The present disclosure relates to the technical field of rail vehicles and particularly relates to a suspension system, a bogie assembly with the suspension system, and a rail vehicle with the bogie assembly.
In related technologies, a rail vehicle includes a suspension system, and the suspension system can be used for eliminating the inclining tendency of the vehicle to ensure the traveling stability of the rail vehicle. However, the suspension system cannot realize multi-directional balance. For example, the suspension system cannot completely balance the rail vehicle in up-and-down, left-and-right and front-and-rear directions, so that a new suspension system for the rail vehicle is urgently needed.
The present disclosure aims at resolving at least one of technical problems in related technologies at least to some extent. Therefore, the embodiments of the present disclosure provide a suspension system, which can ensure the stability of the vehicle body in up-and-down, left-and-right and front-and-rear directions.
The embodiments of the present disclosure also provide a bogie assembly.
The embodiments of the present disclosure further provide a vehicle.
The suspension system according to the embodiments of the present disclosure includes a vehicle body connecting seat, an elastic component, a transverse damper and a vertical damper. The vehicle body connecting seat is positioned above the elastic component and is connected to the elastic component, and the transverse damper and the vertical damper are respectively hinged to the vehicle body connecting seat and are perpendicular to each other.
The elastic component, the transverse damper and the vertical damper in the suspension system according to the embodiments of the present disclosure can ensure the stability of the rail vehicle in the traveling process along the up-and-down direction, the left-and-right direction and the front-and-rear direction together, and the suspension system can achieve damping and buffering effects, so that vibration or bumpiness of the rail vehicle in the traveling process can be reduced, and the traveling noise of the rail vehicle can be reduced.
In addition, the suspension system according to the embodiments of the present disclosure can also have the following additional technical features:
In some examples of the present disclosure, the transverse damper and the vertical damper are respectively positioned at two sides of the elastic component.
In some examples of the present disclosure, the suspension system also includes an elastic component limiting bracket, and the elastic component limiting bracket is connected to the vehicle body connecting seat and is positioned at one side of the elastic component.
In some examples of the present disclosure, the elastic component limiting bracket is hinged to the vehicle body connecting seat.
In some examples of the present disclosure, the elastic component limiting bracket is substantially triangular, the vertex of the elastic component limiting bracket is hinged to the vehicle body connecting seat, and the bottom edge of the elastic component limiting bracket is provided with a plurality of mounting holes for fasteners to penetrate through.
In some examples of the present disclosure, the elastic component limiting bracket is configured to be of a platy structure and is provided with a fastener avoiding hole.
In some examples of the present disclosure, the elastic component limiting bracket includes a limiting component body and a limiting component bottom plate, the upper end of the limiting component body is hinged to the vehicle body connecting seat, and the limiting component bottom plate is connected to the limiting component body and is provided with the mounting holes.
In some examples of the present disclosure, a support column is connected between the limiting component body and the limiting component bottom plate.
In some examples of the present disclosure, the vehicle body connecting seat includes an upper plate, a lower plate and a web plate, the web plate is vertically connected between the upper plate and the lower plate, the upper plate is suitable for being fixedly connected to the vehicle body, the lower plate is fixedly connected to the upper end of the elastic component, and the transverse damper and the vertical damper are respectively connected to the web plate.
In some examples of the present disclosure, the surface of the upper plate facing the vehicle body is provided with a buffer cushion, the shape of the buffer cushion is the same as the shape of the upper plate.
In some examples of the present disclosure, two web plates are arranged and are respectively a long web plate and a short web plate with different lengths, one end of the long web plate is hinged with the transverse damper, the other end of the long web plate and one end of the short web plate are both hinged to the vertical damper, and the one end of the short web plate is adjacent to the other end of the long web plate.
The bogie assembly according to the embodiments of the present disclosure includes a bogie frame, where the bogie frame includes a bogie body and a suspension support seat connected to the bogie body; and the suspension system according to the above embodiments of the present disclosure, where the lower end of the elastic component of the suspension system and the lower end of the vertical damper are respectively connected to the suspension support seat, and the transverse damper of the suspension system is connected to the bogie body.
The bogie assembly according to the embodiments of the present disclosure and the suspension system according to the embodiments of the present disclosure have the same beneficial effects, and will not be described in detail herein.
In addition, the bogie assembly according to the embodiments of the present disclosure can also have the following additional technical features:
In some examples of the present disclosure, two suspension support seats are arranged and are respectively connected to two opposite sides of the bogie body, and two suspension systems are arranged and are in one-to-one correspondence to two suspension support seats.
