Suspension systems using hydraulic dampers

Abstract
A dual-mode suspension system using hydraulic dampers is disclosed. One or more dampers on each side of the four-wheel suspension system are coupled to a respective damper on the other side via a damper valve. One or more leaf springs may be arranged between the leading links coupled to some of the dampers, and trailing links coupled to other of the dampers. The suspension system may advantageously engage, lock, or partially disengage the respective dampers connected by the valve on each side of the system. Manipulating the valve to control engagement of the dampers, which may depend on the speed and related issues, provides control over whether heave motions should be separated from roll. In another embodiment, one or more single or double acting hydraulic cylinders may be used to engage dampers.
Description
BACKGROUND
Field

The present disclosure relates generally to transport structures, and more specifically to versatile suspension systems that use dynamic leaning techniques.


Background

Additive manufacturing (AM) introduces numerous practical advantages and beneficially complements conventional machining in automotive and related industries. Due to AM's continued development and refinement, manufacturers in these industries are understandably eager to incorporate AM into their build strategy. One application that may derive substantial benefits from AM is the use of solar energy to power, in part or in whole, cars, aircraft, boats and other transport structures.


Conventional approaches to developing solar-powered cars have been circumscribed by practical limitations including, for example, the inability to harness adequate amounts of solar energy to power the vehicles given the limited surface area to place panels, the vehicle weight, drag of the vehicle while in motion, and other factors.


Other problems include the need for an adequate suspension system and related components that increase the capability of the solar vehicle and that further act to reduce energy consumption of the vehicle.


SUMMARY

Several aspects of suspension systems used in solar extended range electric vehicles and other transport structures will be described more fully hereinafter with reference to various illustrative aspects of the present disclosure.


In one aspect of the present disclosure, a quadricycle suspension system for a vehicle quadricycle suspension system for a vehicle includes a first damper arranged on a first side of the suspension system and a second damper arranged on a second side of the suspension system, wherein the first damper is coupled to the second damper via at least one interconnect, each at least one interconnect comprising a valve configured to control the motion of the first damper relative to the second damper.


In another aspect of the present disclosure, a quadricycle suspension system for a vehicle includes a first damper coupled respectively to first trailing and leading links, a second damper coupled respectively to second trailing and leading links, a first active valve coupled to first inlet compression and rebound ports of the first damper, and a second active valve coupled to second inlet compression and rebound ports of the second damper, wherein the first and second active valves are configured to damp heave and pitch of the vehicle by controlling relative motion of the first and second dampers based on an at least one input.


Different suspension systems are disclosed that have not previously been developed or proposed. It will be understood that other aspects of suspension systems will become readily apparent to those skilled in the art based on the following detailed description, wherein only several embodiments are described by way of illustration. As will be appreciated by those skilled in the art, these suspension systems can be realized with other embodiments without departing from the spirit and scope of the invention. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not as restrictive.





BRIEF DESCRIPTION OF THE DRAWINGS

Various features of quadricycle suspension systems will now be presented in the detailed description by way of example, and not by way of limitation, in the accompanying drawings, wherein:



FIG. 1 is a perspective view of a solar extended range electric vehicle.



FIG. 2A is a plan view of a solar extended range electric vehicle in mobile mode.



FIG. 2B is a perspective view of the solar extended range electric vehicle in mobile mode.



FIG. 3A is a plan view of the suspension and wheel system of the solar extended range electric vehicle.



FIG. 3B is an elevation view of the suspension and wheel system of the solar extended range electric vehicle.



FIG. 3C is a plan view of the suspension system of the solar extended range electric vehicle showing the leaf spring and damper valves.



FIG. 3D is a perspective view of the leaf spring of the suspension system.



FIG. 4 is an elevation view of the solar extended range electric vehicle in the dynamic leaning narrow track mode.



FIG. 5 is an elevation view of the solar extended range electric vehicle in the non-tilting wide track mode.





DETAILED DESCRIPTION

The detailed description set forth below with reference to the appended drawings is intended to provide a description of exemplary embodiments of suspension systems in solar extended range vehicles and other transports. The description is not intended to represent the only embodiments in which the invention may be practiced. The term “exemplary” used throughout this disclosure means “serving as an example, instance, or illustration,” and should not necessarily be construed as preferred or advantageous over other embodiments presented in this disclosure. The detailed description includes specific details for providing a thorough and complete disclosure that fully conveys the scope of the invention to those skilled in the art. However, the invention may be practiced without these specific details. In some instances, well-known structures and components may be shown in block diagram form, or omitted entirely, to avoid obscuring the various concepts presented throughout this disclosure.


In one aspect of the present disclosure, a solar extended range electric vehicle is introduced in which a dual-mode suspension system is used. In one embodiment, the suspension system uses at least a pair of hydraulic dampers which can engage via the use of one or more damper valves, including controlling the relative motion of the dampers, when the vehicle is traveling at low speeds Alternatively, when other conditions exist such as when the vehicle passes a predetermined speed or the vehicle has crossed some threshold with respect to some magnitude of requested lateral acceleration, the damper valves may be configured to partially disengage the hydraulic dampers to reduce relative motion limitations. In this manner, the relationship between aspects like heave and roll can be well controlled under different speeds and occupant driving conditions.


