The technologies disclosed herein may be used in suitable combination with any or all of the technologies disclosed in the foregoing related patent applications.
Embodiments of the invention generally relate to a damper assembly for a vehicle. More specifically, certain embodiments relate to valves used in conjunction with a vehicle damper.
Vehicle suspension systems typically include a spring component or components and a dampening component or components. Typically, mechanical springs, like helical springs, are used with some type of viscous fluid-based dampening mechanism and the two are mounted functionally in parallel. In some instances features of the damper or spring are user-adjustable. What is needed is an improved method and apparatus for varying dampening characteristics.
The drawings referred to in this description should not be understood as being drawn to scale unless specifically noted.
Reference will now be made in detail to embodiments, examples of which are illustrated in the accompanying drawings. While the technology will be described in conjunction with various embodiment(s), it will be understood that they are not intended to be limited to these embodiments. On the contrary, the present technology is intended to cover alternatives, modifications and equivalents, which may be included within the spirit and scope of the various embodiments as defined by the appended claims.
Furthermore, in the following detailed description, numerous specific details are set forth in order to provide a thorough understanding of embodiments. However, embodiments may be practiced without these specific details. In other instances, well known methods, procedures, components, and circuits have not been described in detail as not to unnecessarily obscure aspects of embodiments.
The discussion that follows will describe the structure and functionality of embodiments.
As used herein, the terms “down,” “up,” “downward,” “upward,” “lower,” “upper” and other directional references are relative and are used for reference only.
In
As shown in
The compression portion 104 is partially defined by the first side 177 of the piston 105. The rebound chamber 135 is partially defined by the second side 179 of the piston 105.
A by-pass shut off valve 120 is located toward an end of the compression portion 104 of cylinder 102 and is biased away from that end by spring 122. During a compression stroke the damper piston 105 moves toward the by-pass shut off valve until the surface 121 abuts a radially outer portion of leading surface 126 of damper piston 105. When such abutment occurs the annular surface 121 covers all by-pass ports 111 (flow path 111) located along the outer edge of the damper piston 105 thereby closing off the compression fluid bypass through those ports. Remaining compression fluid must traverse the damper piston 105 via ports 112 where that fluid will be subject to restriction of the compression shims. Following contact with the ring of the by-pass shut off valve 120 further movement of damper piston 105 compresses spring 122 thereby allowing the ring of the by-pass shut off valve 120 to move with the damper piston 105 toward the end of the compression stroke.
In
In the embodiment of
When the rebounding damper rod 107 has moved outward far enough, the flow paths (ports or apertures) 110 reach shut off valve (first shut off valve) 130. As ports 110A are covered by an inner diameter of shut off valve sleeve 130 (first sleeve), rebound fluid flow there through is correspondingly shut off. Rebound fluid flow is substantially closed when further movement of damper rod 107 places ports 1106 under sleeve 130. The sequential closing of the ports 110A and 110B facilitates a gradual increase in rebound damping with damper rod position during rebound stroke. It is noted that axially displaced port sets 110A and 110B are exemplary and that more axially displaced port sets may be located at distances along the damper rod 107 to increase the sequential increase of the damping function. It is also noted that the damper rod 107 may be extended further out of the compression side of the damper piston 105 and such extension may include radially situated axially spaced flow ports like 110A and 110B which would engage with an inner diameter of a sleeve like shut off valve sleeve 130 in place of the ring of the by-pass shut off valve 120 to create a sequential damping by-pass reduction during a compression stroke.
In the embodiment of
The lower portion of the damper rod 107 is supplied with a bushing set 155 for connecting to a portion of a vehicle wheel suspension linkage. An upper portion of the cylinder portion 102 may be supplied with an eyelet 108 to be mounted to another portion of the vehicle, such as the frame, that moves independently of the first part. A spring member (not shown) is usually mounted to act between the same portions of the vehicle as the damper. As the damper rod 107 and damper piston 105 move into cylinder portion 102 (during compression), the damping fluid slows the movement of the two portions of the vehicle relative to each other due, at least in part, to the incompressible fluid moving through the shimmed paths provided in the damper piston 105 and/or through the metered bypass. As the damper rod 107 and damper piston 105 move out of the cylinder portion 102 (during extension or “rebound”) fluid meters again through shimmed paths and the flow rate and corresponding rebound rate may be controlled, at least in part, by the shims.
A reservoir 140 is in fluid communication with the damper cylinder 102 for receiving and supplying damping fluid as the damper piston damper rod 107 moves in and out of the cylinder portion 102 thereby variably displacing damping fluid. The reservoir 140 includes a cylinder portion in fluid communication with the compression portion 104 of the damper cylinder portion 102 via a fluid conduit 10 which houses a fluid path between the components. The reservoir 140 also includes a floating damper piston 141 with a volume of gas in a gas portion on a backside (“blind end” side) of it, the gas being compressible as a damping fluid portion 132 of the cylinder of the reservoir fills with damping fluid due to movement of the damper rod 107 into the damper cylinder 102. The pressure of gas in the reservoir can be adjusted with compressed air introduced through a gas valve located at a lower end of the reservoir cylinder. Certain features of reservoir-type dampers are shown and described in U.S. Pat. No. 7,374,028, which is incorporated herein, in its entirety, by reference. In one embodiment the damper includes an in-line reservoir (e.g. floating damper piston and gas charge) rather than a remote reservoir as shown in the Figures. The principles disclosed herein are equally applicable in either case.
