1. Field of the Inventions
The present inventions are directed to a package assembly. In particular, the present inventions are directed to a suspension package assembly that includes a stretchable retention member and a packaging member.
2. Description of the Related Art
Protective packaging devices are often used to protect goods from shocks and impacts during shipping or transportation. For example, when transporting articles that are relatively fragile, it is often desirable to cushion the article inside a box to protect the article from a physical impact with the inner walls of the box that might be caused by shocks imparted to the box during loading, transit, and/or unloading.
In most cases, some additional structure is used to keep the article from moving uncontrollably within the box. Such additional structures include paper or plastic packing material, structured plastic foams, foam-filled cushions, and the like. Ideally, the article to be packaged is suspended within the box so as to be spaced from at least some of the walls of the box, thus protecting the article from other foreign objects which may impact or compromise the outer walls of the box.
U.S. Pat. No. 6,675,973 discloses a number of inventions directed to suspension packaging assemblies which incorporate frame members and one or more retention members. For example, many of the embodiments of the U.S. Pat. No. 6,675,973 include the use of a retention member formed of a resilient material. Additionally, some of the retention members include pockets at opposite ends thereof.
In several of the embodiments disclosed in the U.S. Pat. No. 6,675,973, free ends of the frame members are inserted into the pockets of the retention member. The free ends of the frame member are then bent, pivoted, or folded to generate the desired tension in the retention member. Because the retention member is made from a resilient material, the retention member can stretch and thus provide a mechanism for suspending an article to be packaged, for example, within a box.
An aspect of at least one of the embodiments disclosed herein includes the realization that certain aspects of packaging materials can be improved by delivering the assembly to the customer in a state which reduces the number of components that the customer has to connect to use the packaging materials.
Additional advantages can be achieved where the processes or devices used to assemble the materials do not add weight to the materials and/or do not require the use of additional techniques that are not already used for manufacturing the other components of the materials.
Thus, in accordance with an embodiment, a packaging kit for packaging an article and maintaining the article in a position spaced from a wall of a container can be provided. The kit can include a resilient member comprising a body portion and first and second pockets disposed at opposite ends of the body portion. A substantially rigid member can comprise a base member sized to engage the article. A first foldable portion and a second foldable portion can be configured to be pivotable relative to the base member, at least a portion of the first foldable portion configured to fit with the first pocket and at least a portion of the second foldable portion configured to fit within the second pocket. Additionally, at least one coupling assembly can be configured to limit relative movement between the resilient member and the rigid member, the at least coupling assembly comprising an aperture in the rigid member and a coupler, the coupler extending through the aperture and connected to the resilient member.
In accordance with another embodiment, a package assembly for packaging an article and maintaining the article in a position spaced from a wall of a container can be provided. The package assembly can comprise a resilient member comprising a first sheet and a second sheet. A substantially rigid member can comprise a base member configured to engage the article, a first foldable portion and a second foldable portion configured to be pivotable with respect to the base member, the first foldable portion, and at least one coupling assembly configured to limit relative movement between the resilient member and the rigid member, the at least one coupling assembly comprising an aperture in the rigid member and a coupler, the coupler extending through aperture and connecting the first sheet and the second sheet.
In accordance with yet another embodiment, a method of manufacturing a packaging assembly can be provided. The method can comprise forming an aperture in a base member, placing a first resilient member on a first side of the aperture, placing a second resilient member on a second side of the aperture, and connecting the first and second resilient members through the aperture.
In accordance with yet a further embodiment, a package assembly can comprise a first resilient sheet portion, a second resilient sheet portion, a substantially rigid member including an aperture, and means for connecting the first resilient sheet portion to the second resilient sheet portion through the aperture.
For purposes of summarizing the inventions and the advantages achieved over the prior art, certain objects and advantages of the inventions have been described hereinabove. Of course, it is to be understood that not necessarily all such objects or advantages may be achieved in accordance with any particular embodiment of the inventions. Thus, for example, those skilled in the art will recognize that the inventions may be embodied or carried out in a manner that achieves or optimizes one advantage or a group of advantages as taught herein without necessarily achieving other objects or advantages as may be taught or suggested herein.