In certain embodiments, a sensor system may be coupled to a control circuit, wherein the control circuit may be configured to automatically open and close the associated valve in response to characteristics measured from the sensor system.



FIG. 1 is a perspective view of a solar extended range electric vehicle 100. The vehicle 100 may include an aerodynamically contoured frame 102, a transparent or semi-transparent canopy 114, a body structure 112, a suspension system 116 mounted to the body structure 112, center console 120, battery cells 122, and dual inline seating 104 to accommodate two occupants in this embodiment.


In addition, deployable solar panel arrays 106, 108 are attached to the vehicle. In an embodiment, the arrays 106, 108 may be constructed such that when deployed, they are located on either side of the tail. In this embodiment, the deployed arrays cover a total area of approximately three square meters, although the necessary surface area may in practice vary widely depending on numerous factors including characteristics of the vehicle. Arrays 106, 108 can be stowed during motion to the vehicle to improve aerodynamic characteristics. Solar panel arrays 106, 108 may continue to absorb solar energy and may provide sufficient energy for tasks like commuting and when folded or stowed to their original, low drag position as the vehicle moves In some embodiments, two-axis solar tracking can improve array effectiveness by a multiple in the range of approximately 1.3-1.8 or potentially greater.



FIGS. 2A-B are respective plan and perspective views of a solar extended range electric vehicle 200 in mobile mode. As shown in FIGS. 2A-B, the solar panels 106 and 108 are stowable by being foldable substantially flush against tail section 160 of the vehicle 200. Thus, to deactivate the solar panels and prepare for a more aerodynamically efficient mobile mode, lower solar panels 108 may first be folded downward flush along a frame of tail section 160. Thereupon, upper panels 106 may next be folded downward flush along exposed surfaces of upper lower panels 108. In this way, the amount of surface area and hence the drag decreases substantially, and the vehicle 200 is ready to be driven.



FIG. 2A further shows the handlebar 126 steering mechanism as described in greater detail below. FIG. 2B shows a portion of battery pack 122 which may be disposed under the passengers in this example. The front passenger shown in FIG. 2A is adjacent to center console 120, which may include electronics for the various components and in other embodiments, some storage area, or a combination thereof. In certain embodiments, one of nose section or tail section 160 may include modest accommodations for storage (e.g., a few grocery bags). A suspension system 116 (FIG. 1) may be mounted to body structure 112 and coupled to wheel system 110.



FIGS. 3A and 3B are respective plan and elevation views of the suspension and wheel system of the solar extended range electric vehicle 300 in accordance with an exemplary embodiment. FIG. 3C is a plan view of the suspension system of the solar extended range electric vehicle showing the leaf spring and damper valves. FIG. 3D is a perspective view of the leaf spring of the suspension system of FIG. 3C. FIG. 3A is exemplary in nature and is not drawn to scale. While FIGS. 3A-D illustrate certain structures for carrying out the inventive concepts herein, it should be understood that these structures are exemplary in nature, and numerous other structures and arrangements may be equally suitable and within the understanding of one skilled in the art upon review of this disclosure.


The wheel system may be coupled to the suspension system via leading links 301 and upright 302 (see FIG. 3B). The rear wheels may be connected via trailing link 303 for the rear suspension. It should be noted that the trailing link is used for exemplary purposes only, and other and different suspension system components can be equally suitable for purposes of this disclosure. Coupled to trailing links 303 on both sides are dampers 304 for controlling wheel motion. Dampers may be used on each wheel. In certain vehicles, such as a dynamic leaning narrow track vehicle, decoupling of roll and heave may be desired, while in other vehicles such as a non-tilting wide track vehicle, decoupling of heave and warp, and/or roll and warp, may be desired.


Leaf spring 305 associated with the front is coupled with leading links 301 to form the front suspension while leaf spring 305 associated with the rear is coupled with trailing link 303 to form the rear suspension. In this embodiment, dampers 304 each control the motion of one wheel. Center pivots 306 are used with the leaf spring 305 to allow spring rate in heave and none in roll (see also FIG. 3D). In an embodiment, steering link 309 couples the wheels to handlebar 308.


Static stability is key for full exposure-controlled, aerodynamic bodywork. In an embodiment, dampers 304 may be hydraulically interconnected on the compression and rebound circuits (separately) with active valve control via valves 323A-D for heave/pitch control and valves 324A-D for roll control (see FIGS. 3A, 3C). Valves 323A-D in the embodiment of FIG. 3A damp heave and pitch. Valves 324A-D in FIG. 3A damp roll. Low speed damping forces are typically much larger than desired for roll control. Roll represents rotational movement about an axis longitudinal to the length of the vehicle. Thus, in an embodiment, the active valves 324A-D are generally kept open to minimize forces resisting roll and modulated at parking lot speeds to allow forces resisting roll. In another embodiment, a torsion centering spring 306 (see FIG. 3A, 3D) is used concentric with leaf spring pivot 305 for self-centering/roll control—decoupled from the heave loads. This passive centering may also be implemented in a depowered operation, such as parking the vehicle 300. In an embodiment, the state of the valves, and hence the mode of the vehicle, may be determined automatedly using a control system that issues commands to circuits associated with the valves based, for example, on the mode of the vehicle including speed, lateral acceleration, perceived road conditions, and any other number of factors that may cause a desire for an particular operation of the vehicle.