In one embodiment, the damping characteristics of the damper are altered by at least one valve that regulates flow between the compression chamber 104 and the fluid portion 132 of the reservoir 140. In the particular embodiment shown a reservoir valve assembly includes valves 210a, 210b, and 220, each of which (monitors) permits, prevents or impedes fluid flow into the reservoir fluid portion 132. The valves 210a, 210b, and 220 are shown in more detail in
In one embodiment, the reservoir valve assembly is attached at an upper end of the cylinder portion of the reservoir 140 and serves to seal the fluid portion 132. Valves 210 includes a pathway leading from the fluid conduit 10 into the fluid portion 132 of the reservoir. One or both of valves 210a and 210b includes shims (a first set of shims [wherein the first set includes one or more shims]) functionally like those used in damper piston 105 and designed to offer predetermined resistance to fluid flow passing into the reservoir 140 during compression of the damper. Another set of shims (a second set of shims [wherein the second set includes one or more shims]) of valves 210a and 210b meter the flow of fluid out of the fluid portion 132 of the reservoir 140 during a rebound stroke of the damper. The flow of fluid into and through valves 210 during a compression stroke is shown by arrows. As shown, the flow of fluid has un-seated shims to permit the flow of fluid into the fluid portion 132.
In one embodiment, the reservoir also includes a remotely-operable valve 220 and includes a movable plunger 222 that is substantially sealable on a seat 225. In
In
In one embodiment (shown in Figures), the solenoid valve (which alternatively may be operated by hydraulic cylinder) modulates flow through and around valve 210a while flow through valve 210b occurs under all circumstances. As such, valve 210b provides a positive “base” damping resistance regardless of whether compliant damping (valve 220 open) or more rigid damping (valve 220 closed) is selected. Such positive base damping helps the damper avoid cavitation during extremely rapid compression.
In one embodiment, the solenoid-operated valve 220 is normally open (as shown in
In some instances, it may be desirable to increase the damping rate when moving a vehicle from off-road to on highway use. Off-road use often requires a high degree of compliance to absorb shocks imparted by the widely varying terrain. During highway use, particularly with long wheel travel vehicles, often requires more rigid shock absorption is often required to allow a user to maintain control of a vehicle at higher speeds. This may be especially true during cornering or braking.
In other instances, it is desirable to control/change dampening characteristics in a rebound stroke of a damper. In one embodiment, the damper operates with fluid traveling through the valves 210A, 210B, and 220 during a rebound stroke. In
One embodiment comprises a four wheeled vehicle having solenoid valve-equipped shock absorbers at each (of four) wheel. The valve 220 (which in one embodiment is cable (mechanically), pneumatically, or hydraulically operated instead of solenoid operated) of each of the front shock absorbers may be electrically connected with a linear motion activated switch (such as that which operates an automotive brake light) that is activated in conjunction with the vehicle brake pedal. When the brake pedal is depressed beyond a certain distance, corresponding usually to harder braking and hence potential for vehicle nose dive, the electric switch connects a power supply to the normally open solenoid in each of the front shocks, thereby closing the valve in those shocks. As such, the front shocks become more rigid during hard braking. Other mechanisms may be used to trigger the shocks such as accelerometers (e.g., tri-axial) for sensing pitch and roll of the vehicle and activating, via a microprocessor, the appropriate solenoid valves for optimum vehicle control.
In one embodiment, a vehicle steering column includes right turn and left turn limit switches such that a hard turn in either direction activates (e.g. closes valve 220) the solenoid on the shocks opposite that direction (for example a hard right turn would cause more rigid shocks on the vehicle left side). Again, accelerometers in conjunction with a microprocessor and a switched power supply may perform the solenoid activation function by sensing the actual g-force associated with the turn (or braking; or throttle acceleration for the rear shock activation) and triggering the appropriate solenoid(s) at a preset threshold g-force.
In one embodiment, a pressure intensifier damper arrangement may be located within the fluid path of the remotely-operable valves 220 such that the valve 220 controls flow through that auxiliary damper which is then additive with the valve assembly. In one embodiment the valve assembly comprises a pressure intensifier (such as described in U.S. Pat. No. 7,374,028 which is incorporated, entirely, herein by reference). The following is a description, with reference to
Referring now to
The intensifier piston 350 is located within an intensifier housing 360, which can be integral with the damper cylinder 350 (as shown), or can be a separate structure sealed and retained within the bore of the damper cylinder 350. During upward movement of the intensifier piston 350 as occurs during operation (to be described in detail further on), the intensifier piston 350 is prevented from exiting the intensifier housing 360 by the intensifier retaining ring 351. The intensifier piston 350 is sealingly engaged with the intensifier housing 360 at its upper (large diameter) end, as well as at its lower (smaller diameter) end. There is at least one vent port 370 which vents the space between the upper and lower seals of the intensifier piston 350 to outside atmospheric pressure. There is also at least one bi-directional flow port 380 which passes vertically through intensifier housing 360.
