999 | A |
5914834 | Gustafson | Jun 1999 | A |
6046887 | Uozumi et al. | Apr 2000 | A |
6075673 | Wilde et al. | Jun 2000 | A |
6097575 | Trang et al. | Aug 2000 | A |
6125014 | Riedlin, Jr. | Sep 2000 | A |
6125015 | Carlson et al. | Sep 2000 | A |
6130863 | Wang et al. | Oct 2000 | A |
6137656 | Levi et al. | Oct 2000 | A |
6144528 | Anaya-Dufresne et al. | Nov 2000 | A |
6147838 | Chang et al. | Nov 2000 | A |
6151196 | Carlson et al. | Nov 2000 | A |
6156982 | Dawson | Dec 2000 | A |
6178064 | Chang et al. | Jan 2001 | B1 |
6181522 | Carlson | Jan 2001 | B1 |
6181673 | Wilde et al. | Jan 2001 | B1 |
6215622 | Ruiz et al. | Apr 2001 | B1 |
6229672 | Lee et al. | May 2001 | B1 |
6229673 | Shinohara et al. | May 2001 | B1 |
6236543 | Han et al. | May 2001 | B1 |
6246547 | Bozorgi et al. | Jun 2001 | B1 |
6249404 | Doundakov et al. | Jun 2001 | B1 |
6278587 | Mei | Aug 2001 | B1 |
6307715 | Berding et al. | Oct 2001 | B1 |
6330131 | Nepela et al. | Dec 2001 | B1 |
6330132 | Honda | Dec 2001 | B1 |
6339518 | Chang et al. | Jan 2002 | B1 |
6349017 | Schott | Feb 2002 | B1 |
6373660 | Lam et al. | Apr 2002 | B1 |
6378195 | Carlson | Apr 2002 | B1 |
6459549 | Tsuchiya et al. | Oct 2002 | B1 |
6490228 | Killam | Dec 2002 | B2 |
6522504 | Casey | Feb 2003 | B1 |
6538850 | Hadian et al. | Mar 2003 | B1 |
6539609 | Palmer et al. | Apr 2003 | B2 |
6583953 | Han et al. | Jun 2003 | B1 |
6600631 | Berding et al. | Jul 2003 | B1 |
6646832 | Anaya-Dufresne et al. | Nov 2003 | B2 |
6647621 | Roen et al. | Nov 2003 | B1 |
6661612 | Peng | Dec 2003 | B1 |
6661617 | Hipwell, Jr. et al. | Dec 2003 | B1 |
6665146 | Hawwa et al. | Dec 2003 | B2 |
6690545 | Chang et al. | Feb 2004 | B1 |
6704173 | Lam et al. | Mar 2004 | B1 |
6708389 | Carlson et al. | Mar 2004 | B1 |
6717773 | Hawwa et al. | Apr 2004 | B2 |
6721142 | Meyer et al. | Apr 2004 | B1 |
6735052 | Dunn et al. | May 2004 | B2 |
6744599 | Peng et al. | Jun 2004 | B1 |
6771468 | Levi et al. | Aug 2004 | B1 |
6796018 | Thornton | Sep 2004 | B1 |
6801402 | Subrahmanyam et al. | Oct 2004 | B1 |
6831539 | Hipwell, Jr. et al. | Dec 2004 | B1 |
6833978 | Shum et al. | Dec 2004 | B2 |
6856075 | Houk et al. | Feb 2005 | B1 |
6856489 | Hawwa et al. | Feb 2005 | B2 |
6873496 | Sun et al. | Mar 2005 | B1 |
6912103 | Peng et al. | Jun 2005 | B1 |
6937439 | Chang et al. | Aug 2005 | B1 |
6950288 | Yao et al. | Sep 2005 | B2 |
6956718 | Kulkarni et al. | Oct 2005 | B1 |
6972930 | Tang et al. | Dec 2005 | B1 |
7006330 | Subrahmanyam et al. | Feb 2006 | B1 |
7006331 | Subrahmanyam et al. | Feb 2006 | B1 |
7010847 | Hadian et al. | Mar 2006 | B1 |
7019945 | Peng et al. | Mar 2006 | B1 |
7027264 | Subrahmanyam et al. | Apr 2006 | B1 |
7064928 | Fu et al. | Jun 2006 | B2 |
7085104 | Hadian et al. | Aug 2006 | B1 |
7099117 | Subrahmanyam et al. | Aug 2006 | B1 |
7174622 | Meyer et al. | Feb 2007 | B2 |
7177119 | Bennin et al. | Feb 2007 | B1 |