Hydraulic interconnect lockout may also provide a mechanism for simplifying controls for autonomous vehicle operation. A double acting hydraulic cylinder with an orifice between the compression and rebound side of the piston allows damping by restricting flow. If the valve has an actively variable area, it results in hydraulic lockout as well as variable damping force. Cross-vehicle hydraulic connectors between the laterally opposite compression and rebound circuits can completely decouple heave from roll. The hydraulic cylinders can be connected cross-vehicle to allow variable roll resistance via active valving of valves 324A-D in the above embodiment. For low dynamic performance operation (i.e. lower speeds and with proscribed maximum cornering speeds), the roll-control interconnect can be locked out (i.e., no hydraulic fluid communication) such that the autonomous controller does not have to handle the extra degree of freedom related to dynamic leaning. In this fashion, the vehicle is a very conventional four-wheel passenger vehicle from a controls perspective, albeit with lower ultimate cornering performance. With a skilled driver, the interlocks can be put into active mode (open for low roll resistance) for much higher dynamic performance thresholds.


In addition to the active valves, hydraulic motors can be used to move fluids across the vehicle to induce lean or to actively roll the vehicle.


As noted above, static stability is important for full-exposure controlled, aerodynamic bodywork. Stability issues are governed by the suspension system. In addition, dynamic leaning may be used in some embodiments to enable the solar panel canopy to track the emitter. Dynamic emitting may in some embodiments be performed in conjunction with a processing system that uses a GPS or other means for emitter tracking. The processing system may be embodied in a deployment motor or, in some embodiments, as part of an independent component.



FIG. 4 is an elevation view of the solar extended range electric vehicle 400 in the dynamic leaning narrow track mode. Reference 402 depicts the dynamic leaning of the vehicle and wheel system 410. The arrow 401 represents the direction of leaning over time.



FIG. 5 is an elevation view of the solar extended range electric vehicle 510 in the non-tilting wide track mode. Vehicle 510 includes leaf spring 520, trailing link 522, hydraulic damper 524 and wheel system 530. The dashed lines indicate the movement of leaf spring 520, trailing link 522 and damper 524 over time.


Table 1, below, illustrates the various exemplary characteristics of warp, roll, heave and pitch as a function of the mode.









TABLE 1







Directional Characteristics and Suspension Mode










DYNAMIC LEANING



MODE
NARROW TRACK
NON-TILTING WIDE TRACK





Warp
Soft for single wheel bump
Soft for single wheel bump



absorption
absorption


Roll
Very Soft for fastest time
Stiff for best tire camber control



to desired lean angle


Heave
Driven by desired ride rate
Driven by desired ride rate


Pitch
Stiff for attitude control
Stiff for attitude control or desired



or desired ride rate
ride rate









The previous description is provided to enable any person skilled in the art to practice the various aspects described herein. Various modifications to the exemplary embodiments presented throughout this disclosure will be clear to those skilled in the art, and the concepts disclosed herein may be applied to other solar vehicles and techniques for panel deployment and emitter tracking in solar vehicles. Thus, the claims are not intended to be limited to the exemplary embodiments presented throughout the disclosure, but are to be accorded the full scope consistent with the language claims. All structural and functional equivalents to the elements of the exemplary embodiments described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. No claim element is to be construed under the provisions of 35 U.S.C. § 112(f), or analogous law in applicable jurisdictions, unless the element is expressly recited using the phrase “means for” or, in the case of a method claim, the element is recited using the phrase “step for.”