Still referring to
During a rebound stroke, the piston rod 320 is withdrawn from the damper cylinder 350, resulting in some amount of vacated volume toward the lower end of the damper cylinder 350. As described previously, this results in downward movement of the floating piston 360, as well as a downward flow of the hydraulic fluid 370 immediately below it. Since downward movement of the floating piston 360 reduces the space between the floating piston 360 and the partition 410, and since hydraulic fluid is incompressible, hydraulic fluid flows down through the bi-directional flow port(s) 480. It then flows down through the partition 410 via the rebound flow port(s) 320. It does this by opening the check valve 330 against the relatively light resistance of the check valve spring 431.
During a compression stroke, the piston rod 320 and the damping piston 340 move further into the damper cylinder 350, thus displacing a volume of the hydraulic fluid 370 equal to the volume of the additional length of the piston rod 320 which enters the damper cylinder 350. As described previously, this results in an upward flow of the displaced volume of hydraulic fluid, accommodated by an upward movement of the floating piston 360, which somewhat decreases the volume, and increases the pressure, in the internally-pressurized chamber 380. However, in order to do so, the displaced volume of hydraulic fluid must first pass through the partition 310. In accordance with the known principles of hydraulic intensifiers, to achieve this, the fluid must create an upward force (pressure) at the lower (small) end of the intensifier piston 450 which is sufficient to overcome the downward force (pressure) at the upper (large) end of the intensifier piston 350. To do so requires a pressure at the lower end of the intensifier piston 450 that is greater than the pressure at the upper end of the intensifier piston 450 by a multiple approximately equal to the ratio of the cross-sectional area of the large end of the intensifier piston 450 to the cross-sectional area of the compression flow port 440.
For simplicity, it is assumed that the diameter of the small end of the intensifier piston 450 is only slightly greater than the diameter of the compression flow port 440. Thus, the annular contact area between these parts is relatively quite small, and it can be said that, for flow through the compression flow port 440, a pressure is required at the lower end of the intensifier piston 450 that is greater than the pressure at the upper end of the intensifier piston 450 by a multiple approximately equal to the ratio of the area of its large end divided by the area of its small end.
This pressure differential (multiple) between the small end and large end of the pressure intensifier 450 creates a compression damping effect in the damper.
Here is an example. Assume the diameter of the large end of the intensifier piston 450 is twice the diameter of the small end, and thus that the ratio of their cross-sectional areas is 4:1. Assume the diameter of the piston rod 320 is O½″, and thus it has a cross-sectional area of about 0.2 square inches. Assume the damping piston 340 has traveled inward into the damper cylinder 350 some distance (i.e., it is not fully-extended or “topped-out” against the seal head 330), as shown in
The above described static conditions. Now the compression damping effect produced by the intensifier piston 450 during a compression stroke (inward movement of the piston rod 320) is described. Per basic principles, for an intensifier piston 450 with a cross-sectional area ratio of 4:1, a pressure of approximately 400 psi at the small end is required to overcome the 100 psi pressure at the large end (which originates from the internally-pressurized chamber 380 above the floating piston 360), in order to cause the intensifier piston 450 to move upward, thus unblocking the compression flow port 440 and allowing upward flow of the hydraulic fluid 370 displaced by the inward movement of the piston rod 320.
For simplicity, it is assumed in the following discussion that the damping piston 340 has several large thru-holes and no restrictive valving (note that, actually, the exemplary embodiments of the present invention generally do incorporate restrictive valving on the damping piston 340 which does create compression damping forces). In other words, for purposes of clarity in describing the basic principles of the present embodiment, it is assumed here that the damping piston 340 itself creates no compression damping forces. Now, the 400 psi pressure created at the small end of the intensifier piston 450 acts uniformly throughout all portions of damper cylinder 350 below the intensifier piston 450. Acting on the 0.2 square inch cross-sectional area of the piston rod 320, it creates an 80-pound “dynamic nose force”. The difference between the previous 20-pound “static nose force” and this 80-pound “dynamic nose force” is 60 pounds; this 60 pounds represents the compression damping force produced by the present embodiment. Increasing the diameter and cross-sectional area of the piston rod 320, of course, would create an even greater damping force.
To further describe the intensifier piston 450, in terms of an example operational application, in the following it will be assumed that the above compression stroke continues inward for a distance sufficient to move the floating piston 360 upward some amount and increase the pressure in the internally-pressurized chamber 380 from 100 psi to 150 psi. This 150 psi pressure, of course, acts on the large end of the intensifier piston 450 and now approximately 600 psi pressure (basic 4:1 ratio) is required at the small end of the intensifier piston 350 in order for it to remain open, allowing continuation of the compression stroke. With 600 psi now acting on the 0.2 square inch cross-sectional area of the piston rod 320 a 120-pound “dynamic nose force” is now produced. In other words, as the compression stroke continues and the damping piston 340 and piston rod 320 travel further into the damper cylinder 350, the volume of hydraulic fluid displaced by the piston rod 320 causes the floating piston 360 to move upward, which increases the pressure in the internally-pressurized chamber 380, which increases the compression damping effect produced by the pressure intensifier damper arrangement, including the intensifier piston 450.