All of these embodiments are intended to be within the scope of the inventions disclosed herein. These and other embodiments of the inventions will become readily apparent to those skilled in the art from the following detailed description of the preferred embodiments having reference to the attached figures, the inventions not being limited to any particular preferred embodiments disclosed.
These and other features of the inventions are described below with reference to the drawings of several embodiments of the present package assemblies and kits which are intended to illustrate, but not to limit, the inventions. The drawings contain the following figures:
An improved package assembly is disclosed herein. The package assembly includes an improved structure which provides new alternatives to known suspension packaging systems.
In the following detailed description, terms of orientation such as “upper,” “lower,” “longitudinal,” “horizontal,” “vertical,” “lateral,” “midpoint,” and “end” are used herein to simply the description in the context of the illustrated embodiments. Because other orientations are possible, however, the present inventions should not be limited to the illustrated orientations. Additionally, the term “suspension” is not intended to require that anything, such as an article to be packaged, is suspended above anything. Rather, the terms “suspended” as used herein, is only intended to reflect that such an article is held in a position spaced from another member, such as at least one of the walls of a container or box. Those skilled in the art will appreciate that other orientations of various components described herein are possible.
With reference to
In some embodiments, the foldable portions 130, 132 are configured to increase a tension in a resilient member (
In some environments of use, opposing lateral wall portions 140, 142 can be manipulated to form lateral side wall that suspend the base member 120 (see
With continued reference to
The base member 120 can be sized and dimensioned so as to engage or provide support for one or more articles. Although the base member 120 is described primarily as being disposed at the center of the packaging member 100, the base member 120 can be at other locations. Additionally, the base member 120 can comprise a plurality of members, each configured to engage an article. For the sake of convenience, the base member 120 is described as a generally planar centrally disposed member.
The size of the base member 120, which defines a loading area, can be chosen arbitrarily or to accommodate, support, or engage an article of a particular size. The loading area size can be chosen based on the number and configuration of the articles on or proximate to the base member 120. In some non-limiting exemplary embodiments, the base member can be used to package one or more communication devices (e.g., portable phones, cellular phones, radios, headsets, microphones, etc.), electric devices and components, accessories (e.g., cellular phone covers), storage devices (e.g., disk drives), and the like. In certain embodiments, the base member 120 is configured to package one more portable music players, such as IPODs® or MP3 players.
It is contemplated that the base member 120 can be designed to package any number and type of articles. In the illustrated embodiment, the base member 120 is somewhat square shaped and has a surface area (i.e., the loading area) of about 40-60 inches square. In some non-limiting embodiments, the base member has a loading area more than about 40 inches square, 45 inches square, 50 inches square, 55 inches square, 60 inches square, and ranges encompassing such areas. However, these are merely exemplary embodiments, and the base member 120 can have other dimensions for use in communication devices, packaging modems, hard drives, portable phones, or any other article that is to be packaged.
The illustrated base member 120 has a generally flat upper surface that an article can rest against. Other non-limiting base members can have mounting structures, apertures, recesses, partitions, separators, or other suitable structures for inhibiting movement of an article engaging the base member. For example, the base member 120 can have at least one holder that is sized and configured to receive an article.
The lateral wall portions 140, 142 are positioned on either side of the base member 120. The lateral wall portions 140, 142 can be folded upwardly and inwardly to form lateral side walls.
The lateral wall portion 140 can include a lateral wall protrusion 146 and a flap 148. The wall section 150 can be interposed between the protrusion 146 and the flap 148. The lateral wall protrusion 146 can extend laterally and inwardly from the wall section 150. The flap 148 extends laterally and outwardly from the wall section 150. The protrusion 146 and the flap 148 are medially positioned along the packaging member 100.
