1. Field of the Invention
The present invention relates to suspension devices and the like designed to mitigate the shock imposed on people. More particularly this invention relates to seat suspension assemblies for use in watercraft.
It is well known that people riding in boats or other watercrafts experience jarring and an unsettling ride as the boat moves through the water. The enjoyment of the ride is diminished based on the severity of the shock. In addition, in extreme cases, injuries or sustained discomfort can occur. Various suspension seats and suspension pedestals have been proposed to mitigate the shock. Many of these designs offer a higher degree of comfort by incorporating foam padding in the seat structure. Some incorporate spring devices to ameliorate the shock transmitted from the boat. Many require the purchase of an entire seat to obtain the shock absorbing benefits, thus they are expensive and require more effort to incorporate into an existing boat structure.
One popular style of seat structure involves a seat mounted to a seat pedestal typically made from aluminum tubes. One end of the tube is mounted to the deck of the boat through a mounting base and the other end has the seat mounted to it. The seat typically has a base with a flange that is mounted about the tube. In most applications, the seat swivels to allow the seat to turn 360 degrees with manual positions. Other pedestals offer other features such as height adjustability. Very few of these pedestals incorporate any kind of suspension to reduce the shock on the passenger. What is desired is a suspension assembly that can be easily incorporated into new pedestals or have the capability of being retrofitted to an existing pedestal structure. Such an assembly should be lightweight, and have an uncomplicated design that can be maintained rarely by unskilled persons. In addition, the structure should allow the seat to rotate with respect to the base of the pedestal and employ features that offer lateral side-to-side stiffness that won't allow the seat to wobble while providing a smooth vertical suspension motion during use.
2. Description of the Prior Art
Various types of boat seat pedestals have been described. In U.S. Pat. No. 5,746,152, Huse describes a typical pedestal for a boat seat. Other variations including adjustability are including in U.S. Pat. Nos. 7,017,872 B2 and 6,138,973 (Woodward). Several inventions for suspension seats exist. In U.S. Pat. No. 7,008,015 B2 Bischoff describes a boat seat assembly between the seat frame relative to the base for purposes of regulating the motion of the seat frame. U.S. Pat. No. 2,893,470 to Peller discloses an adjustable seat with shock absorbing capabilities using a spring and hydraulic shock absorber coupled between two telescoping cylinders. This system also includes an anti-rotational mechanism consisting of a bar mounted to one cylinder that slides within a corresponding groove in the other cylinder. Use of shock absorbing apparatus is also described in U.S. Pat. No. 1,400,974 Parker which discloses two pedestals underneath the seating surface.
In addition, various suspension systems have been proposed and developed especially for bicycles. Many of these systems utilize a pair of telescoping assemblies between which the front wheel is mounted. Each assembly comprises an outer tube and an inner tube which is free to move in and out of the outer tube and is cushioned by a damper of one sort or another. The outer tubes are connected at the lower ends to the bicycle axle of the front wheel and the upper ends of the inner tube are connected together in a fashion similar to the usual upper end of a bicycle fork.
As is known to those skilled in the art, these types of suspension systems use anti-friction bushings to allow free movement of the inner tube within the outer tube. These types of suspension systems are easy to fabricate and produce at low cost making them popular. The bushings by themselves, however, have undesirable static friction called “stiction.” Because of this, the suspension systems using only bushings tend to stick and release. Such systems would be potentially worse for a boat seat as the full weight of a person must be supported compared to a bicycle where typically less than 50% of the weight of a person is suspended on the front suspension assembly. Any off axis force on a boat seat would cause a higher degree of stiction, rendering a bushing only approach limited in performance. In addition, in order to provide the ability to prevent rotation of the seat while using the suspension, the bushing system would need to be non-round so as to be able to impede any rotational movement yet allow the seat system to move vertically as desired.
A prior art example of a system which overcomes the stiction problem is shown in Farris et al. U.S. Pat. No. 5,320,374. In this example an improved form of suspension system is described using an outer tube and an inner tube connected to the fork of the bicycle which telescopes within the outer tube. The inner surface of the outer tube and the outer surface of the inner tube each have more than three arranged opposing longitudinal flat sections (typically four) on each tube. A corresponding number of hardened steel inner race shims are positioned longitudinally on the flats of the inner tube. A corresponding number of hardened steel outer race shims are positioned longitudinally on the flats of the outer tube. A corresponding number of needle bearings are disposed between the tubes in between the respective inner and outer race shims. This arrangement allows the two tubes to freely telescope in and out with respect to one another without any significant static friction and also serves to transmit the torsional force from the outer tube to the inner tube.
The present invention provides a mechanism that can be either retrofitted to or provided in an existing seat pedestal for means of mitigating the shocks on a person sitting on a seat attached to the pedestal.
It is an advantage of the present invention that the mechanism controls the motion of the seat.
It is another advantage of the present invention that the mechanism not allows rotation of the seat relative to the pedestal base, provide suspension of the seat, and yet minimize cost, weight and static friction.
It is another advantage that the seat damping mechanism incorporate an air spring allowing the individual to adjust stiffness of the damping mechanism based on individual preference.
It is another advantage that the mechanism incorporate a mounting means that provides for coaxial orientation of the suspension mechanism and the seat pedestal.
Outer tube 106 and inner tube 103 are coaxial and designed to telescope with respect to each other. Housed within outer tube 106 and inner tube 103 is a damping mechanism 111. As the seat is compressed or extended relative to the boat deck, the seat 100, inner tube 103 and tube 106 telescope and extend or compress relative to each other. The damper mechanism 111 either extends or compresses in unison with the compression of outer tube 106 and inner tube 103.
The needle bearing assemblies 811A-D allow the inner tube 103 to travel freely in an axial direction with respect to the outer tube 106. Additionally, the needle bearing assemblies 811A-D in conjunction with the inner races 814A-D, outer races 809A-D which are imbedded in their respective flats, and outer tube 106 create rotational rigidity in that forces acting to rotate the seat are imparted on the needle bearing assemblies 811A-D which prevent such rotation.
Outer bushing member 107B expands or contracts when inner bushing member 107A is moved axially with respect to 107B.
Number | Date | Country | |
---|---|---|---|
61132983 | Jun 2008 | US |