Put another way, the embodiment of U.S. Pat. No. 7,374,028 produces a “position-sensitive” compression damping effect, with the compression damping force increasing as the piston rod 320 and the damping piston 340 moves further into the damper cylinder 350. The extent and degree of this position-sensitive effect is influenced by the pre-set volume of the internally-pressurized chamber 380 above the floating piston 360, relative to the diameter and maximum available travel of the piston rod 320. If the pre-set volume of the internally-pressurized chamber 380 is relatively large, the position-sensitive effect is reduced. If the pre-set volume is relatively small, the position-sensitive effect is increased.
In one embodiment one or both of the valves 210, 220 comprise standard shim-type dampers. In one embodiment one or both of the valves 210, 220 include an adjustable needle for low speed bleed. In one embodiment a blow off (e.g. checking poppet-type or shim) is included in one of the flow paths associated with the valves 210, 220.
As in other embodiments, the remotely-operable valve 220 may be solenoid or hydraulically operated or pneumatically operated or operated by any other suitable motive mechanism. The valve may be operated remotely by a switch or potentiometer located in the cockpit of a vehicle or attached to appropriate operational parts of a vehicle for timely activation (e.g. brake pedal) or may be operated in response to input from a microprocessor (e.g. calculating desired settings based on vehicle acceleration sensor data) or any suitable combination of activation means. In like manner, a controller for the adjustable pressure source (or for both the source and the valve) may be cockpit mounted and may be manually adjustable or microprocessor controlled or both or selectively either.
One embodiment comprises a four wheeled vehicle having solenoid valve equipped shock absorbers at each (of four) wheel. The solenoid valve (which in one embodiment is cable operated instead of solenoid operated) of each of the front shock absorbers may be electrically connected with a linear switch (such as that which operates an automotive brake light) that is activated in conjunction with the vehicle brake pedal. When the brake pedal is depressed beyond a certain distance, corresponding usually to harder braking and hence potential for vehicle nose dive, the electric switch connects a power supply to the normally open solenoid in each of the front shocks thereby closing the damping fluid flow paths in those shocks. As such the front shocks become more rigid during hard braking. Other mechanisms may be used to trigger the shocks such as accelerometers (e.g. tri-axial) for sensing pitch and roll of the vehicle and activating, via a microprocessor, the appropriate solenoid valves for optimum vehicle control.
In one embodiment, a vehicle steering column includes right turn and left turn limit switches such that a hard turn in either direction activates (e.g. closes path 8SA) the solenoid on the shocks opposite that direction (for example a hard right turn would cause more rigid shocks on the vehicle left side). Again, accelerometers in conjunction with a microprocessor and a switched power supply may perform the solenoid activation function by sensing the actual g-force associated with the turn (or braking; or throttle acceleration for the rear shock activation) and triggering the appropriate solenoid(s) at a preset threshold g-force.
In one embodiment a remotely-operable valve 220 like the one described above is particularly useful with an on-/off-road vehicle. These vehicles can have as more than 20″ of shock absorber travel to permit them to negotiate rough, uneven terrain at speed with usable shock absorbing function. In off-road applications, compliant dampening is necessary as the vehicle relies on its long travel suspension when encountering often large off-road obstacles. Operating a vehicle with very compliant, long travel suspension on a smooth road at higher speeds can be problematic due to the springiness/sponginess of the suspension and corresponding vehicle handling problems associated with that (e.g. turning roll, braking pitch). Such compliance can cause reduced handling characteristics and even loss of control. Such control issues can be pronounced when cornering at high speed as a compliant, long travel vehicle may tend to roll excessively. Similarly, such a vehicle may pitch and yaw excessively during braking and acceleration. With the remotely-operated bypass dampening and “lock out” described herein, dampening characteristics of a shock absorber can be completely changed from a compliantly dampened “springy” arrangement to a highly dampened and “stiffer” (or fully locked out) system ideal for higher speeds on a smooth road. In one embodiment, where compression flow through the damper piston 105 is completely blocked, closure of the valve 220 can result in substantial “lock out” of the suspension (the suspension is rendered essentially rigid except for the movement of fluid through shimmed valve 210). In one embodiment, where some compression flow is allowed through the damper piston 105 or the annular bypass 150, closure of the valve 220 results in a stiffer but still functional compression damper.
In addition to, or in lieu of, the simple, switch operated remote arrangement, the remotely-operable valve 220 can be operated automatically based upon one or more driving conditions such as vehicle speed, damper rod speed, and damper rod position. One embodiment of the arrangement may automatically increase dampening in a shock absorber in the event a damper rod reaches a certain velocity in its travel towards the bottom end of a damper at a predetermined speed of the vehicle. In one embodiment, the damping (and control) increases in the event of rapid operation (e.g. high damper rod velocity) of the damper to avoid a bottoming out of the damper rod as well as a loss of control that can accompany rapid compression of a shock absorber with a relative long amount of travel. In one embodiment, damping increases (e.g. closes or throttles down the bypass) in the event that the damper rod velocity in compression is relatively low but the damper rod progresses past a certain point in the travel. Such configuration aids in stabilizing the vehicle against excessive low-rate suspension movement events such as cornering roll, braking and acceleration yaw and pitch and “g-out.”