At least one fold line can be defined between the lateral wall portion 140 and the base member 120. In the illustrated embodiment, a fold line 160 extends between the base member 120 and the lateral wall portion 140. The fold line 160 also extends partially through the foldable portions 130, 132.
The lateral wall portion 142 can include a lateral wall protrusion 161 and a flap 162. A wall section 164 can be interposed between the lateral wall protrusion 161 and the flap 162. The lateral wall portions 140, 142 can be generally similar to each other and, accordingly, the description herein of one of the lateral wall portions applies equally to the other, unless indicated otherwise.
The fold lines can be formed as perforations in the packaging member 100, i.e., broken cut lines passing partially or completely through the material forming the packaging member 100. In the alternative, or in addition, the fold lines can be crushed portions of the material forming the member 100. Of course, depending on the material used to construct the packaging member 100, the fold lines can be formed as mechanical hinges, thinned portions, adhesive tape, or any other appropriate mechanical connection which would allow various portions of the foldable member to be folded or rotated with respect to each other. These concepts apply to all the fold lines described herein, although this description will not be repeated with respect to the other fold lines described below.
The projections 146, 161 are somewhat rectangular in shape. The projection 146, 161 are merely one type of configuration that can be provided for spacing the base member 120 from a support surface, such as an inner surface of a container, when the base member is in a fully folded configuration. An aperture is formed, at least in part, by the protrusion 146. The illustrated aperture 147 is interposed between the protrusion 146 and the base member 120. As such, the protrusion 146 can be moved relative to the base member 120. An aperture 148 is similarly formed between the protrusion 161 and the base member 120.
Optionally, other protrusions can be used to space other portions of the packaging member 100 from surfaces. The illustrated packaging member 100 has protrusions 180, 182. The protrusion 180 is disposed between the foldable portion 130, the base member 120, and the lateral wall portions 140. The protrusion 182 is disposed between the foldable portion 130, the base member 120, and the lateral wall portions 142. Protrusions 184, 186 are formed in a similar manner by the foldable portion 132, the base member 120, and the lateral wall portions 140, 142.
The foldable portion 130 can be folded downwardly about the fold line 190 towards a bottom surface base member 120. When the foldable portion 130 is folded, it can be approximately parallel to the base member 120. In some embodiments, the foldable portion 130 can lie against the base member 120. The foldable portion 132 can be folded in a similar manner about the fold line 192. Thus, the foldable portions 130, 132 can be folded along the fold lines 190, 192, respectively, and pressed against the bottom surface of the base member 120.
The foldable portions 130, 132 can include a mounting portion 200, 202, respectively, that are configured to interact with a resilient member such that the resilient member and the base member 120 cooperate to securely hold one or more articles. The mounting portion 200 includes a pair of slots 204, 206 that extend at least partially through the foldable portion 130. In some embodiments, including the illustrated embodiment, the slots 204, 206 are elongated slots define lateral edges of an insertable section 210. The mounting portion 202 has a pair of slots 213, 215 that define at least a portion of the insertable portion 220. The insertable sections 210, 220 each can be configured to hold at least a portion of a resilient member.
In some embodiments, each insertable section 210, 220 can be configured to fit into a corresponding pocket of a resilient member. The insertable sections 210, 220 can securely hold and tension the resilient member by folding foldable portions 130, 132 along the fold lines 190, 192, as described in greater detail below. The insertable sections 210, 220 preferably cooperate to tension the resilient member so as to resiliently support one or more articles against the base member 120.
Optionally, extreme ends of the fold line 160, identified generally by the reference numerals 232, 234, can be cuts extending completely through the material forming the packaging member 100. As such, tabs 236, 238 can mate with the outer surface of the protrusion 146 when the packaging member 100 is folded. Cuts 240, 242 are defined at the ends of the fold line 166 and define tabs 244, 246, respectively.
