This disclosure relates to a suspension liner for prosthetic devices, and more particularly to a suspension liner for enveloping a residual limb and having a seal component for engaging a prosthetic socket.
Suspension liner systems are widely used in prosthetic systems for residual limbs in order to stabilize soft tissue, minimize pistoning or stretching, assist circulation of the residual limb and add comfort.
Various solutions are found in the prior art, including those described in U.S. Pat. No. 7,025,793, granted on Apr. 11, 2006, and U.S. Pat. No. 8,034,120, granted on Oct. 11, 2011, both of which are incorporated herein by reference. According to these publications, a liner includes a liner body and a seal component located at the distal end area of the liner body. The seal component is flexible so it can conform to the shape of the residual limb and the internal wall of the prosthetic socket, thereby providing an airtight seal. The seal component minimizes movement of the limb within the socket, so as to prevent pistoning and rotation. In operation, the residual limb is stepped into the socket and expels air through a distal valve on the socket so as to create hypobaric suction below the seal component.
Some users find that known liners having sealing means fail to sufficiently tolerate volume fluctuations, and may leave pressure marks on the residual limb after periods of sustained use. Additional improvements may be required for some users in that known liners do not adequately conform to the user's anatomy, and therefore fail to provide necessary comfort and skin protection. Moreover, as with all suspension liners having sealing means, it is necessary that the liner provides reliable suspension after an initial phase of volume and shape conditioning after the liner is donned on the user's residual limb.
A suspension liner with a seal component is described herein and provides a connection and interface between a prosthetic socket and residual limb. The connection is made by using a suspension liner with a seal so as to create a vacuum to suspend the residual limb to the socket. The suspension liner removes the need for a distal pin that is commonly employed in suspension liners and is used to couple to a hard, prosthetic socket and other prosthetic leg components. Moreover, because the seal is formed by the suspension liner itself, a sleeve of an exemplary type discussed in U.S. Pat. No. 6,592,539, granted Jul. 15, 2003 and incorporated herein by reference, is not required to seal the liner to the socket.
The suspension liner with a seal component has at least the benefits of mitigating distal pistoning from a distal pin. There is no restriction over the knee of the wearer to any sleeve. Therefore, the suspension liner with a seal component provides a reliable suspension without distal attachments or suspension sleeves.
Due to the particular liner and seal component embodiments discussed, herein the suspension liner provides a secure connection over varying residual limb volumes between the socket and the residual limb. Also, the liner and seal component embodiments provide a comfortable connection between the socket and the limb by reducing noticeable pressure marks.
According to an embodiment, the suspension liner includes an elongate, generally conical liner body formed from at least one material segment that is at least radially elastically extensible from a relaxed non-extended condition and including proximal and distal end areas, and a seal component connected to the liner body. The seal component has at least one exterior configuration for engaging a prosthetic socket and at least one interior configuration for movably engaging the liner body.
The exterior configuration may be arranged to have at least one seal that protrudes radially outwardly from an exterior surface of the seal component relative to a longitudinal axis of the liner body.
The interior configuration may be arranged to protrude inwardly toward the liner body, and may be yet further arranged to extend at an oblique angle relative to the longitudinal axis of the liner body. In a variation, the interior configuration defines at least one blade extending obliquely toward the liner body. The blade may taper toward its distal and proximal ends along a segment of the length of the liner body, such as tapering in thickness from an interior wall of the seal component toward the liner body exterior surface.
A portion of the seal component carrying the interior configuration extends freely and movable relative to the liner body.
In a variation of the interior configuration of the seal component, the seal component defines an inwardly pitched portion at the proximal end thereof and directed toward the liner body exterior surface.
In another variation, the interior configuration defines at least one blade extending toward the liner body with the blade being bounded by an outwardly pitched portion of the interior configuration located near a distal end of the seal component and an inwardly pitched portion at the proximal end of the seal component and directed toward the liner body exterior surface.
The seal component may define a base portion circumferentially secured to an exterior surface of the liner body. The base portion may have an attachment portion entirely secured to the exterior surface of the liner body, with the remainder of the seal component outside and proximally located relative to the attachment portion extending generally freely from the liner body.