In some examples of the present disclosure, the two suspension systems are symmetrically arranged about the center of the bogie frame.
In some examples of the present disclosure, the bogie body is provided with a transverse stop mounting seat, the vehicle body connecting seat is provided with a suspension stop component corresponding to the transverse stop mounting seat, and the suspension stop component is suitable for being matched with the transverse stop mounting seat.
In some examples of the present disclosure, the surface of the short web plate back on to the long web plate is provided with a suspension stop component.
In some examples of the present disclosure, the bogie body is provided with an avoiding groove for avoiding the transverse damper.
In some examples of the present disclosure, the elastic component limiting bracket is fixedly connected to the suspension support seat.
In some examples of the present disclosure, a damping cushion is arranged at the lower end of the elastic component limiting bracket, and the damping cushion is fixedly connected to the suspension support seat.
The rail vehicle according to the embodiments of the present disclosure includes a vehicle body; and a bogie assembly according to the above embodiments of the present disclosure, where the vehicle body is mounted on the bogie assembly.
The rail vehicle according to the embodiments of the present disclosure and the bogie assembly according to the embodiments of the present disclosure have the same beneficial effects, and will not be described in detail herein.
Drawing reference characters: bogie assembly 1000; bogie frame 100; traveling wheel mounting groove 101; electric assembly mounting groove 102; axial limiting component 103; radial limiting component 104; radial limiting component reinforcing rib 105; rail recess 106; reinforcing rib 107 of electric assembly mounting groove 102; vertical reinforcing rib 108; inclined reinforcing rib 109; bogie body 110; transverse stop mounting seat 111; first connecting beam 112; second connecting beam 113; third connecting beam 114; fourth connecting beam 115; avoiding groove 116 of bogie body 110; connecting beam reinforcing rib 117; horizontal wheel mounting seat reinforcing rib 118; top wall 112a of first connecting beam 112; bottom wall 112b of first connecting beam 112; outer side wall 112c of first connecting beam 112; inner side wall 112d of first connecting beam 112; suspension support seat 120; connecting reinforcing rib 121; guide wheel mounting seat 130; second pre-positioning component 131 of guide wheel mounting seat 130; steady wheel mounting seat 140; traveling wheel 200; electric assembly 300; suspension system 400; vehicle body connecting seat 410; suspension stop component 411; upper plate 412; lower plate 413; buffer cushion 414; long web plate 415; short web plate 416; elastic component 420; transverse damper 430; vertical damper 440; elastic component limiting bracket 450; damping cushion 451; limiting component body 452; limiting component bottom plate 453; guide wheel 500; guide wheel adjusting shim 510; guide wheel mounting block 520; first pre-positioning component 521 of guide wheel mounting block 520; steady wheel 600; steady wheel mounting block 610; vehicle body 2000; rail beam 3000.
The embodiments of the present disclosure are described in detail below. Examples of the embodiments are illustrated in the accompanying drawings. The embodiments described below with reference to the accompanying drawings are exemplary, and are used for explaining rather than limiting the present disclosure.
The bogie assembly 1000 according to the embodiments of the present disclosure is described in detail below with reference to the accompanying drawings. The bogie assembly 1000 can be applied to a rail vehicle, the rail vehicle also includes a vehicle body 2000, the vehicle body 2000 is mounted on the bogie assembly 1000, the rail vehicle can straddle on a single-track rail beam 3000 through the bogie assembly 1000, and the rail vehicle and the rail beam 3000 can form part of a rail traffic system.
As shown in
The bogie frame 100 may include a bogie body 110 and a suspension support seat 120 connected to the bogie body 110, the suspension systems 400 may be mounted between the suspension support seat 120 and the vehicle body 2000, and the bogie body 110 of the bogie frame 100 may be provided with a traveling wheel mounting groove 101 and an electric assembly mounting groove 102. The traveling wheel 200 is rotationally mounted in the traveling wheel mounting groove 101, That is, the traveling wheel 200 can rotate relative to the bogie frame 100 and the rail beam 3000. The electric assembly 300 is mounted in the electric assembly mounting groove 102, and the electric assembly 300 drives the traveling wheel 200 to rotate to realize the travel of the rail vehicle. The electric assembly 300 includes a motor assembly and a speed reducer, and the power output from the motor assembly is transmitted to the traveling wheel 200 through the speed reducer.