The resilient member in the illustrated embodiment is identified as a retention member 270. The retention member 270 preferably is formed of a resilient body 272. For purposes of convenience for the following description, the body 272 is identified as having a mid point M positioned in the vicinity of the middle of the resilient body 272. The resilient body 272 also includes pockets 274, 276 at opposite ends thereof. In the illustrated embodiment, the retention member 270 is formed of a single piece of resilient material, and is sized to cooperate with the foldable portions 130, 132 of the packaging member 100.
In the illustrated embodiment, the pockets 274, 276 are formed of folds 278, 280 formed in the resilient body 272 which have been attached (e.g., heat sealed, bonded, fused, welded, etc.) along lateral opposite edges thereof. In this embodiment, a heat sealing process forms the heat sealing lines 282, 284, 286, 288. The heat sealing lines 282, 284, 286, 288 can be continuous or formed of a plurality of heat sealed points.
One of ordinary skill in the art will appreciate that there are numerous methods for forming pockets in a resilient sheet material such as the resilient body 272. However, it has been found that heat sealing is particularly advantageous as it does not require expensive adhesives and the time consuming steps required for using such adhesives. However, such adhesives can be used if desired. Welding processes (e.g., induction welding), fusing techniques, and the like can also be used to form the lines 282, 284, 286, 288.
The retention member 270 has a length L1 that is sized depending on the other devices with which the retention member 270 is to cooperate. Thus, the length L1 can be sized such that when the retention member is in its final state, e.g., engaged with the foldable portions 130, 132, it generates the desired tension for the corresponding application. Thus, the length L1 will be smaller where a higher tension is desired and will be larger where a lower tension is desired. Additionally, the length L1 might be different for different sized articles that are to be packed. One of ordinary skill in the art can determine the length L1 for the corresponding application.
The retention member 270 can be formed of any resilient material. In some embodiments, the retention member 270 can be made of a polyethylene film. However, virtually any polymer, elastomer, or plastic film can be used to form the retention member 270. The density of the film can be varied to provide the desired retention characteristics such as overall strength, resiliency, and vibrational response. Preferably, the density of the retention member 270 is determined such that the retention member 270 is substantially resilient when used to package a desired article. The retention member 270 can be monolayer or multi-layer sheet depending on the application.
With reference to
The insertable sections 210, 220 are positioned within corresponding pockets 274, 276. The pockets 274, 276 of the retention member 270 can be placed over the insertable sections 210, 220. The length between the outer edges (i.e., the length of the packaging member 100) of the insertable sections 210, 220 can be slightly greater than the length L1 of the retention member 270. The sealing lines of the retention member 270 can be disposed along the elongated slots 291, 293 of the packaging member 100. The article 300 can be inserted between the member 270 and the base member 120 after the member 270 is mounted to the base member 120.
The assembly 281 can include at least one coupling structure configured to aid in keeping the packaging member 100 connected to the retention member 270. In some embodiments, the packaging member 100 can include one or more coupling structures (e.g., 297, 299) configured to inhibit movement between the retention member 270 and the packaging member 100.
Each of the coupling structures 297, 299 can include at least one mounting aperture for receiving at least a portion of the retention member 270. The mounting portions 200, 202 can also have at least one aperture for forming at least a portion of a coupling assembly. The illustrated mounting portions 200, 202 each have a corresponding aperture 300, 302 that forms at least a portion of a coupling assembly. The mounting apertures are configured to engage a coupler that inhibits relative movement of the retention member 270 with respect to the packaging member 100. The illustrated coupling structures 297, 299 have a single aperture 300, 302, respectively.
As shown in
In other words, a portion of the packaging member 100 that defines the aperture 302, in this case the mounting portion 202, is positioned between the first sheet 306 and the second sheet 308. A coupler 310 of the coupling assembly 299 connects the first sheet 306 and the second sheet 308, and is positioned within the aperture 302. This provides a further advantage in securing the retention member 270 to the packaging member 100. As such, the complete assembly 218 can be shipped to a customer, with the retention member 270 securely connected to the packaging member 100, thereby avoiding the need for the ultimate customer to assemble the packaging member 100 to the retention member 270.