Claims
  • 1. A quadricycle suspension system for a vehicle, comprising: a first damper arranged on a first side of the suspension system;a second damper arranged on a second side of the suspension system;a first valve coupling the first damper to the second damper and configured to control the motion of the first damper relative to the second damper, wherein the first damper is further coupled to the second damper via a first leaf spring, and the first leaf spring is coupled between one of leading links or trailing links respectively located on third and fourth sides of the suspension system;a third damper arranged on the first side; anda fourth damper arranged on the second side, wherein the third damper is coupled to the fourth damper via a second leaf spring and at least one second valve configured to control the motion of the third damper relative to the fourth damper, and the second leaf spring is coupled between the trailing links, andwherein the first and second dampers are coupled to the leading links, and the third and fourth dampers are coupled to the trailing links.
  • 2. The suspension system of claim 1, wherein the first valve is further configured to at least partially disengage the first and second dampers in response to control system commands.
  • 3. The suspension system of claim 2, wherein the control system commands comprise at least one of vehicle speed and vehicle lateral acceleration.
  • 4. The suspension system of claim 1, wherein the second valve is further configured to at least partially disengage the third and fourth dampers in response to control system commands.
  • 5. The suspension system of claim 4, wherein the control system commands comprise at least one of vehicle speed and vehicle lateral acceleration.
  • 6. The suspension system of claim 1, wherein the first leaf spring further comprises a torsion centering spring arranged concentric with a pivot of the first leaf spring, the torsion centering spring configured to decouple heave loads from roll loads.
  • 7. The suspension system of claim 1, wherein at least one of the leading links or the trailing links comprise a girder suspension.
  • 8. The suspension system of claim 1, wherein the first and second dampers comprise double-acting hydraulic cylinders performing compression and rebound connection functions.
  • 9. The suspension system of claim 1, wherein the vehicle comprises a dynamic leaning narrow track vehicle.
  • 10. The suspension system of claim 1, wherein the vehicle comprises a non-tilting wide track vehicle.
  • 11. A quadricycle suspension system for a vehicle, comprising: a first damper coupled respectively to a first leading link;a second damper coupled respectively to a second leading link;a first active valve coupled to the first damper;a second active valve coupled to the second damper, the first and second active valves configured to damp heave and pitch of the vehicle by controlling relative motion of the first and second dampers based on an at least one input;a compression port of the first damper further coupled via a third active valve to a rebound port of the second damper;a rebound port of the first damper further coupled via a fourth active valve to a compression port of the second damper;the third and fourth active valves configured to damp roll in response to the at least one input;wherein the first damper is further coupled to the second damper via a leaf spring, the leaf spring is coupled between the first and second leading links, the first leading link is coupled to the first damper and the second leading link is coupled to the second damper, the leaf spring further comprises a torsion centering spring arranged concentric with a pivot of the leaf spring, and the torsion centering spring is configured to enable passive decoupling of heave loads from roll loads;a third damper adjacent the first damper and coupled to a fourth damper adjacent the second damper; anda plurality of active valves associated, at least in part, with the third damper and the fourth damper,wherein the plurality of active valves are configured to control the associated dampers based on information from a controller.