The guide wheel 500 is mounted on the bogie body 110, and the steady wheel 600 is mounted on the suspension support seat 120. A plurality of guide wheels 500 are provided and respectively arranged at two sides of the rail beam 3000, a plurality of steady wheels 600 are provided and respectively arranged at two sides of the rail beam 3000, and the peripheral surfaces of the guide wheel 500 and the steady wheel 600 abut against the rail beam 3000. In other words, when the rail vehicle is in a traveling state, the guide wheel 500 and the steady wheel 600 roll relative to the rail beam 3000, the guide wheel 500 can play a guiding role, and the steady wheel 600 can enhance the traveling stability of the rail vehicle on the rail beam 3000, so that the guide wheels 500 and the steady wheels 600 enable the rail vehicle to run stably and reliably.
The hauling mechanism is connected between the bogie frame 100 and the vehicle body 2000, and the bogie frame 100 can haul the vehicle body 2000 to move through the hauling mechanism, so that the rail vehicle can travel on the rail beam 3000.
The bogie frame 100 is firstly described below.
The bogie frame 100 includes a bogie body 110 and a suspension support seat 120. In some embodiments of the present disclosure, two suspension support seats 120 are arranged and connected to two opposite sides of the bogie body 110, and define a rail recess 106 together with the bogie body.
As shown in
As shown in
The electric assembly mounting groove 102 is formed in the fourth connecting beam 115. For example, the electric assembly mounting groove 102 can be formed in the middle part of the fourth connecting beam 115. The upper end of the electric assembly mounting groove 102 is opened, so that the electric assembly 300 can be conveniently mounted in the electric assembly mounting groove 102. Furthermore, the electric assembly mounting groove 102 is communicated with the traveling wheel mounting groove 101, so as to facilitate the connection between the electric assembly 300 and the traveling wheel 200. In some embodiments of the present disclosure, the shape of the electric assembly mounting groove 102 is adaptive to the shape of the lower half of the electric assembly 300.
As shown in
As shown in
As shown in
In order to be fixedly connected to the electric assembly 300, the radial limiting component 104 extends upwards beyond the upper surface of the bogie frame 100. Furthermore, in order to ensure the reliability of the portion of the radial limiting component 104 beyond the upper surface of the bogie frame 100, in the embodiments as shown in
The thickness of the fourth connecting beam 115 may be greater than the thickness of the second connecting beam 113. Because the electric assembly mounting groove 102 is formed in the fourth connecting beam 115, the electric assembly 300 is mounted on the fourth connecting beam 115. Under such condition, the structural strength of the fourth connecting beam 115 can be enhanced by reasonably increasing the thickness of the fourth connecting beam 115, so that the fourth connecting beam 115 can reliably fix the electric assembly 300, and further, the structural reliability of the bogie assembly 1000 can be enhanced.
In some embodiments of the present disclosure, two suspension support seats 120 are arranged and are respectively connected below the second connecting beam 113 and the fourth connecting beam 115, the distance between the upper surface of the second connecting beam 113 and the upper surface of the corresponding suspension support seat 120 is 480 mm to 660 mm, and the distance between the upper surface of the fourth connecting beam 115 and the upper surface of the corresponding suspension support seat 120 is 620 mm to 800 mm. In some embodiments of the present disclosure, the distance between the upper surface of the second connecting beam 113 and the upper surface of the corresponding suspension support seat 120 is 623 mm, and the distance between the upper surface of the fourth connecting beam 115 and the upper surface of the corresponding suspension support seat 120 is 759 mm. Therefore, the floor surface of the vehicle body 2000 is lower than the rotation axis of the traveling wheel 200 so as to enhance the traveling stability of the rail vehicle.
In the embodiments of the present disclosure, each connecting beam may include a top wall, a bottom wall, an outer side wall and an inner side wall. As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
The suspension system 400 is described in detail below.
As shown in
Each of the hinging mode between the transverse damper 430 and the bogie body 110, the hinging mode between the transverse damper 430 and the vehicle body connecting seat 410, the hinging mode between the vertical damper 440 and the vehicle body connecting seat 410 and the hinging mode between the vertical damper 440 and the suspension support seat 120 is a spherical hinge, so that the damping effect of the suspension system 400 can be enhanced, and the phenomenon of stress concentration can be prevented so as to enhance the reliability of the suspension system 400.