In some embodiments, the coupler 310 can be in the form of a heat seal that can cooperate with the aperture 302 to limit movement of the retention member 270. The heat seal 310 can be formed by a heat sealing process, thermal bonding, fusion, adhesives, and the like. In some embodiments, the heat seals are formed from the material forming the sheets 306, 308.
The heat seal 310 can include one or more heat sealing lines, heat sealed points, or other type of coupling structure. The illustrated heat seal 310 is positioned within the aperture 302. A skilled artisan can select an appropriately sized heat seal 310 to pass through the aperture 302 while maintaining the desired bond between the first sheet 306 and the second sheet 308 during the assembly of the package.
Other configurations can be employed to inhibit movement of the retention member 270 with respect to the packaging member 100. Mechanical fasteners, snaps, closures, or other structures can be used to couple the retention member 270 to the packaging member 100. These can be used alone or in combination with heat seals and/or apertures. For example, the coupling assemblies 297, 299 can be in the form of fasteners that pass through the packaging member 100.
Heat sealing, however, provides yet a further improvement because heat sealing is easily incorporated into manufacturing lines for corrugated cardboard. For example, as raw corrugated cardboard pieces are moved along an assembly line, in which dies are used to cut the raw cardboard into the desired shapes, such a packaging member 100, a retention member, such as a retention member 270, can be placed on the packaging member 100 and heat sealed to it with heat sealing devices. A number of thusly finished assemblies 218 can then be packaged in a box and shipped to the customer with little or no human interaction.
In some embodiments, with reference again to
The apertures 300, 302 can have any suitable shape for receiving a heat seal. The illustrated apertures have are somewhat rectangular. In alternative embodiments, the apertures have are circular, elliptical, polygonal (including rounded polygonal) or other shape as desired.
The retention member 270 remains retained to the packaging member 100 even when the packaging member 100 is manipulated. As such, the retention member 270 can be secured to the packaging member 100 before or after the article is positioned between the retention member 270 and the packaging member 100. Additionally, the retention member 270 remains coupled to the packaging member 100 during, e.g., transportation of the assembled suspension package assembly 281.
The package assembly 281 can be folded from the illustrated generally flat configuration of
The foldable portion 130 can be rotated in the directed by the arrows 322 from the unfolded position 326 to the folded position 328. The foldable portion 132 can be rotated in the directed by the arrows 332 from the unfolded position 336 to the folded position 338. The folded positions 328, 338 can be the maximum limit of rotation.
With reference to
The length L1 of the retention member 270 can be decreased or increased to increase or decrease the tensioning of the retention member 270. As shown in
With reference to
The flaps 148, 162 can be folded inwardly and downwardly along the fold lines 362, 368 (
The base member 120 extends laterally between the side walls 373, 375. The base member 120 is preferably positioned above the edges 380, 382. The protrusions 146, 161 each have a length that is sized depending on the article 300. If the article 300 causes flexing or bending of the base member 120, the length of each protrusions 146, 161 can be selected to minimize or prevent contact between the bottom surface 340 of the base member 120 and another surface of, e.g., packaging.
For example, the base member 120 can be separated from the bottom 391 of the container 400 as shown in
The base member 120 and the foldable portions 114, 116, which lie against the bottom surface of the base member 120, can cooperate to form a shock absorbing structure beneath the panel 112. That is, the foldable portions 114, 116 reinforce the base member 120.
With reference to
The article 300 can be suspended from the inner surfaces of the container 400. If the container 400 is rapidly accelerated (e.g., the container 400 and package assembly 281 therein are dropped on the ground), the packaging assembly 281 can protect the article 300. That is, the article 300 can be held securely by the packaging assembly 281 away from the inner surfaces of the container 400, even if there shocks imparted to the container 400 during loading, transit, and/or unloading. The packaging assembly 281 may also advantageously absorb energy (e.g., absorb shocks and/or impacts) to minimize energy transferred to the article 300.