  • 12. The suspension system of claim 11, further comprising a control system having one or more outputs coupled to the at least one input, the control system configured to provide an output for controlling a state of the first and second active valves.
  • 13. The suspension system of claim 11, further comprising a control system having one or more outputs coupled to the at least one input, the control system configured to provide an output for controlling a state of the third and fourth active valves.
  • 14. The suspension system of claim 11, wherein the third damper is further coupled to the fourth damper via another leaf spring.
  • 15. The suspension system of claim 11, wherein each of the first and second leading links comprise a girder suspension.
  • 16. The suspension system of claim 11, wherein each of the first and second trailing links comprise a girder suspension or a swing arm suspension.
US Referenced Citations (374)
Number Name Date Kind
4463515 Barlow Aug 1984 A
4652010 Sugasawa Mar 1987 A
5203226 Hongou et al. Apr 1993 A
5231583 Lizell Jul 1993 A
5276621 Henry Jan 1994 A
5294146 Tabata Mar 1994 A
5328004 Fannin Jul 1994 A
5484152 Nunes Jan 1996 A
5591107 Rodgers, Jr. Jan 1997 A
5742385 Champa Apr 1998 A
5990444 Costin Nov 1999 A
6010155 Rinehart Jan 2000 A
6096249 Yamaguchi Aug 2000 A
6140602 Costin Oct 2000 A
6250533 Otterbein et al. Jun 2001 B1
6252196 Costin et al. Jun 2001 B1
6318642 Goenka et al. Nov 2001 B1
6365057 Whitehurst et al. Apr 2002 B1
6391251 Keicher et al. May 2002 B1
6409930 Whitehurst et al. Jun 2002 B1
6468439 Whitehurst et al. Oct 2002 B1
6554345 Jonsson Apr 2003 B2
6585151 Ghosh Jul 2003 B1
6644721 Miskech et al. Nov 2003 B1
6811744 Keicher et al. Nov 2004 B2
6866497 Saiki Mar 2005 B2
6919035 Clough Jul 2005 B1
6926970 James et al. Aug 2005 B2
7152292 Hohmann et al. Dec 2006 B2
7316594 Longdill Jan 2008 B2
7344186 Hausler et al. Mar 2008 B1
7413063 Davis Aug 2008 B1
7500373 Quell Mar 2009 B2
7586062 Heberer Sep 2009 B2
7637134 Burzlaff et al. Dec 2009 B2
7710347 Gentilman et al. May 2010 B2
7712592 Jansen May 2010 B2
7716802 Stern et al. May 2010 B2
7745293 Yamazaki et al. Jun 2010 B2
7766123 Sakurai et al. Aug 2010 B2
7852388 Shimizu et al. Dec 2010 B2
7908922 Zarabadi et al. Mar 2011 B2
7951324 Naruse et al. May 2011 B2
8094036 Heberer Jan 2012 B2
8163077 Eron et al. Apr 2012 B2
8286236 Jung et al. Oct 2012 B2
8289352 Vartanian et al. Oct 2012 B2
8297096 Mizumura et al. Oct 2012 B2
8354170 Henry et al. Jan 2013 B1
8383028 Lyons Feb 2013 B2
8408036 Reith et al. Apr 2013 B2
8429754 Jung et al. Apr 2013 B2
8437513 Derakhshani et al. May 2013 B1
8444903 Lyons et al. May 2013 B2
8452073 Taminger et al. May 2013 B2
8573618 Schroder Nov 2013 B2
8599301 Dowski, Jr. et al. Dec 2013 B2
8606540 Haisty et al. Dec 2013 B2
8610761 Haisty et al. Dec 2013 B2
8631996 Quell et al. Jan 2014 B2
8675925 Derakhshani et al. Mar 2014 B2
8678060 Dietz et al. Mar 2014 B2
8686314 Schneegans et al. Apr 2014 B2
8686997 Radet et al. Apr 2014 B2
8694284 Berard Apr 2014 B2
8720876 Reith et al. May 2014 B2
8752166 Jung et al. Jun 2014 B2
8755923 Farahani et al. Jun 2014 B2
8787628 Derakhshani et al. Jul 2014 B1
8818771 Gielis et al. Aug 2014 B2
8873238 Wilkins Oct 2014 B2
8978535 Ortiz et al. Mar 2015 B2
9006605 Schneegans et al. Apr 2015 B2
9071436 Jung et al. Jun 2015 B2
9101979 Hofmann et al. Aug 2015 B2
9104921 Derakhshani et al. Aug 2015 B2
9126365 Mark et al. Sep 2015 B1
9128476 Jung et al. Sep 2015 B2
9138924 Yen Sep 2015 B2
9149988 Mark et al. Oct 2015 B2
9156205 Mark et al. Oct 2015 B2
9186848 Mark et al. Nov 2015 B2
9244986 Karmarkar Jan 2016 B2
9248611 Divine et al. Feb 2016 B2
9254535 Buller et al. Feb 2016 B2
9266566 Kim Feb 2016 B2
9269022 Rhoads et al. Feb 2016 B2
9327452 Mark et al. May 2016 B2
9329020 Napoletano May 2016 B1