While the examples illustrated relate to manual operation and automated operation based upon specific parameters, the remotely-operated valve 220 (with or without valve 210) can be used in a variety of ways with many different driving and road variables. In one example, the valve 220 is controlled based upon vehicle speed in conjunction with the angular location of the vehicle's steering wheel. In this manner, by sensing the steering wheel turn severity (angle of rotation), additional dampening can be applied to one damper or one set of dampers on one side of the vehicle (suitable for example to mitigate cornering roll) in the event of a sharp turn at a relatively high speed. In another example, a transducer, such as an accelerometer, measures other aspects of the vehicle's suspension system, like axle force and/or moments applied to various parts of the vehicle, like steering tie damper rods, and directs change to the bypass valve positioning in response thereto. In another example, the bypass can be controlled at least in part by a pressure transducer measuring pressure in a vehicle tire and adding dampening characteristics to some or all of the wheels in the event of, for example, an increased or decreased pressure reading. In one embodiment, the damper bypass or bypasses are controlled in response to braking pressure (as measured, for example, by a brake pedal sensor or brake fluid pressure sensor or accelerometer). In still another example, a parameter might include a gyroscopic mechanism that monitors vehicle trajectory and identifies a “spin-out” or other loss of control condition and adds and/or reduces dampening to some or all of the vehicle's dampers in the event of a loss of control to help the operator of the vehicle to regain control.
While the foregoing is directed to certain embodiments, other and further embodiments may be implemented without departing from the scope of the present technology, and the scope thereof is determined by the claims that follow.
This application is a continuation-in-part application of and claims priority to and benefit of co-pending U.S. patent application Ser. No. 13/750,336, filed on Jan. 25, 2013 entitled “SUSPENSION DAMPER WITH BY-PASS VALVES” by John Marking, and assigned to the assignee of the present application, which is herein incorporated by reference. The application Ser. No. 13/750,336 claims priority to and benefit of U.S. Patent Application No. 61/590,577 filed on Jan. 25, 2012 entitled “SUSPENSION DAMPER WITH BY-PASS VALVES” by John Marking, and assigned to the assignee of the present application, which is herein incorporated by reference. This application is related to U.S. Provisional Patent Application No. 61/366,871 filed on Jul. 22, 2010 entitled “LOCK-OUT VALVE FOR A SUSPENSION DAMPER” by John Marking, assigned to the assignee of the present application, which is herein incorporated by reference and U.S. Provisional Patent Application No. 61/381,906, filed on Sep. 10, 2010 entitled “REMOTELY ADJUSTABLE SUSPENSION DAMPER” by John Marking, assigned to the assignee of the present application, which is herein incorporated by reference. This application is related to U.S. Provisional Patent Application No. 61/366,871, and corresponding U.S. patent application Ser. No. 13/189,216 filed on Jul. 22, 2011 entitled “SUSPENSION DAMPER WITH REMOTELY-OPERABLE VALVE” by John Marking, now U.S. Pat. No. 9,239,090, assigned to the assignee of the present application, each of which is incorporated entirely herein by reference. This application is also related to U.S. patent application Ser. No. 13/010,697 filed on Jan. 20, 2011 entitled “REMOTELY OPERATED BYPASS FOR A SUSPENSION DAMPER” by John Marking, now U.S. Pat. No. 8,857,580, assigned to the assignee of the present application, which is herein incorporated by reference and claims priority to and benefit of U.S. Provisional Patent Application No. 61/296,826 filed on Jan. 20, 2010 entitled “BYPASS LOCK-OUT VALVE FOR A SUSPENSION DAMPER” by John Marking, assigned to the assignee of the present application, which is herein