Similarly, the side walls 373, 375 are configured such that the article 300 is separated from the top surface 393 of the container 400. Preferably, the article 300 is suspended securely somewhat midway between the opposing inner surfaces 391, 393 of the container 400. The tensioned retention member 270 inhibits movement of the article 300 relative to the base member 120. The tensioned retention member 270 may advantageously absorb vibrations to further protect the article.
The packaging assembly 281 can have various configurations. The illustrated packaging assembly 281 has a somewhat H-shape as viewed from the side. The end 397 of the base member 120 is connected to the lateral side wall 373. The end 399 of the base member 120 is connected to the lateral side wall 375. The ends 397, 399 are preferably positioned somewhat midway along the lateral side walls 373, 375. That is, the ends 397, 399 of the base member 120 can be spaced from the top and bottom of the lateral walls 373, 375. As such, the lateral side walls 373, 375 can extend vertically on either side of the base member 120.
The container 400 can have any number of packaging assemblies. The illustrated container 400 has a single packaging assembly 281. However, the container 400 can be configured to hold a plurality of packaging assemblies. For example, the container 400 can be sized to accommodate packaging assemblies that are in a vertically stacked arrangement. The packaging assemblies can be in any suitable array for placement in a container.
The packaging assembly 281 can be shipped in the flat and unfolded state as illustrated in
The packaging assemblies 281 can also be stacked in a display structure. Space is a premium commodity in the retail, packaging, and shipping industries. Unused floor or wall space costs the money in lost opportunity. Accordingly, it is important to use as much store space as possible to sell merchandise (either assembled or unassembled packaging assemblies). The densely stacked packaging assemblies 281 can maximum self space and may lead to increased sales. The packaging assemblies 281 can be held in free standing display racks, display cabinets, and various wall and shelving configurations. Various manufacturing processes can be employed to form the packaging assemblies.
With continued reference to
In the illustrated embodiment of
The heating elements can be at an elevated temperature suitable for forming the sealing lines. The surface of the elements 482, 480 can be heated to a sufficient temperature to cause the portions of the sheet 462 on either side of the packaging member 100 to be sealed together. As such, the resilient member 270 can be simultaneously formed and coupled to the packaging member 100. In alternative embodiments, a separate process can be used to cut and trim the resilient member to the appropriate size.
Alternatively, the resilient member can be pre-formed and then subsequently assembled with the packaging member 100 to form the packaging assembly 281. In other words, the resilient member 270 with the pockets 474, 476 can be assembled with the packaging member 100.
With reference to
The sheets 500, 502 and packaging member 100 can be positioned within a packing system 501 designed to join at least a portion of the sheet 500 to the sheet 502. As shown in
The packaging system 501 includes a first movable portion 510 and a second movable portion 512 each movable between an open position and a closed position. In the illustrated embodiment, the first movable portion 510 and the second movable portion 512 are spaced from the sheets 500, 502. To couple the sheets 500, 502 together, the first movable portion 510 and the second movable portion 512 can be moved to a closed position as illustrated in
With continued reference to
In some embodiments, when the movable portions 510, 512 occupy a closed position as illustrated in
Optionally, the first movable portion 510 and the second movable portion 512 can simultaneously form the heat seals 551 and the sealing edges 542, 544, 552, 554. Alternatively, the heat seals 551 can be formed subsequently to the forming of the sealing edges. The package assembly 530, for example, can be removed from the portions 510, 512 and the heat seals 551 can be formed in a subsequent process. In some embodiments, the sheets can be coupled to the packaging member 100 so that the sheet remains attached to the packaging member 100 during the folding process. For example, the sheet 602 can be adhered to the lower surface of the packaging member.