9332251 Haisty et al. May 2016 B2
9346127 Buller et al. May 2016 B2
9389315 Bruder et al. Jul 2016 B2
9399256 Buller et al. Jul 2016 B2
9403235 Buller et al. Aug 2016 B2
9418193 Dowski, Jr. et al. Aug 2016 B2
9457514 Schwärzler Oct 2016 B2
9469057 Johnson et al. Oct 2016 B2
9478063 Rhoads et al. Oct 2016 B2
9481402 Muto et al. Nov 2016 B1
9486878 Buller et al. Nov 2016 B2
9486960 Paschkewitz et al. Nov 2016 B2
9502993 Deng Nov 2016 B2
9525262 Stuart et al. Dec 2016 B2
9533526 Nevins Jan 2017 B1
9555315 Aders Jan 2017 B2
9555580 Dykstra et al. Jan 2017 B1
9557856 Send et al. Jan 2017 B2
9566742 Keating et al. Feb 2017 B2
9566758 Cheung et al. Feb 2017 B2
9573193 Buller et al. Feb 2017 B2
9573225 Buller et al. Feb 2017 B2
9586290 Buller et al. Mar 2017 B2
9595795 Lane et al. Mar 2017 B2
9597843 Stauffer et al. Mar 2017 B2
9600929 Young et al. Mar 2017 B1
9609755 Coull et al. Mar 2017 B2
9610737 Johnson et al. Apr 2017 B2
9611667 GangaRao et al. Apr 2017 B2
9616623 Johnson et al. Apr 2017 B2
9626487 Jung et al. Apr 2017 B2
9626489 Nilsson Apr 2017 B2
9643361 Liu May 2017 B2
9662840 Buller et al. May 2017 B1
9665182 Send et al. May 2017 B2
9672389 Mosterman et al. Jun 2017 B1
9672550 Apsley et al. Jun 2017 B2
9676145 Buller et al. Jun 2017 B2
9684919 Apsley et al. Jun 2017 B2
9688032 Kia et al. Jun 2017 B2
9690286 Hovsepian et al. Jun 2017 B2
9700966 Kraft et al. Jul 2017 B2
9703896 Zhang et al. Jul 2017 B2
9713903 Paschkewitz et al. Jul 2017 B2
9718302 Young et al. Aug 2017 B2
9718434 Hector, Jr. et al. Aug 2017 B2
9724877 Flitsch et al. Aug 2017 B2
9724881 Johnson et al. Aug 2017 B2
9725178 Wang Aug 2017 B2
9731730 Stiles Aug 2017 B2
9731773 Gami et al. Aug 2017 B2
9741954 Bruder et al. Aug 2017 B2
9747352 Karmarkar Aug 2017 B2
9764415 Seufzer et al. Sep 2017 B2
9764520 Johnson et al. Sep 2017 B2
9765226 Dain Sep 2017 B2
9770760 Liu Sep 2017 B2
9773393 Velez Sep 2017 B2
9776234 Schaafhausen et al. Oct 2017 B2
9782936 Glunz et al. Oct 2017 B2
9783324 Embler et al. Oct 2017 B2
9783977 Alqasimi et al. Oct 2017 B2
9789548 Golshany et al. Oct 2017 B2
9789922 Dosenbach et al. Oct 2017 B2
9796137 Zhang et al. Oct 2017 B2
9802108 Aders Oct 2017 B2
9809977 Carney et al. Nov 2017 B2
9815514 Van Steenwyk Nov 2017 B2
9817922 Glunz et al. Nov 2017 B2
9818071 Jung et al. Nov 2017 B2
9821339 Paschkewitz et al. Nov 2017 B2
9821411 Buller et al. Nov 2017 B2
9823143 Twelves, Jr. et al. Nov 2017 B2
9829564 Bruder et al. Nov 2017 B2
9846933 Yuksel Dec 2017 B2
9854828 Langeland Jan 2018 B2
9858604 Apsley et al. Jan 2018 B2
9862833 Hasegawa et al. Jan 2018 B2
9862834 Hasegawa et al. Jan 2018 B2
9863885 Zaretski et al. Jan 2018 B2
9870629 Cardno et al. Jan 2018 B2
9879981 Dehghan Niri et al. Jan 2018 B1
9884663 Czinger et al. Feb 2018 B2
9898776 Apsley et al. Feb 2018 B2
9914150 Pettersson et al. Mar 2018 B2
9919360 Buller et al. Mar 2018 B2
9931697 Levin et al. Apr 2018 B2
9933031 Bracamonte et al. Apr 2018 B2
9933092 Sindelar Apr 2018 B2
9957031 Golshany et al. May 2018 B2
9958535 Send et al. May 2018 B2
9962767 Buller et al. May 2018 B2
9963978 Johnson et al. May 2018 B2
9971920 Derakhshani et al. May 2018 B2
9976063 Childers et al. May 2018 B2
9987792 Flitsch et al. Jun 2018 B2
9988136 Tiryaki et al. Jun 2018 B2
9989623 Send et al. Jun 2018 B2
9990565 Rhoads et al. Jun 2018 B2
9994339 Colson et al. Jun 2018 B2
9996890 Cinnamon et al. Jun 2018 B1
9996945 Holzer et al. Jun 2018 B1
10002215 Dowski et al. Jun 2018 B2
10006156 Kirkpatrick Jun 2018 B2
10011089 Lyons et al. Jul 2018 B2
10011685 Childers et al. Jul 2018 B2
10012532 Send et al. Jul 2018 B2
10013777 Mariampillai et al. Jul 2018 B2
10015908 Williams et al. Jul 2018 B2
10016852 Broda Jul 2018 B2
10016942 Mark et al. Jul 2018 B2
10017384 Greer et al. Jul 2018 B1
10018576 Herbsommer et al. Jul 2018 B2
10022792 Srivas et al. Jul 2018 B2
10022912 Kia et al. Jul 2018 B2
10027376 Sankaran et al. Jul 2018 B2
10029415 Swanson et al. Jul 2018 B2
10040239 Brown, Jr. Aug 2018 B2
10046412 Blackmore Aug 2018 B2