The seal component may define a lip arranged against the liner body; the interior configuration may be located proximal relative to the lip. A clearance may be formed between the lip and an outwardly pitched portion of the interior configuration extending from a base portion located at a distal end of the seal component.
In another embodiment, the suspension liner includes an elongate, generally conical liner body formed from at least one material segment that is at least radially elastically extensible from a relaxed non-extended condition and including proximal and distal end areas, and a seal component connected to the liner body and having an exterior surface for engaging a prosthetic socket and at least one interior seal located along an interior surface of the seal component and arranged for engaging the liner body. A portion of the seal component carrying the interior seal extends freely and movable relative to the liner body.
The exterior seal may protrude from the exterior surface and extend radially outwardly from the seal component relative to a longitudinal axis of the liner body and opposite to the interior seal. The at least one interior seal can define at least one blade extending obliquely toward the liner body. The seal component may define a lip arranged against the liner body and the interior seal is located proximal relative to the lip.
In yet another embodiment, the suspension liner has an elongate, generally conical liner body formed from at least one material segment that is at least radially elastically extensible from a relaxed non-extended condition and including proximal and distal end areas, and a seal component connected to the liner body and having an exterior surface defining at least one exterior seal protruding from the exterior surface and extending radially outwardly from the seal component relative to a longitudinal axis of the liner body. The at least one interior seal is located along an interior surface of the seal component and defines at least one blade extending obliquely toward the liner body. A portion of the seal component carrying the interior seal extends freely and movable relative to the liner body.
According to any of the suspension liner embodiments having a seal embodiment, the seal component may be located at various locations along the exterior surface of the liner body relative to the proximal and distal ends. For example, a “high profile” suspension liner may have a seal component which is located 3-6 cm more proximally than a conventional suspension liner with a seal component. This particular configuration may be employed for those users that require a more proximal seal, particularly trans-tibial amputees. By locating the seal component more proximally relative to the liner body, a larger vacuum chamber is created distally of the seal component than in conventional suspension liners having a seal component. Moreover, the seal component may be located proximal from a sensitive distal end of the residual limb.
Any of the liner body embodiments described herein may define a circumferential recess arranged to receive a length of the seal component. The seal component may be fixedly secured to the liner without permitting adjustment of the location of the seal component relative to the liner body, or alternatively the seal component may be securable over any desirable location of the liner body by a clinician.
The liner body may have a variable thickness. In an exemplary embodiment, the liner body may have a significantly greater thickness at the distal end, and gradually taper toward the proximal end. In doing so, a circumferential recess of the liner body may define a reduced thickness region compared to regions adjacently outside the circumferential recess.
The numerous other advantages, features and functions of embodiments of a suspension liner will become readily apparent and better understood in view of the following description and accompanying drawings. The following description is not intended to limit the scope of the suspension liner, but instead merely provides exemplary embodiments for ease of understanding.
It should be noted that the drawing figures are not necessarily drawn to scale, but instead are drawn to provide a better understanding of the components thereof, and are not intended to be limiting in scope, but rather to provide exemplary illustrations. It should further be noted that the figures illustrate exemplary configurations of a liner, and in no way limit the structures or configurations of a liner thereof according to the present disclosure.
A better understanding of different embodiments of the invention may be had from the following description read in conjunction with the accompanying drawings in which like reference characters refer to like elements.
A. Overview of Suspension Liner Embodiments
In each of the embodiments discussed herein, the suspension liner is intended for use between a residual limb and a prosthesis, such as a hard socket, and to be air-tight when donned over a residual stump. The internal surface of the liner may be formed of a layer of silicone elastomer, therefore serving as a skin interface. Silicone is advantageous in that it allows for different levels and softness and strength to be incorporated into the liners of the present application. Moreover, silicone permits the addition of selected supplements, such as petroleum jelly and aloe vera, which improve skin care and comfort.
An elasticity controlling matrix material may be provided on the exterior of the liner, the matrix material preferably being relatively compliant in a radial direction and substantially rigid or inelastic in an axial direction. The matrix material may extend over the distal or external side of the prosthesis, and is advantageous in that it prevents movement of the liner when a prosthesis is worn thereover.