Each coupling assembly 602 can include an aperture 604 and a heat seal 605. At least one of the coupling assemblies 602 can facilitate positioning of the articles 610, even when the packaging assembly 600 is in an unfolded state. The illustrated packaging assembly 600 includes a coupling assembly 602 interposed between the articles 610. In such an embodiment, the coupling assembly 602 tensions the retention member 622 so that the articles 610 are held snuggly against a packaging member 624. The articles 610 can therefore be held securely in place during the folding process.
Although the present inventions have been described in terms of certain embodiments, other embodiments apparent to those of ordinary skill in the art also are within the scope of these inventions. Thus, various changes and modifications may be made without departing from the spirit and scope of the inventions. For instance, various components may be repositioned as desired. Moreover, not all of the features, aspects and advantages are necessarily required to practice the present inventions.
Number | Name | Date | Kind |
---|---|---|---|
1821692 | Copeland | Sep 1931 | A |
2161128 | Boyle | Jun 1939 | A |
2746665 | Wiggins | May 1956 | A |
2948455 | Frankenstein | Aug 1960 | A |
2956672 | Kirkpatrick | Oct 1960 | A |
3047137 | Kindseth | Jul 1962 | A |
3089631 | Tyrseck et al. | May 1963 | A |
3326410 | Asenbauer | Jun 1967 | A |
3345643 | Bradley | Oct 1967 | A |
3434650 | Goings | Mar 1969 | A |
3853220 | Luray | Dec 1974 | A |
3899119 | Roccaforte | Aug 1975 | A |
3905474 | Haibara | Sep 1975 | A |
3917108 | Thurman | Nov 1975 | A |
4034908 | Forbes et al. | Jul 1977 | A |
4077518 | Kisslinger et al. | Mar 1978 | A |
4155453 | Ono | May 1979 | A |
4335817 | Bahr | Jun 1982 | A |
4606460 | Luray | Aug 1986 | A |
4852743 | Ridgeway | Aug 1989 | A |
4923065 | Ridgeway | May 1990 | A |
5024536 | Hill | Jun 1991 | A |
5046659 | Warburton | Sep 1991 | A |
5056665 | Boecker et al. | Oct 1991 | A |
5071009 | Ridgeway | Dec 1991 | A |
5076436 | Bortolani et al. | Dec 1991 | A |
5080497 | Peppiatt | Jan 1992 | A |
5183159 | Hojnacki et al. | Feb 1993 | A |
5211290 | Janus et al. | May 1993 | A |
5218510 | Bradford | Jun 1993 | A |
5223121 | Dickie et al. | Jun 1993 | A |
5226542 | Boecker et al. | Jul 1993 | A |
5226734 | Scott et al. | Jul 1993 | A |
5251760 | Smith et al. | Oct 1993 | A |
5323896 | Jones | Jun 1994 | A |
5372257 | Beauchamp et al. | Dec 1994 | A |
5388701 | Ridgeway | Feb 1995 | A |
5394985 | Van Hest | Mar 1995 | A |
5405000 | Hagedon et al. | Apr 1995 | A |
5492223 | Boardman et al. | Feb 1996 | A |
5579917 | Lofgren et al. | Dec 1996 | A |
5641068 | Warner | Jun 1997 | A |
5669506 | Lofgren et al. | Sep 1997 | A |
5676245 | Jones | Oct 1997 | A |
5678695 | Ridgeway | Oct 1997 | A |
5694744 | Jones | Dec 1997 | A |
5722541 | Lofgren et al. | Mar 1998 | A |
5738218 | Gonzales | Apr 1998 | A |
5769235 | Keach et al. | Jun 1998 | A |