10048769 Selker et al. Aug 2018 B2
10052712 Blackmore Aug 2018 B2
10052820 Kemmer et al. Aug 2018 B2
10055536 Maes et al. Aug 2018 B2
10058764 Aders Aug 2018 B2
10058920 Buller et al. Aug 2018 B2
10061906 Nilsson Aug 2018 B2
10065270 Buller et al. Sep 2018 B2
10065361 Susnjara et al. Sep 2018 B2
10065367 Brown, Jr. Sep 2018 B2
10068316 Holzer et al. Sep 2018 B1
10071422 Buller et al. Sep 2018 B2
10071525 Susnjara et al. Sep 2018 B2
10072179 Drijfhout Sep 2018 B2
10074128 Colson et al. Sep 2018 B2
10076875 Mark et al. Sep 2018 B2
10076876 Mark et al. Sep 2018 B2
10081140 Paesano et al. Sep 2018 B2
10081431 Seack et al. Sep 2018 B2
10086568 Snyder et al. Oct 2018 B2
10087320 Simmons et al. Oct 2018 B2
10087556 Gallucci et al. Oct 2018 B2
10099427 Mark et al. Oct 2018 B2
10100542 GangaRao et al. Oct 2018 B2
10100890 Bracamonte et al. Oct 2018 B2
10107344 Bracamonte et al. Oct 2018 B2
10108766 Druckman et al. Oct 2018 B2
10113600 Bracamonte et al. Oct 2018 B2
10118347 Stauffer et al. Nov 2018 B2
10118579 Lakic Nov 2018 B2
10120078 Bruder et al. Nov 2018 B2
10124546 Johnson et al. Nov 2018 B2
10124570 Evans et al. Nov 2018 B2
10137500 Blackmore Nov 2018 B2
10138354 Groos et al. Nov 2018 B2
10144126 Krohne et al. Dec 2018 B2
10145110 Carney et al. Dec 2018 B2
10151363 Bracamonte et al. Dec 2018 B2
10152661 Kieser Dec 2018 B2
10160278 Coombs et al. Dec 2018 B2
10161021 Lin et al. Dec 2018 B2
10166752 Evans et al. Jan 2019 B2
10166753 Evans et al. Jan 2019 B2
10171578 Cook et al. Jan 2019 B1
10173255 TenHouten et al. Jan 2019 B2
10173327 Kraft et al. Jan 2019 B2
10178800 Mahalingam et al. Jan 2019 B2
10179640 Wilkerson Jan 2019 B2
10183330 Buller et al. Jan 2019 B2
10183478 Evans et al. Jan 2019 B2
10189187 Keating et al. Jan 2019 B2
10189240 Evans et al. Jan 2019 B2
10189241 Evans et al. Jan 2019 B2
10189242 Evans et al. Jan 2019 B2
10190424 Johnson et al. Jan 2019 B2
10195693 Buller et al. Feb 2019 B2
10196539 Boonen et al. Feb 2019 B2
10197338 Melsheimer Feb 2019 B2
10200677 Trevor et al. Feb 2019 B2
10201932 Flitsch et al. Feb 2019 B2
10201941 Evans et al. Feb 2019 B2
10202673 Lin et al. Feb 2019 B2
10204216 Nejati et al. Feb 2019 B2
10207454 Buller et al. Feb 2019 B2
10209065 Estevo, Jr. et al. Feb 2019 B2
10210662 Holzer et al. Feb 2019 B2
10213837 Kondoh Feb 2019 B2
10214248 Hall et al. Feb 2019 B2
10214252 Schellekens et al. Feb 2019 B2
10214275 Goehlich Feb 2019 B2
10220575 Reznar Mar 2019 B2
10220881 Tyan et al. Mar 2019 B2
10221530 Driskell et al. Mar 2019 B2
10226900 Nevins Mar 2019 B1
10232550 Evans et al. Mar 2019 B2
10234342 Moorlag et al. Mar 2019 B2
10237477 Trevor et al. Mar 2019 B2
10252335 Buller et al. Apr 2019 B2
10252336 Buller et al. Apr 2019 B2
10254499 Cohen et al. Apr 2019 B1
10257499 Hintz et al. Apr 2019 B2
10259044 Buller et al. Apr 2019 B2
10268181 Nevins Apr 2019 B1
10269225 Velez Apr 2019 B2
10272860 Mohapatra et al. Apr 2019 B2
10272862 Whitehead Apr 2019 B2
10275564 Ridgeway et al. Apr 2019 B2
10279580 Evans et al. May 2019 B2
10285219 Fetfatsidis et al. May 2019 B2
10286452 Buller et al. May 2019 B2
10286603 Buller et al. May 2019 B2
10286961 Hillebrecht et al. May 2019 B2
10289263 Troy et al. May 2019 B2
10289875 Singh et al. May 2019 B2
10291193 Dandu et al. May 2019 B2
10294552 Liu et al. May 2019 B2
10294982 Gabrys et al. May 2019 B2
10295989 Nevins May 2019 B1
10303159 Czinger et al. May 2019 B2
10307824 Kondoh Jun 2019 B2
10310197 Droz et al. Jun 2019 B1
10313651 Trevor et al. Jun 2019 B2
10315252 Mendelsberg et al. Jun 2019 B2
10336050 Susnjara Jul 2019 B2
10337542 Hesslewood et al. Jul 2019 B2
10337952 Bosetti et al. Jul 2019 B2
10339266 Urick et al. Jul 2019 B2
10343330 Evans et al. Jul 2019 B2
10343331 McCall et al. Jul 2019 B2
10343355 Evans et al. Jul 2019 B2
10343724 Polewarczyk et al. Jul 2019 B2
10343725 Martin et al. Jul 2019 B2
10350823 Rolland et al. Jul 2019 B2
10356341 Holzer et al. Jul 2019 B2
10356395 Holzer et al. Jul 2019 B2
10357829 Spink et al. Jul 2019 B2