A liner in accordance with this disclosure may be fabricated in a sufficient number of sizes to accommodate various sizes of residual limbs. In use, a liner of the type described herein is rolled up from the proximal to the distal end, placed over the distal end of the residual stump and rolled back up or “donned” over the stump like a stocking. This procedure and the benefits achieved thereby are described in detail in U.S. Pat. No. 4,923,474, granted on May 8, 1990 and incorporated herein by reference. In addition, any of the liners and sleeves mentioned herein may be constructed in the manner prescribed by U.S. Pat. No. 4,923,474.
The embodiments of the suspension liner of the present application may be constructed according to the molding methods described in U.S. Pat. No. 6,485,776, granted on Nov. 26, 2002 and the entirety of which is incorporated herein by reference.
B. Specific Embodiments of the Suspension Liner with a Seal Component
The liner body 12 preferably has an elongate, generally conical shape. The liner body 12 defines a longitudinal axis A-A, and includes proximal and distal end portions. The liner body 12 may be formed from at least one material segment that is at least radially elastically extensible from a relaxed non-extended condition.
As depicted in
The liner body 12 forms a proximal beveled circumferential edge 17 at a proximal end portion of the recess, a distal beveled edge 21 at a distal end portion of the recess, and a middle beveled circumferential edge 19 located between the proximal and distal end portions of the recess. The beveled edges receive portions of the seal component and minimize sharp or harsh edges that may cause discomfort when the residual limb is in a socket with the liner donned.
The entire liner body 12 may be configured, including the recess 16, for the proximal seal component 14′.
In an exemplary embodiment,
The seal component 14 includes a base portion 20 located at the distal portion of the seal component, and secures to the exterior surface EE of the recess 16. An interior surface 36 of the base portion 20 is preferably anchored circumferentially to the exterior surface EE to a pivot line 38. A seal wall 22 is located above the pivot line 38, and flexibly and movably extends relative to the liner body 12 and the base portion 20.
The seal component 14 defines a lip 40 which extends above the base portion 20 and parallel to the exterior surface EE of the liner body 12. The lip 40 is adhered to the liner exterior surface EE, and provides additional retention of the seal component to the liner body. The lip may be tapered so as to provide a gradual transition along the liner body.
A gap 42 is formed between the lip 40 and a surface 44 of a distal outwardly pitched portion 22 of the seal wall 24. The gap 42 enables the seal wall 24 to flexibly and movably extend relative to the liner body. The distal outwardly pitched portion 22 effectively forms a taper for the seal component in order to facilitate donning of the suspension liner in a prosthetic socket.
The seal wall 24 has exterior and interior surfaces 54, 56, corresponding respectively to the exterior and interior configurations 18, 32. The exterior surface 54 carries a plurality of individual exterior radially extending seal rings 26, 28. These seal rings 26, 28 are arranged to engage the interior socket wall, and expel air through a valve on the socket as the residual limb carrying the liner is stepped into the socket. The seal rings form an airtight connection between the liner and the socket, and ensure secure suspension.
While two seal rings are shown in
According to
According to
A plurality of blades 34 are located along the interior surface 56 of the seal wall 24, and the plurality of blades 34 extend circumferentially about the seal wall 24. The blades compensate for volume changes in the residual limb, by expanding and exerting pressure against an interior surface of the socket so as to improve suspension of the liner over known suspension liners with seals.
In the depicted embodiment of
The arrangement of the blade width may include other variations such as the width of each of the blades tapering from a central portion 58 to a distal portion 60, and likewise from the central portion 58 to a proximal portion 62. In another variation, the blade width may be substantially uniform from distal to proximal portions.
Each blade has a greatest thickness closest to the interior surface 56 of the seal wall with a tapered thickness 46 as the blade extends toward the liner body. This configuration strengthens the blade at its interface with the seal wall as well as reduces any possible pressure points.
In the variation shown in
According to one variation, the blades extend at an angle approximately at 27 degrees relative to the longitudinal axis of the liner body. This angle, among other angles as well, allows for the blades to be pressed inwards relative to the liner body when the liner is donned, and obtains a proper balance of force required to draw the blades outwardly when the liner is withdrawn from the socket. Because the angle of the blades is arranged relative to the vertical axis of the liner and is combined with the orientation of the ends of the blades which press against the liner body, when a force is exerted to pull the liner out of a socket, the blades expand outwardly, which in turn creates extra pressure of the seal wall against the socket wall, thereby making it more difficult to lose suspension of the liner.