incorporated by reference. U.S. patent application Ser. No. 13/010,697 is a continuation-in-part application of and claims priority to and the benefit of U.S. patent application Ser. No. 12/684,072 filed on Jan. 7, 2010 entitled “REMOTELY OPERATED BYPASS FOR A SUSPENSION DAMPER” by John Marking, now abandoned, and assigned to the assignee of the present application, and is herein incorporated by reference, which claims priority to and benefit of U.S. Provisional Patent Application No. 61/143,152 filed on Jan. 7, 2009 entitled “REMOTE BYPASS LOCK-OUT” by John Marking, assigned to the assignee of the present application, which is herein incorporated by reference. This application is also related to U.S. patent application Ser. No. 12/684,072 filed on Jan. 7, 2010 entitled “REMOTELY OPERATED BYPASS FOR A SUSPENSION DAMPER” by John Marking, now abandoned, and assigned to the assignee of the present application, and is herein incorporated by reference, which claims priority to and benefit of U.S. Provisional Patent Application No. 61/143,152 filed on Jan. 7, 2009 entitled “REMOTE BYPASS LOCK-OUT” by John Marking, assigned to the assignee of the present application, which is herein incorporated by reference. This application is also related to U.S. patent application Ser. No. 13/175,244 filed on Jul. 1, 2011 entitled “BYPASS FOR A SUSPENSION DAMPER” by John Marking, now U.S. Pat. No. 8,627,932, assigned to the assignee of the present application, which is herein incorporated by reference, which claims priority to and the benefit of U.S. Provisional Patent Application No. 61/361,127 filed on Jul. 2, 2010 entitled “BYPASS LOCK-OUT VALVE FOR A SUSPENSION DAMPER” by John Marking, and assigned to the assignee of the present application, and is herein incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
1492731 | Kerr | May 1924 | A |
1575973 | Coleman | Mar 1926 | A |
2018312 | Moulton | Oct 1935 | A |
2186266 | Henry | Jan 1940 | A |
2492331 | Spring | Dec 1949 | A |
2588520 | Halgren et al. | Mar 1952 | A |
2725076 | Hansen et al. | Nov 1955 | A |
2729308 | Koski et al. | Jan 1956 | A |
2838140 | Rasmusson et al. | Jun 1958 | A |
2897613 | Davidson et al. | Aug 1959 | A |
2941629 | Etienne et al. | Jun 1960 | A |
2991804 | Merkle | Jul 1961 | A |
3202413 | Colmerauer | Aug 1965 | A |
3286797 | Leibfritz et al. | Nov 1966 | A |
3420493 | Kraft et al. | Jan 1969 | A |
3537722 | Moulton | Nov 1970 | A |
3556137 | Billeter et al. | Jan 1971 | A |
3584331 | Richard et al. | Jun 1971 | A |
3605960 | Singer | Sep 1971 | A |
3621950 | Lutz | Nov 1971 | A |
3714953 | Solvang | Feb 1973 | A |
3750856 | Kenworthy et al. | Aug 1973 | A |
3791408 | Saitou et al. | Feb 1974 | A |
3981479 | Foster et al. | Sep 1976 | A |
4022113 | Blatt et al. | May 1977 | A |
4072087 | Mueller et al. | Feb 1978 | A |
4121610 | Harms et al. | Oct 1978 | A |
4139186 | Postema et al. | Feb 1979 | A |
4153237 | Supalla | May 1979 | A |
4159106 | Nyman et al. | Jun 1979 | A |
4174098 | Baker et al. | Nov 1979 | A |
4183509 | Nishikawa et al. | Jan 1980 | A |
4287812 | Iizumi | Sep 1981 | A |
4305566 | Grawunde | Dec 1981 | A |
4333668 | Hendrickson et al. | Jun 1982 | A |
4334711 | Mazur et al. | Jun 1982 | A |
4337850 | Shimokura et al. | Jul 1982 | A |
4491207 | Boonchanta et al. | Jan 1985 | A |
4502673 | Clark et al. | Mar 1985 | A |
4546959 | Tanno | Oct 1985 | A |
4548233 | Wolfges | Oct 1985 | A |
4572317 | Isono | Feb 1986 | A |
4620619 | Emura et al. | Nov 1986 | A |
4660689 | Hayashi et al. | Apr 1987 | A |
4673194 | Sugasawa | Jun 1987 | A |
4729459 | Inagaki et al. | Mar 1988 | A |
4750735 | Furgerson et al. | Jun 1988 | A |
4765648 | Mander et al. | Aug 1988 | A |
4786034 | Heess et al. | Nov 1988 | A |
4826207 | Yoshioka et al. | May 1989 | A |
4838306 | Horn et al. | Jun 1989 | A |
4838394 | Lemme et al. | Jun 1989 | A |
4846317 | Hudgens | Jul 1989 | A |
4919166 | Sims et al. | Apr 1990 | A |
4936424 | Costa | Jun 1990 | A |
4949989 | Kakizaki et al. | Aug 1990 | A |
4958706 | Richardson | Sep 1990 | A |
4972928 | Sirven | Nov 1990 | A |