10357957 Buller et al. Jul 2019 B2
10359756 Newell et al. Jul 2019 B2
10369629 Mendelsberg et al. Aug 2019 B2
10382739 Rusu et al. Aug 2019 B1
10384393 Xu et al. Aug 2019 B2
10384416 Cheung et al. Aug 2019 B2
10389410 Brooks et al. Aug 2019 B2
10391710 Mondesir Aug 2019 B2
10392097 Pham et al. Aug 2019 B2
10392131 Deck et al. Aug 2019 B2
10393315 Tyan Aug 2019 B2
10400080 Ramakrishnan et al. Sep 2019 B2
10401832 Snyder et al. Sep 2019 B2
10403009 Mariampillai et al. Sep 2019 B2
10406750 Barton et al. Sep 2019 B2
10412283 Send et al. Sep 2019 B2
10416095 Herbsommer et al. Sep 2019 B2
10421496 Swayne et al. Sep 2019 B2
10421863 Hasegawa et al. Sep 2019 B2
10422478 Leachman et al. Sep 2019 B2
10425793 Sankaran et al. Sep 2019 B2
10427364 Alves Oct 2019 B2
10429006 Tyan et al. Oct 2019 B2
10434573 Buller et al. Oct 2019 B2
10435185 Divine et al. Oct 2019 B2
10435773 Liu et al. Oct 2019 B2
10436038 Buhler et al. Oct 2019 B2
10438407 Pavanaskar et al. Oct 2019 B2
10440351 Holzer et al. Oct 2019 B2
10442002 Benthien et al. Oct 2019 B2
10442003 Symeonidis et al. Oct 2019 B2
10449696 Elgar et al. Oct 2019 B2
10449737 Johnson et al. Oct 2019 B2
10461810 Cook et al. Oct 2019 B2
20030075881 Delorenzis Apr 2003 A1
20030075882 Delorenzis Apr 2003 A1
20040154887 Nehl Aug 2004 A1
20060108783 Ni et al. May 2006 A1
20070045024 Koistra Mar 2007 A1
20070209872 Bjorklund Sep 2007 A1
20120046829 Ogawa Feb 2012 A1
20140277669 Nardi et al. Sep 2014 A1
20150075943 Williams Mar 2015 A1
20150102575 Lake et al. Apr 2015 A1
20150224845 Anderson Aug 2015 A1
20170113344 Schönberg Apr 2017 A1
20170341309 Piepenbrock et al. Nov 2017 A1
20180141543 Krosschell May 2018 A1
20180179867 Artinian Jun 2018 A1
20180265155 Raffaelli Sep 2018 A1
Foreign Referenced Citations (42)
Number Date Country
103434364 Dec 2013 CN
2540533 Jun 2012 EP
2540533 Aug 2017 EP
201407619-D0 Jun 2014 GB
1996036455 Nov 1996 WO
1996036525 Nov 1996 WO
1996038260 Dec 1996 WO
2003024641 Mar 2003 WO
2004108343 Dec 2004 WO
2005093773 Oct 2005 WO
2007003375 Jan 2007 WO
2007110235 Oct 2007 WO
2007110236 Oct 2007 WO
2008019847 Feb 2008 WO
2007128586 Jun 2008 WO
2008068314 Jun 2008 WO
2008086994 Jul 2008 WO
2008087024 Jul 2008 WO
2008107130 Sep 2008 WO
2008138503 Nov 2008 WO
2008145396 Dec 2008 WO
2009083609 Jul 2009 WO
2009098285 Aug 2009 WO
2009112520 Sep 2009 WO
2009135938 Nov 2009 WO
2009140977 Nov 2009 WO
2010125057 Nov 2010 WO
2010125058 Nov 2010 WO
2010142703 Dec 2010 WO
2011032533 Mar 2011 WO
2014016437 Jan 2014 WO
2014187720 Nov 2014 WO
2014195340 Dec 2014 WO
2015193331 Dec 2015 WO
2016116414 Jul 2016 WO
2017036461 Mar 2017 WO
2019030248 Feb 2019 WO
2019042504 Mar 2019 WO
2019048010 Mar 2019 WO
2019048498 Mar 2019 WO
2019048680 Mar 2019 WO
2019048682 Mar 2019 WO
Non-Patent Literature Citations (9)
Entry
US 9,202,136 B2, 12/2015, Schmidt et al. (withdrawn)
US 9,809,265 B2, 11/2017, Kinjo (withdrawn)
US 10,449,880 B2, 10/2019, Mizobata et al. (withdrawn)
Google translation of Chinese Patent Application Pub No. CN 103434364 A1 to Wanan et al. that published on 12-13 (hereinafter “Wanan”).
Google translation of Canadian Patent No. CA1133795A to Hardin et al.
NPL, Mike Hanlon (Nov. 19, 2009). “Narrow track vehicles—the convergence of the car and the motorcycle” (https://newatlas.com/nissan-landglider/13368/) (hereinafter “Hanlon”).
NPL, F. Claveau (Oct. 2014). Fabien Claveau, Philippe Chevrel, Lama Mourad. Non-linear control of a Narrow Tilting Vehicle, IEEE International Conference on Systems, Man, and Cybernetics (SMC), Oct. 2014, San Diego, United States. pp. 2488-2494, 2014, <10.1109/SMC.2014.6974300>. <hal-01105300> (https://hal.ar.
Nick Lavars: “Peugeot Splits the Difference Between Two and Four Wheels with Tilting PHEV Scooter,” New Atlas.com article, published Dec. 6, 2017, website: https://newatlas.com/peugeot-tilting-phev-scooter/52516/.
International Search Report and Written Opinion dated Feb. 21, 2019, regarding PCT/US2018/059627.
Related Publications (1)
Number Date Country
20190168561 A1 Jun 2019 US