It will be noted that the blades are not limited to an obliquely extending configuration, as explained in connection with
The seal component is preferably formed as a separate element from the liner body, and is securely attached thereto by appropriate bonding techniques that may include adhesive, heat seal, etc. The seal component may be constructed from a variety of materials, such as polymers, rubbers, coated textiles or any other suitable material. According to the embodiments, the seal component is constructed from a silicone composition.
While the seal component is described and depicted at the distal end portion of the liner, the seal component may be placed at any particular location along the exterior surface ES of the liner body.
Turning to
When sealing against a socket, it should be kept in mind that the vacuum is formed between the seal and the distal end of the socket; no vacuum is created proximal of the socket between the liner and the socket. Moreover, the seal does not completely press against the socket wall, in that only portions of the seal press against the socket wall. For example, the seal rings press against the socket wall, but portions between the seal rings may not, and further may not touch the socket wall. Moreover, gaps between the blades may affect areas of the seal so that at such areas the seal does not exert any or much pressure against the socket wall.
As shown in
Of course, it should be understood that not necessarily all objects or advantages may be achieved in accordance with any particular embodiment of the invention. Thus, for example, those skilled in the art will recognize that the invention may be embodied or carried out in a manner that achieves or optimizes one advantage or group of advantages as taught herein without necessarily achieving other objects or advantages as may be taught or suggested herein.
The skilled artisan will recognize the interchangeability of various disclosed features. In addition to the variations described herein, other known equivalents for each feature can be mixed and matched by one of ordinary skill in this art to construct suspension liners in accordance with principles of the present invention.
Although this invention has been disclosed in the context of certain exemplary embodiments and variations thereof, it therefore will be understood by those skilled in the art that the present invention extends beyond the specifically disclosed embodiments to other alternative embodiments and/or uses of the invention and obvious modifications and equivalents thereof. Thus, it is intended that the scope of the present invention herein disclosed should not be limited by the particular disclosed embodiments described above.
This application claims priority to U.S. Ser. No. 13/589,415, filed Aug. 20, 2012, which claims the benefit of priority from U.S. Provisional Application No. 61/526,035, filed on Aug. 22, 2011, the entirety of which is incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
980457 | Toles | Jan 1911 | A |
1398824 | Abrams | Nov 1921 | A |
1893853 | Tullis | Jan 1933 | A |
2325656 | Brophy | Aug 1943 | A |
2464443 | Ganoe et al. | Mar 1949 | A |
2530285 | Catranis | Nov 1950 | A |