4975849 | Ema et al. | Dec 1990 | A |
5076404 | Gustafsson | Dec 1991 | A |
5113980 | Furrer et al. | May 1992 | A |
5161653 | Hare | Nov 1992 | A |
5163742 | Topfer et al. | Nov 1992 | A |
5178242 | Nakamura et al. | Jan 1993 | A |
5203584 | Butsuen et al. | Apr 1993 | A |
5207774 | Wolfe et al. | May 1993 | A |
5230364 | Leng et al. | Jul 1993 | A |
5259487 | Petek et al. | Nov 1993 | A |
5263559 | Mettner | Nov 1993 | A |
5277283 | Yamaoka et al. | Jan 1994 | A |
5293971 | Kanari | Mar 1994 | A |
5307907 | Nakamura et al. | May 1994 | A |
5318066 | Burgorf et al. | Jun 1994 | A |
5328004 | Fannin et al. | Jul 1994 | A |
5372224 | Samonil et al. | Dec 1994 | A |
5392885 | Patzenhauer et al. | Feb 1995 | A |
5398787 | Woessner et al. | Mar 1995 | A |
5413196 | Forster | May 1995 | A |
5480011 | Nagai et al. | Jan 1996 | A |
5588510 | Wilke | Dec 1996 | A |
5597180 | Ganzel et al. | Jan 1997 | A |
5598337 | Butsuen et al. | Jan 1997 | A |
5651433 | Wirth et al. | Jul 1997 | A |
5657840 | Lizell | Aug 1997 | A |
5699885 | Forster | Dec 1997 | A |
5810128 | Eriksson et al. | Sep 1998 | A |
5813731 | Newman et al. | Sep 1998 | A |
5884921 | Katsuda et al. | Mar 1999 | A |
5937975 | Forster | Aug 1999 | A |
5957252 | Berthold | Sep 1999 | A |
5992450 | Parker et al. | Nov 1999 | A |
5996746 | Turner et al. | Dec 1999 | A |
6000702 | Streiter | Dec 1999 | A |
6035979 | Foerster | Mar 2000 | A |
6058340 | Uchiyama et al. | May 2000 | A |
6067490 | Ichimaru et al. | May 2000 | A |
6073536 | Campbell | Jun 2000 | A |
6092011 | Hiramoto et al. | Jul 2000 | A |
6213263 | De Frenne | Apr 2001 | B1 |
6254067 | Yih | Jul 2001 | B1 |
6293530 | Delorenzis et al. | Sep 2001 | B1 |
6296092 | Marking | Oct 2001 | B1 |
6318525 | Vignocchi et al. | Nov 2001 | B1 |
6322468 | Wing et al. | Nov 2001 | B1 |
6371262 | Katou et al. | Apr 2002 | B1 |
6401883 | Nyce et al. | Jun 2002 | B1 |
6415895 | Marking et al. | Jul 2002 | B2 |
6427812 | Crawley et al. | Aug 2002 | B2 |
6474454 | Matsumoto et al. | Nov 2002 | B2 |
6474753 | Rieth et al. | Nov 2002 | B1 |
6527093 | Oliver et al. | Mar 2003 | B2 |
6592136 | Becker et al. | Jul 2003 | B2 |
6604751 | Fox | Aug 2003 | B2 |
6619615 | Mayr et al. | Sep 2003 | B1 |
6648109 | Farr et al. | Nov 2003 | B2 |
6659241 | Sendrea | Dec 2003 | B2 |
6672687 | Nishio | Jan 2004 | B2 |
6722678 | McAndrews | Apr 2004 | B2 |
6966412 | Braswell et al. | Nov 2005 | B2 |
6978871 | Holiviers | Dec 2005 | B2 |
6978872 | Turner | Dec 2005 | B2 |
6991076 | McAndrews | Jan 2006 | B2 |
7128192 | Fox | Oct 2006 | B2 |
7234680 | Hull et al. | Jun 2007 | B2 |
7270221 | McAndrews | Sep 2007 | B2 |
7299112 | Laplante et al. | Nov 2007 | B2 |
7325660 | Norgaard et al. | Feb 2008 | B2 |
7374028 | Fox | May 2008 | B2 |
7441638 | Hanawa | Oct 2008 | B2 |
7591352 | Hanawa | Sep 2009 | B2 |
7628259 | Norgaard et al. | Dec 2009 | B2 |
7654369 | Murray et al. | Feb 2010 | B2 |
7722069 | Shirai | May 2010 | B2 |
7730906 | Kleinert et al. | Jun 2010 | B2 |
7779974 | Timoney et al. | Aug 2010 | B2 |
7946163 | Gartner | May 2011 | B2 |
7975814 | Soderdahl | Jul 2011 | B2 |
8151952 | Lenz et al. | Apr 2012 | B2 |
8210330 | Vandewal | Jul 2012 | B2 |
8256587 | Bakke et al. | Sep 2012 | B2 |
8262058 | Kot | Sep 2012 | B2 |
8262062 | Kamo et al. | Sep 2012 | B2 |
8291889 | Shafer et al. | Oct 2012 | B2 |
8307965 | Föster et al. | Nov 2012 | B2 |
8556048 | Maeda et al. | Oct 2013 | B2 |
8627932 | Marking | Jan 2014 | B2 |
8770357 | Sims et al. | Jul 2014 | B2 |
8857580 | Marking | Oct 2014 | B2 |
8991571 | Murakami | Mar 2015 | B2 |
9033122 | Ericksen et al. | May 2015 | B2 |
9038791 | Marking | May 2015 | B2 |
9120362 | Marking | Sep 2015 | B2 |
9194456 | Laird et al. | Nov 2015 | B2 |
9239090 | Marking | Jan 2016 | B2 |
9353818 | Marking | May 2016 | B2 |
9366307 | Marking | Jun 2016 | B2 |
9452654 | Ericksen et al. | Sep 2016 | B2 |
9556925 | Marking | Jan 2017 | B2 |
9616728 | Marking | Apr 2017 | B2 |
9663181 | Ericksen et al. | May 2017 | B2 |
10094443 | Marking | Oct 2018 | B2 |
20010017334 | Vincent | Aug 2001 | A1 |
20020000352 | Matsumoto et al. | Jan 2002 | A1 |