In some embodiments of the present disclosure, two suspension systems 400 may be provided and symmetrically arranged about the center of the bogie frame 100. That is, in the horizontal plane, one suspension system 400 rotates for 180° around the center of the bogie frame 100 to obtain another suspension system 400 so as to prevent the vehicle body 2000 from twisting in the horizontal plane, so that the stability of the rail vehicle in the traveling process can be enhanced.
For reasonable construction of the suspension system 400 and better work of the transverse damper 430 and the vertical damper 440, the transverse damper 430 and the vertical damper 440 may be respectively positioned at two sides of the elastic component 420. According to the embodiment as shown in
Further, the elastic component limiting bracket 450 is hinged to the vehicle body connecting seat 410, and the elastic component limiting bracket 450 is fastened and connected to the suspension support seat 120 through a fastener. As shown in
As shown in
The web plate may be used for being connected to other components in the suspension system 400, and there may be a plurality of web plates arranged in parallel. On the one hand, the plurality of web plates can enhance the connecting strength between the upper plate 412 and the lower plate 413, and on the other hand, the plurality of web plates are convenient to be fixedly connected to other components in the suspension system 400. As shown in
In addition, as shown in
As shown in
In some embodiments of the present disclosure, the upper plate 412, the web plate and the lower plate 413 may be in welded connection. Thus, the structural integrity of the vehicle body connecting seat 410 is better, the mounting mode of the vehicle body connecting seat 410 is simple, and the mounting efficiency of the vehicle body connecting seat 410 is high.
As shown in
As shown in
The elastic component limiting bracket 450 may be substantially triangular, the vertex of the elastic component limiting bracket 450 is hinged to the vehicle body connecting seat 410, and the bottom edge of the elastic component limiting bracket 450 is provided with a plurality of mounting holes for fasteners to penetrate through. The connecting area between the bottom edge of the elastic component limiting bracket 450 and the suspension support seat 120 is larger, so that the stress of all parts is uniform, the connecting reliability between the elastic component limiting bracket 450 and the suspension support seat 120 can be enhanced, and further, the structural reliability of the bogie assembly 1000 can be enhanced.
The elastic component limiting bracket 450 can be configured to be of a platy structure, and the elastic component limiting bracket 450 may be provided with a fastener avoiding hole. Thus, the fastener can conveniently extend into the corresponding mounting hole, and the fastener avoiding hole can also reduce the weight of the elastic component limiting bracket 450 at least to some extent so as to enable the rail vehicle to meet the requirement for light weight.
As shown in
In addition, as shown in
The elastic component limiting bracket 450 can be arranged at one side of the suspension system 400 away from the bogie body 110. Thus, the position of the elastic component limiting bracket 450 is reasonable, the structural integrity of the suspension system 400 is better, and the structural stability of the bogie assembly 1000 can be enhanced.
The horizontal wheel is described in detail below. The horizontal wheel includes a guide wheel 500 and a steady wheel 600.
The bogie frame 100 is provided with a horizontal wheel mounting seat, the horizontal wheel mounting seat may include a guide wheel mounting seat 130 and a steady wheel mounting seat 140, the guide wheel mounting seat 130 corresponds to the guide wheel 500, and the steady wheel mounting seat 140 corresponds to the steady wheel 600. The guide wheel mounting seats 130 may be arranged on the bogie body 110. For example, the guide wheel mounting seat 130 may be arranged on the first connecting beam 112 and the third connecting beam 114. In an embodiment, the first connecting beam 112 may be provided with two guide wheel mounting seats 130 spaced apart, and the third connecting beam 114 may be provided with two guide wheel mounting seats 130 spaced apart. The steady wheel mounting seat 140 may be arranged at the bottom of the suspension support seat 120, and each suspension support seat 120 corresponds to one steady wheel mounting seat 140.
The horizontal wheel is detachably mounted on the horizontal wheel mounting seats. For example, the horizontal wheel may be fixedly connected to the corresponding horizontal wheel mounting seat through a fastener, where there may be a plurality of fasteners so as to ensure the fixed reliability between the horizontal wheel and the horizontal wheel mounting seat.