2533404 | Sharp et al. | Dec 1950 | A |
2634424 | O'Gorman | Apr 1953 | A |
2671225 | Schoene et al. | Mar 1954 | A |
2689351 | Schindler | Sep 1954 | A |
2808593 | Andersen | Oct 1957 | A |
3393407 | Kandel | Jul 1968 | A |
3587572 | Evans | Jun 1971 | A |
3671980 | Baird | Jun 1972 | A |
3947897 | Owens | Apr 1976 | A |
4128903 | Marsh et al. | Dec 1978 | A |
4215679 | Rustin | Aug 1980 | A |
4311317 | Bartels | Jan 1982 | A |
4319413 | Mattil | Mar 1982 | A |
4347204 | Takagi et al. | Aug 1982 | A |
4474573 | Detty | Oct 1984 | A |
4635626 | Lerman | Jan 1987 | A |
4738249 | Linman et al. | Apr 1988 | A |
4767735 | Ewen et al. | Aug 1988 | A |
4885828 | Kozlowski | Dec 1989 | A |
4908037 | Ross | Mar 1990 | A |
4923474 | Klasson et al. | May 1990 | A |
5007937 | Fishman et al. | Apr 1991 | A |
5055528 | Kioka et al. | Oct 1991 | A |
5122583 | Ewen et al. | Jun 1992 | A |
5139523 | Paton et al. | Aug 1992 | A |
5163965 | Rasmusson et al. | Nov 1992 | A |
5169161 | Jones | Dec 1992 | A |
5226918 | Silagy et al. | Jul 1993 | A |
5244716 | Thornton et al. | Sep 1993 | A |
5314496 | Harris et al. | May 1994 | A |
5376129 | Faulkner et al. | Dec 1994 | A |
5376131 | Lenze et al. | Dec 1994 | A |
5387245 | Fay et al. | Feb 1995 | A |
5549709 | Caspers | Aug 1996 | A |
5571208 | Caspers | Nov 1996 | A |
5571209 | Brown, Sr. | Nov 1996 | A |
5593454 | Helmy | Jan 1997 | A |
5658353 | Layton | Aug 1997 | A |
5702489 | Slemker | Dec 1997 | A |
5718925 | Kristinsson et al. | Feb 1998 | A |
5728168 | Laghi et al. | Mar 1998 | A |
5728170 | Becker et al. | Mar 1998 | A |
5735906 | Caspers | Apr 1998 | A |
5830237 | Kania | Nov 1998 | A |
5885674 | Maemoto et al. | Mar 1999 | A |
5888216 | Haberman | Mar 1999 | A |
5888230 | Helmy | Mar 1999 | A |
5904722 | Caspers | May 1999 | A |
5931872 | Lohmann | Aug 1999 | A |
5972036 | Kristinsson et al. | Oct 1999 | A |
5980577 | Radis et al. | Nov 1999 | A |
6076284 | Terlizzi | Jun 2000 | A |
6136039 | Kristinsson et al. | Oct 2000 | A |
6149691 | Fay et al. | Nov 2000 | A |
6171431 | Gallagher, Jr. et al. | Jan 2001 | B1 |
6231616 | Helmy | May 2001 | B1 |
6231617 | Fay | May 2001 | B1 |
6273918 | Yuhasz et al. | Aug 2001 | B1 |
6287345 | Slemker et al. | Sep 2001 | B1 |
6361568 | Hoerner | Mar 2002 | B1 |
6368357 | Schon et al. | Apr 2002 | B1 |
6406499 | Kania | Jun 2002 | B1 |
6468938 | Govoni et al. | Oct 2002 | B1 |
6485776 | Janusson et al. | Nov 2002 | B2 |
6508842 | Caspers | Jan 2003 | B1 |
6544292 | Laghi | Apr 2003 | B1 |
6554868 | Caspers | Apr 2003 | B1 |
6585774 | Dean, Jr. et al. | Jul 2003 | B2 |
6626952 | Janusson et al. | Sep 2003 | B2 |
6645253 | Caspers | Nov 2003 | B2 |
6706364 | Janusson et al. | Mar 2004 | B2 |
6726726 | Caspers | Apr 2004 | B2 |
6761742 | Caspers | Jul 2004 | B2 |
6852269 | Eberle et al. | Feb 2005 | B2 |
6926742 | Caspers et al. | Aug 2005 | B2 |
6929125 | Seamans | Aug 2005 | B1 |
6964688 | Kania | Nov 2005 | B1 |
7001563 | Janusson et al. | Feb 2006 | B2 |
7025793 | Egilsson | Apr 2006 | B2 |
7118602 | Bjarnason | Oct 2006 | B2 |
7144429 | Carstens | Dec 2006 | B2 |
7169188 | Carstens | Jan 2007 | B2 |
7169189 | Bjarnason et al. | Jan 2007 | B2 |
7235108 | Carstens | Jun 2007 | B2 |