20020063469 | Nishio | May 2002 | A1 |
20020121416 | Katayama et al. | Sep 2002 | A1 |
20030001346 | Hamilton et al. | Jan 2003 | A1 |
20030160369 | Laplante et al. | Aug 2003 | A1 |
20040099312 | Boyer et al. | May 2004 | A1 |
20040222056 | Fox | Nov 2004 | A1 |
20050077131 | Russell | Apr 2005 | A1 |
20050098401 | Hamilton et al. | May 2005 | A1 |
20050110229 | Kimura et al. | May 2005 | A1 |
20050173849 | Vandewal | Aug 2005 | A1 |
20060065496 | Fox | Mar 2006 | A1 |
20060081431 | Breese et al. | Apr 2006 | A1 |
20060096817 | Norgaard et al. | May 2006 | A1 |
20060113834 | Hanawa | Jun 2006 | A1 |
20060124414 | Hanawa | Jun 2006 | A1 |
20060137934 | Kurth | Jun 2006 | A1 |
20060163551 | Coenen et al. | Jul 2006 | A1 |
20060219503 | Kim | Oct 2006 | A1 |
20060237272 | Huang | Oct 2006 | A1 |
20060289258 | Fox | Dec 2006 | A1 |
20070008096 | Tracy | Jan 2007 | A1 |
20070039790 | Timoney et al. | Feb 2007 | A1 |
20070051573 | Norgaard et al. | Mar 2007 | A1 |
20070088475 | Nordgren et al. | Apr 2007 | A1 |
20080006494 | Vandewal | Jan 2008 | A1 |
20080029730 | Kamo et al. | Feb 2008 | A1 |
20080059025 | Furuichi et al. | Mar 2008 | A1 |
20080093820 | McAndrews | Apr 2008 | A1 |
20080185244 | Maeda et al. | Aug 2008 | A1 |
20080250844 | Gartner | Oct 2008 | A1 |
20090000885 | McAndrews | Jan 2009 | A1 |
20090001684 | McAndrews et al. | Jan 2009 | A1 |
20090020382 | Van Weelden et al. | Jan 2009 | A1 |
20090138157 | Hagglund et al. | May 2009 | A1 |
20090277736 | McAndrews | Nov 2009 | A1 |
20090288924 | Murray et al. | Nov 2009 | A1 |
20090302558 | Shirai | Dec 2009 | A1 |
20100010709 | Song | Jan 2010 | A1 |
20100059964 | Morris | Mar 2010 | A1 |
20100109277 | Furrer | May 2010 | A1 |
20100170760 | Marking | Jul 2010 | A1 |
20100276238 | Crasset | Nov 2010 | A1 |
20110067965 | McAndrews | Mar 2011 | A1 |
20110127706 | Sims et al. | Jun 2011 | A1 |
20110174582 | Wootten et al. | Jul 2011 | A1 |
20110214956 | Marking | Sep 2011 | A1 |
20110284333 | Krog et al. | Nov 2011 | A1 |
20120018263 | Marking | Jan 2012 | A1 |
20120018264 | King | Jan 2012 | A1 |
20120048665 | Marking | Mar 2012 | A1 |
20120181126 | De Kock | Jul 2012 | A1 |
20120222927 | Marking | Sep 2012 | A1 |
20120253599 | Shirai | Oct 2012 | A1 |
20120305350 | Ericksen et al. | Dec 2012 | A1 |
20130001030 | Goldasz et al. | Jan 2013 | A1 |
20130292218 | Ericksen et al. | Nov 2013 | A1 |
20140008160 | Marking et al. | Jan 2014 | A1 |
20140027219 | Marking et al. | Jan 2014 | A1 |
20150081171 | Ericksen et al. | Mar 2015 | A1 |
20160153516 | Marking | Jun 2016 | A1 |
20160265615 | Marking | Sep 2016 | A1 |
20160290431 | Marking | Oct 2016 | A1 |
20170008363 | Ericksen et al. | Jan 2017 | A1 |
20170184174 | Marking | Jun 2017 | A1 |
20180010666 | Marking | Jan 2018 | A1 |
20190032745 | Marking | Jan 2019 | A1 |
Number | Date | Country |
---|---|---|
3709447 | Oct 1988 | DE |
3711442 | Oct 1988 | DE |
3738048 | May 1989 | DE |
3924166 | Feb 1991 | DE |
4029090 | Mar 1992 | DE |
4406918 | Sep 1994 | DE |
207409 | Jan 1987 | EP |
1241087 | Sep 2002 | EP |
1623856 | Feb 2006 | EP |
2248691 | Nov 2010 | EP |
2357098 | Aug 2011 | EP |
2410203 | Jan 2012 | EP |
2848582 | Mar 2015 | EP |
2529002 | Dec 1983 | FR |
2289111 | Nov 1995 | GB |
01106721 | Apr 1989 | JP |
H0193637 | Apr 1989 | JP |
04203540 | Jul 1992 | JP |
05149364 | Jun 1993 | JP |
2007302211 | Nov 2007 | JP |
20070076226 | Jul 2007 | KR |
Entry |
---|
Electronic Translation of DE3709447A1. |
English language abstract for EP 0207409 (no date). |
EP Search Report for European Application No. 15163428.4, dated Jul. 3, 2017, 7 Pages. |
European Search Report for European Application No. 11172553, 2 pages, dated Sep. 25, 2017 (dated Sep. 25, 2017). |
European Search Report for European Application No. 11175126, 2 pages,dated Sep. 25, 2017 (dated Sep. 25, 2017). |
Number | Date | Country | |
---|---|---|---|
20170136843 A1 | May 2017 | US |
Number | Date | Country | |
---|---|---|---|
61590577 | Jan 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13750336 | Jan 2013 | US |
Child | 15418322 | US |