As shown in
A mounting block is arranged on the horizontal wheel and is fixed onto the horizontal wheel mounting seat through a fasteners so as to fix the horizontal wheel onto the horizontal wheel mounting seat, and the fastener penetrates through the adjusting shim. In some embodiments of the present disclosure, the guide wheel 500 may be provided with a guide wheel mounting block 520, and the steady wheels 600 may be provided with a steady wheel mounting block 610. As shown in
In some embodiments of the present disclosure, the mounting block may be provided with a first pre-positioning component, the horizontal wheel mounting seat may be provided with a second pre-positioning component, and the first pre-positioning component is suitable for being matched with the second pre-positioning component. As shown in
Similarly, in the mounting process of the steady wheel 600, the first pre-positioning component of the steady wheel mounting block 610 may be matched with the second pre-positioning component of the steady wheel mounting seat 140 in advance to realize pre-positioning mounting between the steady wheel mounting block 610 and the steady wheel mounting seat 140, so that the steady wheel mounting block 610 and the steady wheel mounting seat 140 can be conveniently fixed through the fasteners, and further, the mounting efficiency of the steady wheel 600 can be enhanced.
In some embodiments of the present disclosure, one of the first pre-positioning component and the second pre-positioning component is a bulge, the other one is a groove, and the bulge is suitable for being matched with the groove. For example, as shown in
An avoiding groove for avoiding a fastener is formed in the adjusting shim, and one end of the avoiding groove is opened. It can be understood that in the process of dismounting the adjusting shim, the fastener does not need to be completely removed from the mounting block and the horizontal wheel mounting seat, and the fastener may be unscrewed to release the mounting block and the horizontal wheel mounting seat to enable the adjusting shim to have an activity gap, so that a worker can dismount one of the plurality of adjusting shims by using a tool and then tighten the fastener. By forming the avoiding groove in the adjusting shim, the adjusting shim can be dismounted simply and conveniently, so that the reliability of the guide wheel 500 and the steady wheel 600 can be better enhanced.
In some embodiments of the present disclosure, fasteners may be arranged above and below the first pre-positioning components (the first pre-positioning component 521 of the guide wheel mounting block 520 and the first pre-positioning component of the steady wheel mounting block 610), and the numbers of the adjusting shims above and below the first pre-positioning components are identical.
At one side of the rail beam 3000, the steady wheel 600 is positioned between two guide wheels 500. For an example, each side of the rail beam 3000 may be provided with one steady wheel 600 and two guide wheels 500, the two guide wheels 500 are respectively arranged on the first connecting beam 112 and the third connecting beam 114, and the steady wheel 600 is positioned on the suspension support seat 120 below the second connecting beam 113 or the fourth connecting beam 115, thus in the front-and-rear direction, the steady wheel 600 is positioned between the two guide wheels 500, and in the up-and-down direction, the steady wheel 600 is lower than the two guide wheels 500. By the reasonable arrangement of the guide wheel 500 and the steady wheel 600, the traveling stability of the rail vehicle is better.
The diameter of the steady wheel 600 may be greater than the diameter of the guide wheel 500, so that the body stability of the vehicle in traveling and turning processes can be enhanced. The central axis of the steady wheel 600 is positioned at the outer side of the central axis of the guide wheel 500, where the outer and inner sides are defined according to the distances from the rail beam 3000. Thus, the steady wheel 600 and the guide wheel 500 can be tightly matched to the rail beam 3000, and the steady wheel 600 and the guide wheel 500 can ensure that a sufficient insulation space is reserved between the bogie frame 100 and the rail beam 3000, so that the insulation space can ensure insulation between the rail beam 3000 and the conductor rail and can ensure insulation between the conductor rail and the bogie frame 100, thereby further enhancing the traveling safety of the rail vehicle.
As shown in
The rail vehicle according to the embodiments of the present disclosure includes the bogie assembly 1000 described in the above embodiments.
In the descriptions of this specification, descriptions such as reference terms “an embodiment”, “some embodiments”, “example”, “specific example”, or “some examples” intend to indicate that specific features, structures, materials, or characteristics described with reference to embodiments or examples are included in at least one embodiment or example of the present disclosure. In this specification, schematic descriptions of the foregoing terms do not need to aim at a same embodiment or example. Besides, the specific features, the structures, the materials or the characteristics that are described may be combined in a proper manner in any one or more embodiments or examples. In addition, in a case that is not mutually contradictory, persons skilled in the art can combine or group different embodiments or examples that are described in this specification and features of the different embodiments or examples.
Although the embodiments of the present disclosure are shown and described above, it may be understood that the foregoing embodiments are examples, and cannot be understood as limitations to the present disclosure. A person of ordinary skill in the art may make changes, modifications, replacements, and variations to the foregoing embodiments without departing from the scope of the present disclosure.
Number | Date | Country | Kind |
---|---|---|---|
201610839705.1 | Sep 2016 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2017/075227 | 2/28/2017 | WO | 00 |