7218481 | Bennin et al. | May 2007 | B1 |
7289299 | Sun et al. | Oct 2007 | B1 |
7307816 | Thornton et al. | Dec 2007 | B1 |
7307817 | Mei | Dec 2007 | B1 |
7315435 | Pan | Jan 2008 | B1 |
7315436 | Sanchez | Jan 2008 | B1 |
7322241 | Kai | Jan 2008 | B2 |
7382582 | Cuevas | Jun 2008 | B1 |
7385788 | Kubota et al. | Jun 2008 | B2 |
7391594 | Fu et al. | Jun 2008 | B2 |
7403357 | Williams | Jul 2008 | B1 |
7414814 | Pan | Aug 2008 | B1 |
7417830 | Kulangara | Aug 2008 | B1 |
7436631 | Fanslau, Jr. et al. | Oct 2008 | B1 |
7459835 | Mei et al. | Dec 2008 | B1 |
7463454 | Mastromatteo et al. | Dec 2008 | B2 |
7474508 | Li et al. | Jan 2009 | B1 |
7477486 | Sun et al. | Jan 2009 | B1 |
7509859 | Kai | Mar 2009 | B2 |
7593190 | Thornton et al. | Sep 2009 | B1 |
7595963 | Chen et al. | Sep 2009 | B1 |
7616405 | Hu et al. | Nov 2009 | B2 |
7625654 | Vyas et al. | Dec 2009 | B2 |
7629539 | Ishii et al. | Dec 2009 | B2 |
7649254 | Graydon et al. | Jan 2010 | B2 |
7729089 | Hogan | Jun 2010 | B1 |
7832082 | Hentges et al. | Nov 2010 | B1 |
7872344 | Fjelstad et al. | Jan 2011 | B2 |
7914926 | Kimura et al. | Mar 2011 | B2 |
7929252 | Hentges et al. | Apr 2011 | B1 |
7995310 | Pan | Aug 2011 | B1 |
8081400 | Hu | Dec 2011 | B1 |
8087973 | Sladek et al. | Jan 2012 | B1 |
8089730 | Pan et al. | Jan 2012 | B1 |
8111486 | Suh et al. | Feb 2012 | B2 |
8130469 | Yao | Mar 2012 | B2 |
8149542 | Ando | Apr 2012 | B2 |
8164858 | Moravec et al. | Apr 2012 | B1 |
8174797 | Iriuchijima | May 2012 | B2 |
8199437 | Sun et al. | Jun 2012 | B1 |
8199441 | Nojima | Jun 2012 | B2 |
8208224 | Teo et al. | Jun 2012 | B1 |
8218268 | Pan | Jul 2012 | B1 |
8228642 | Hahn et al. | Jul 2012 | B1 |
8240545 | Wang et al. | Aug 2012 | B1 |
8248731 | Fuchino | Aug 2012 | B2 |
8248734 | Fuchino | Aug 2012 | B2 |
8248735 | Fujimoto et al. | Aug 2012 | B2 |
8248736 | Hanya et al. | Aug 2012 | B2 |
8256272 | Roajanasiri et al. | Sep 2012 | B1 |
8295012 | Tian et al. | Oct 2012 | B1 |
8295013 | Pan et al. | Oct 2012 | B1 |
8295014 | Teo et al. | Oct 2012 | B1 |
8320084 | Shum et al. | Nov 2012 | B1 |
8325446 | Liu et al. | Dec 2012 | B1 |
8325447 | Pan | Dec 2012 | B1 |
8339742 | Sladek et al. | Dec 2012 | B1 |
8339747 | Hales et al. | Dec 2012 | B1 |
8339748 | Shum et al. | Dec 2012 | B2 |
8343363 | Pakpum et al. | Jan 2013 | B1 |
8345519 | Pan | Jan 2013 | B1 |
8418353 | Moravec et al. | Apr 2013 | B1 |
8441896 | Wang et al. | May 2013 | B2 |
8446694 | Tian et al. | May 2013 | B1 |
8456643 | Prabhakaran et al. | Jun 2013 | B2 |
8456776 | Pan | Jun 2013 | B1 |
8462462 | Moravec et al. | Jun 2013 | B1 |
8477459 | Pan | Jul 2013 | B1 |
8485579 | Roajanasiri et al. | Jul 2013 | B2 |
8488279 | Pan et al. | Jul 2013 | B1 |
8488281 | Pan | Jul 2013 | B1 |
8490211 | Leary | Jul 2013 | B1 |
8514522 | Pan et al. | Aug 2013 | B1 |
8533936 | Puttichaem et al. | Sep 2013 | B1 |
8542465 | Liu et al. | Sep 2013 | B2 |