5788081 | Bates et al. | Aug 1998 | A |
5797493 | Watson | Aug 1998 | A |
5803267 | Tu et al. | Sep 1998 | A |
5823348 | Phillips et al. | Oct 1998 | A |
5823352 | Mena et al. | Oct 1998 | A |
5893462 | Ridgeway | Apr 1999 | A |
5894932 | Harding et al. | Apr 1999 | A |
5954203 | Marconi | Sep 1999 | A |
5967327 | Jones | Oct 1999 | A |
RE36412 | Jones | Nov 1999 | E |
5975307 | Harding et al. | Nov 1999 | A |
5988387 | Staal et al. | Nov 1999 | A |
6006917 | Loeffler | Dec 1999 | A |
6010003 | Wilkinson | Jan 2000 | A |
6047831 | Jones | Apr 2000 | A |
6073761 | Jones | Jun 2000 | A |
6079563 | Katchmazenski | Jun 2000 | A |
6119863 | Lofgren et al. | Sep 2000 | A |
6148591 | Ridgeway et al. | Nov 2000 | A |
6158589 | Smith et al. | Dec 2000 | A |
6206194 | Beneroff et al. | Mar 2001 | B1 |
6223901 | Lofgren et al. | May 2001 | B1 |
6289655 | Ridgeway et al. | Sep 2001 | B1 |
6311843 | Smith et al. | Nov 2001 | B1 |
6398412 | Wedi et al. | Jun 2002 | B2 |
6467624 | Lofgren et al. | Oct 2002 | B1 |
6675973 | McDonald et al. | Jan 2004 | B1 |
6899229 | Dennison et al. | May 2005 | B2 |
6920981 | Lofgren et al. | Jul 2005 | B2 |
6942101 | Lofgren et al. | Sep 2005 | B2 |
7000774 | Bryant | Feb 2006 | B2 |
7086534 | Roesel et al. | Aug 2006 | B2 |
7150356 | Lofgren et al. | Dec 2006 | B2 |
7290662 | Lofgren et al. | Nov 2007 | B2 |
7293695 | Stier | Nov 2007 | B2 |
7296681 | McDonald et al. | Nov 2007 | B2 |
7299926 | Russell et al. | Nov 2007 | B2 |
7731032 | McDonald et al. | Jun 2010 | B2 |
7743924 | McDonald et al. | Jun 2010 | B2 |
7753209 | McDonald et al. | Jul 2010 | B2 |
7775367 | McDonald et al. | Aug 2010 | B2 |
7882956 | McDonald et al. | Feb 2011 | B2 |
7931151 | McDonald et al. | Apr 2011 | B2 |
20010047950 | Beneroff et al. | Dec 2001 | A1 |
20030034273 | Auclair | Feb 2003 | A1 |
20030209463 | Halpin | Nov 2003 | A1 |
20030234207 | Koike | Dec 2003 | A1 |
20040108239 | McDonald et al. | Jun 2004 | A1 |
20040178113 | Lofgren et al. | Sep 2004 | A1 |
20050011807 | Dennison et al. | Jan 2005 | A1 |
20050121354 | Gillis et al. | Jun 2005 | A1 |
20060000743 | Lofgren et al. | Jan 2006 | A1 |
20060042995 | McGrath et al. | Mar 2006 | A1 |
20060102515 | McDonald et al. | May 2006 | A1 |
20060138018 | McDonald et al. | Jun 2006 | A1 |
20070080095 | McDonald et al. | Apr 2007 | A1 |
20070251854 | McDonald et al. | Nov 2007 | A1 |
20080067103 | McDonald et al. | Mar 2008 | A1 |
20080099368 | McDonald et al. | May 2008 | A1 |
20080110788 | Keiger | May 2008 | A1 |
20080110794 | Anderson et al. | May 2008 | A1 |
20080223750 | McDonald et al. | Sep 2008 | A1 |
20090272667 | McDonald et al. | Nov 2009 | A1 |
20100140333 | McDonald et al. | Jun 2010 | A1 |
20100276330 | McDonald et al. | Nov 2010 | A1 |
Number | Date | Country |
---|---|---|
299 21 203 | Feb 2000 | DE |
101 05 487 | Aug 2002 | DE |
1 561 693 | Aug 2005 | EP |
827346 | May 1981 | RU |
0053499 | Sep 2000 | WO |
Number | Date | Country | |
---|---|---|---|
20080128316 A1 | Jun 2008 | US |