7291182 | Kania | Nov 2007 | B1 |
7351264 | Wilson | Apr 2008 | B2 |
7427297 | Patterson et al. | Sep 2008 | B2 |
7592286 | Morini et al. | Sep 2009 | B2 |
7749281 | Egilsson | Jul 2010 | B2 |
7771487 | Mantelmacher | Aug 2010 | B2 |
7909884 | Egilsson et al. | Mar 2011 | B2 |
8034120 | Egilsson et al. | Oct 2011 | B2 |
8052760 | Egilsson et al. | Nov 2011 | B2 |
8097043 | Egilsson | Jan 2012 | B2 |
8372159 | Mackenzie | Feb 2013 | B2 |
8956422 | Halldorsson | Feb 2015 | B2 |
20010005798 | Caspers | Jun 2001 | A1 |
20010016781 | Caspers | Aug 2001 | A1 |
20020040248 | Karason | Apr 2002 | A1 |
20020087215 | Caspers | Jul 2002 | A1 |
20020091449 | Caspers et al. | Jul 2002 | A1 |
20020099450 | Dean, Jr. et al. | Jul 2002 | A1 |
20020165619 | Hellberg | Nov 2002 | A1 |
20020183859 | Houser | Dec 2002 | A1 |
20030181989 | Eberle et al. | Sep 2003 | A1 |
20030191539 | Caspers | Oct 2003 | A1 |
20040024322 | Caspers | Feb 2004 | A1 |
20040030411 | Caspers | Feb 2004 | A1 |
20040040248 | Vilnes | Mar 2004 | A1 |
20040098136 | Caspers | May 2004 | A1 |
20040122528 | Egilsson | Jun 2004 | A1 |
20040143345 | Caspers | Jul 2004 | A1 |
20040167638 | Caspers | Aug 2004 | A1 |
20040181290 | Caspers | Sep 2004 | A1 |
20040236434 | Carstens | Nov 2004 | A1 |
20040243251 | Carstens | Dec 2004 | A1 |
20040243252 | Carstens | Dec 2004 | A1 |
20050101693 | Arbogast et al. | May 2005 | A1 |
20050216095 | Egilsson | Sep 2005 | A1 |
20050240282 | Rush et al. | Oct 2005 | A1 |
20050240283 | Kania | Oct 2005 | A1 |
20050267598 | Bjarnason et al. | Dec 2005 | A1 |
20050267599 | Bjarnason | Dec 2005 | A1 |
20060212128 | Nachbar | Sep 2006 | A1 |
20070005149 | Egilsson et al. | Jan 2007 | A1 |
20070021295 | Morini et al. | Jan 2007 | A1 |
20070027556 | Wilson | Feb 2007 | A1 |
20070043450 | Pickering et al. | Feb 2007 | A1 |
20070061017 | Wilson | Mar 2007 | A1 |
20070123998 | Egilsson et al. | May 2007 | A1 |
20070179606 | Huyghe et al. | Aug 2007 | A1 |
20080086218 | Egilsson | Apr 2008 | A1 |
20080147202 | Danzig et al. | Jun 2008 | A1 |
20080188949 | MacKenzie | Aug 2008 | A1 |
20080221705 | Scussel | Sep 2008 | A1 |
20080221706 | Scussel et al. | Sep 2008 | A1 |
20080269914 | Coppens et al. | Oct 2008 | A1 |
20090036999 | Egilsson et al. | Feb 2009 | A1 |
20090069171 | Sagae | Mar 2009 | A1 |
20090157196 | Danzig et al. | Jun 2009 | A1 |
20090182435 | Haberman | Jul 2009 | A1 |
20090198346 | Perkins et al. | Aug 2009 | A1 |
20090240344 | Colvin et al. | Sep 2009 | A1 |
20090306791 | Slemker et al. | Dec 2009 | A1 |
20100070051 | Carstens | Mar 2010 | A1 |
20100185300 | Mackenzie | Jul 2010 | A1 |
20100249950 | Bielefeld | Sep 2010 | A1 |
20100274364 | Pacanowsky et al. | Oct 2010 | A1 |
20100318196 | Egilsson | Dec 2010 | A1 |
20110029096 | Laghi | Feb 2011 | A1 |
20110035027 | McCarthy | Feb 2011 | A1 |
20110054635 | Watts | Mar 2011 | A1 |
20110071649 | McKinney | Mar 2011 | A1 |
20110077748 | Egilsson et al. | Mar 2011 | A1 |
20110118854 | Halldorsson | May 2011 | A1 |
20120041568 | Mackenzie | Feb 2012 | A1 |
20130053982 | Halldorsson | Feb 2013 | A1 |
20130138224 | Mackenzie | May 2013 | A1 |
20130197670 | Mackenzie | Aug 2013 | A1 |
Number | Date | Country |
---|---|---|