8545164 | Choumwong et al. | Oct 2013 | B2 |
8553364 | Schreiber et al. | Oct 2013 | B1 |
8553365 | Shapiro et al. | Oct 2013 | B1 |
8587901 | Puttichaem et al. | Nov 2013 | B1 |
8593764 | Tian et al. | Nov 2013 | B1 |
8599653 | Mallary et al. | Dec 2013 | B1 |
8605389 | Pan et al. | Dec 2013 | B1 |
8611050 | Moravec et al. | Dec 2013 | B1 |
8611052 | Pan et al. | Dec 2013 | B1 |
8623197 | Kobsiriphat et al. | Jan 2014 | B1 |
8624184 | Souza et al. | Jan 2014 | B1 |
8665566 | Pan et al. | Mar 2014 | B1 |
8665567 | Shum et al. | Mar 2014 | B2 |
8665677 | Panitchakan et al. | Mar 2014 | B1 |
8665690 | Moravec et al. | Mar 2014 | B1 |
8693144 | Pan et al. | Apr 2014 | B1 |
8756795 | Moravec et al. | Jun 2014 | B1 |
8758083 | Rudy et al. | Jun 2014 | B1 |
8760812 | Chen et al. | Jun 2014 | B1 |
8770463 | Puttichaem et al. | Jul 2014 | B1 |
8773664 | Wang et al. | Jul 2014 | B1 |
8792212 | Pan et al. | Jul 2014 | B1 |
8792213 | Vijay et al. | Jul 2014 | B1 |
8797691 | Tian et al. | Aug 2014 | B1 |
8885299 | Bennin et al. | Nov 2014 | B1 |
20020075606 | Nishida et al. | Jun 2002 | A1 |
20020089793 | Nakagawa et al. | Jul 2002 | A1 |
20020118492 | Watanabe et al. | Aug 2002 | A1 |
20030089520 | Ooyabu et al. | May 2003 | A1 |
20030135985 | Yao et al. | Jul 2003 | A1 |
20040181932 | Yao et al. | Sep 2004 | A1 |
20040221447 | Ishii et al. | Nov 2004 | A1 |
20060274452 | Arya | Dec 2006 | A1 |
20070227769 | Brodsky et al. | Oct 2007 | A1 |
20080247131 | Hitomi et al. | Oct 2008 | A1 |
20080297948 | Yao | Dec 2008 | A1 |
20090135523 | Nishiyama et al. | May 2009 | A1 |
20090176120 | Wang | Jul 2009 | A1 |
20090190263 | Miura et al. | Jul 2009 | A1 |
20090294740 | Kurtz et al. | Dec 2009 | A1 |
20100067151 | Okawara et al. | Mar 2010 | A1 |
20100073825 | Okawara | Mar 2010 | A1 |
20100097726 | Greminger et al. | Apr 2010 | A1 |
20100143743 | Yamasaki et al. | Jun 2010 | A1 |
20100177445 | Fuchino | Jul 2010 | A1 |
20100195252 | Kashima | Aug 2010 | A1 |
20100220414 | Klarqvist et al. | Sep 2010 | A1 |
20100246071 | Nojima et al. | Sep 2010 | A1 |
20100271735 | Schreiber | Oct 2010 | A1 |
20110013319 | Soga et al. | Jan 2011 | A1 |
20110228425 | Liu et al. | Sep 2011 | A1 |
20110242708 | Fuchino | Oct 2011 | A1 |
20110279929 | Kin | Nov 2011 | A1 |
20120002329 | Shum et al. | Jan 2012 | A1 |
20120113547 | Sugimoto | May 2012 | A1 |
20130244541 | Yaemglin et al. | Sep 2013 | A1 |
20130293982 | Huber | Nov 2013 | A1 |
Number | Date | Country |
---|---|---|
1517982 | Aug 2004 | CN |
1897116 | Jan 2007 | CN |
101467206 | Jun 2009 | CN |
101673555 | Mar 2010 | CN |
2001-057039 | Feb 2001 | JP |
20013-07442 | Nov 2001 | JP |
2002-050140 | Feb 2002 | JP |
2004-300489 | Oct 2004 | JP |
2007-115864 | May 2007 | JP |
Entry |
---|
Cheng et al, “Vapor deposited thin gold coatings for high temperature electrical contacts”, Proc. 42nd IEEE Holm Conf. of Electrical Contacts (1996) p. 404-413. |
Cheng, Yang-Tse, “Vapor deposited thin gold coatings for high temperature electrical contacts”, Electrical Contacts, 1996, Joint with the 18th International Conference on Electrical Contacts, Proceedings of the Forty-Second IEEE Holm Conference, Sep. 16-20, 1996 (abstract only). |
Fu, Yao, “Design of a Hybrid Magnetic and Piezoelectric Polymer Microactuator”, a thesis submitted to Industrial Research Institute Swinburne (IRIS), Swinburne University of Technology, Hawthorn, Victoria , Australia, Dec. 2005. |
Harris, N. R. et al., “A Multilayer Thick-film PZT Actuator for MEMs Applications”, Sensors and Actuators A: Physical, vol. 132, No. 1, Nov. 8, 2006, pp. 311-316. |
Jing, Yang, “Fabrication of piezoelectric ceramic micro-actuator and its reliability for hard disk drives”, Ultrasonics, Ferroelectrics and Frequency Control, IEEE, vol. 51, No. 11, Nov. 2004, pp. 1470-1476 (abstract only). |
Kon, Stanley et al., “Piezoresistive and Piezoelectric MEMS Strain Sensors for Vibration Detection”, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2007, Proc. of SPIE vol. 6529. |
Li, Longqiu et al., “An experimental study of the dimple-gimbal interface in a hard disk drive”, Microsyst Technol (2011) 17:863-868. |
Pichonat, Tristan et al., “Recent developments in MEMS-based miniature fuel cells”, Microsyst Technol (2007) 13:1671-1678. |
Raeymaekers, B. et al., “Investigation of fretting wear at the dimple/gimbal interface in a hard disk drive suspension”, Wear, vol. 268, Issues 11-12, May 12, 2010, pp. 1347-1353. |
Raeymaekers, Bart et al., “Fretting Wear Between a Hollow Sphere and Flat Surface”, Proceedings of the STLE/ASME International Joint Tribology Conference, Oct. 19-21, 2009, Memphis, TN USA, 4 pages. |
Rajagopal, Indira et al., “Gold Plating of Critical Components for Space Applications: Challenges and Solutions”, Gold Bull., 1992, 25(2), pp. 55-66. |
Yoon, Wonseok et al., “Evaluation of coated metallic bipolar plates for polymer electrolyte membrane fuel cells”, The Journal of Power Sources, vol. 179, No. 1, Apr. 15, 2008, pp. 265-273 (abstract only). |
U.S. Appl. No. 61/396,239, filed May 24, 2010, (16 pages). |
U.S. Appl. No. 13/114,212, filed May 24, 2011, (23 pages). |
Chinese Office Action dated Feb. 28, 2015 from related Chinese Application Serial No. 201110189179.6, 14 pages. |
Office Action dated Sep. 6, 2012, U.S. Appl. No. 12/827,813, 11 pages. |
Notice of Allowance dated Dec. 21, 2012, U.S. Appl. No. 12/827,813, 11 pages. |
Notice of Allowance dated Jun. 20, 2013, U.S. Appl. No. 12/827,813, 10 pages. |
Notice of Allowance dated Oct. 7, 2013, U.S. Appl. No. 12/827,813, 9 pages. |
Notice of Allowance dated Aug. 8, 2014, U.S. Appl. No. 14/146,710, 7 pages. |
Number | Date | Country | |
---|---|---|---|
Parent | 14146710 | Jan 2014 | US |
Child | 14563936 | US | |
Parent | 12827813 | Jun 2010 | US |
Child | 14146710 | US |