369 978 | Feb 1983 | AT |
484 363 | Oct 1929 | DE |
745 981 | May 1944 | DE |
813 190 | Sep 1951 | DE |
1 795 809 | Sep 1959 | DE |
2 060 239 | Jun 1972 | DE |
2 127 269 | Dec 1972 | DE |
2 540 138 | Mar 1977 | DE |
2 544 446 | Apr 1977 | DE |
3 221 920 | Apr 1983 | DE |
3 508 919 | Sep 1986 | DE |
9 419 208 | Jan 1995 | DE |
0 631 765 | Jan 1995 | EP |
1 572 043 | Sep 2005 | EP |
2 420 335 | Oct 1979 | FR |
2 539 616 | Jul 1984 | FR |
2 828 093 | Feb 2003 | FR |
263 377 | Dec 1926 | GB |
267 988 | Mar 1927 | GB |
826 041 | Dec 1959 | GB |
2 069 847 | Sep 1981 | GB |
2 087 727 | Jun 1982 | GB |
H0623406 | Feb 1994 | JP |
H07109314 | Apr 1995 | JP |
H7-155343 | Jun 1995 | JP |
H9-104714 | Apr 1997 | JP |
2637076 | Aug 1997 | JP |
2740503 | Apr 1998 | JP |
H10-182740 | Jul 1998 | JP |
2001-055413 | Feb 2001 | JP |
2002-500697 | Jan 2002 | JP |
2006-176565 | Jul 2006 | JP |
2006-316160 | Nov 2006 | JP |
2006-528271 | Dec 2006 | JP |
3984304 | Oct 2007 | JP |
9734548 | Sep 1997 | WO |
0074611 | Dec 2000 | WO |
0154631 | Aug 2001 | WO |
0167842 | Sep 2001 | WO |
0226158 | Apr 2002 | WO |
03024367 | Mar 2003 | WO |
03024370 | Mar 2003 | WO |
03039398 | May 2003 | WO |
03099173 | Dec 2003 | WO |
2004060136 | Jul 2004 | WO |
2010085336 | Jul 2010 | WO |
2013005735 | Jan 2013 | WO |
Entry |
---|
“Silicone-Only Suspension (SOS) with Socket-Loc and the Ring for the Lower Limb”, found at, http://www.oandp.org/jpo/library/1995—01—002.asp. Journal of Prosthetics and Orthotics 1995;vol. 7, No. 1, p. 2. |
Iceross Comfort Locking/Cushion Product Information Brochure, Mar. 27, 2009, 3 Pages. |
Iceross Dermo, Product Information Sheets from Internet, http://www.ossur.com/prosthetics/liners/dermo, Mar. 27, 2009, 2 Sheets. |
Military inStep: Prosthetic Socks and Liners, Product Information Sheets from Internet, http://www.amputee-coalition.org/military-instep/prosthetic-socks, Mar. 27, 2009, 3 Pages. |
Prosthetic & Orthotic Update NewsLetter, No. 32, Internet Search Conducted Mar. 27, 2009, 4 Pages. |
Walopur Platilon U, Product Information Brochure of Epurex Films GmbH & Co., KG, Internet Search Result Conducted Mar. 27, 2009, 2 Pages. |
International Search Report and Written Opinion Issued in PCT/US2012/051645, Dec. 3, 2012. |
Supplementary EP Search Report from EP Application No. 07837275.2, Feb. 19, 2014, 6 pages. |
Extended European Search Report from EP Application No. 14161004.8, May 22, 2014, 6 pages. |
Extended European Search Report from Corresponding Application No. 14163512.8, Jul. 30, 2014. |
ESP Opti-Seal, Product Installation Instructions, http://www.wearesp.com, Downloaded Dec. 12, 2014, 1 page. |
ESP Opti-Seal, “The Most Versatile Suspension System Availiable”, www.wearesp.com, Downloaded Dec. 12, 2014, 2 pages. |
ESP Secure-Ring System (SRS), http://www.wearesp.com, Downloaded Dec. 12, 2014, 1 page. |
ESP Secure-Ring System (SRS), Product Instructions Sheet, http://www.wearesp.com, downloaded Dec. 12, 2014, 2 pages. |
Number | Date | Country | |
---|---|---|---|
20150150695 A1 | Jun 2015 | US |
Number | Date | Country | |
---|---|---|---|
61526035 | Aug 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13589415 | Aug 2012 | US |
Child | 14615938 | US |