The present invention relates to suspension systems and in particular suspension systems for two wheeled vehicles, that is bicycles and motorcycles.
In the following specification the following terms shall be taken to mean:
Anti-brake dive; A property of the front suspension which describes its ability to prevent deflection when the brakes are applied by reacting force through its linkages rather than its springs.
Anti-brake lift; A property of the rear suspension, which describes its ability to prevent deflection when the brakes are applied by reacting force through its linkages rather than its springs.
Anti-brake lift angle; The angle subtended, in the side view, by the line joining the tyre contact patch centre with the point at which the brake load is reacted to the vehicle frame, to the horizontal. The greater this
Anti-phase motion; When the front and rear wheels both move vertically but in opposite directions.
Anti-squat; A property of the rear suspension, which describes its ability to prevent suspension movement when a tractive load is applied by reacting force through its linkages rather than its springs.
Anti-squat angle; The angle subtended, in the side view, by the line joining the tyre contact patch centre to the point of intersection of the chain and the line joining the centre of the rear wheel with the point at which rear suspension loads are transmitted via the linkages to the frame.
Castor angle; The angle to the vertical, in the side view, that the steering axis makes with the ground (see Figure la).
Castor trail; The horizontal distance from the wheel centre to the point where the steering axis intersects with the ground in the side view.
Contact patch trajectory; The path of the contact patch centre, as seen from the side view, as the suspension articulates from rebound to bump. This characteristic is closely associated with anti-brake dive (for front suspensions) and anti-brake lift (for rear suspensions), if the brakes are mounted directly to the part carrying the wheel hub. If the brakes are mounted independently, the contact patch trajectory may be decoupled from anti-brake lift and dive.
Contact patch trajectory angle; The angle to the horizontal of the contact patch trajectory.
In-phase motion; When the front and rear wheels both move vertically and in the same direction.
Coupling; When one parameter influences another, the parameters are said to be coupled.
Interconnection; A means of connecting the front and rear suspensions in such a way that vertical motion of one influences vertical motion of the other.
Sinkage; The deflection in the vertical direction of the rider and frame (sprung mass) due to the rider's own weight.
Wheel centre trajectory; The path of the wheel centre, as seen from the side view, as the suspension articulates from rebound to bump (see
Wheel centre trajectory angle; The angle to the horizontal of the wheel centre trajectory (see
Although bicycles incorporating suspensions have existed almost as long as have bicycles, the ‘art’ of suspension design has been driven mostly by other modes of transport for example, cars, motorcycles etc.
The relatively recent increase in popularity of bicycles designed for off-road use has raised the level of interest in suspensions for bicycles.
However, some of the design considerations that are unique to bicycles have prevented some of the developments made in the broader field from translating entirely successfully to bicycles.
Namely:
It is mostly in respect of these bicycle specific issues that the invention relates although significant advantages may be gained by its application to motorcycles or any other vehicles with chain driven rear wheels.
Bicycle suspensions used hitherto include high anti-brake lift/anti-squat suspensions for the rear wheel, see for example
The trailing arm design shown in
The trailing arm design shown in
The design shown in
a to 3d show suspension systems used hitherto on the front wheels of bicycle/motorcycles.
a shows a front suspension in which the wheel hub 34 is attached to the front forks 70 by a leading arm part. The braking couple is reacted through the leading arm.
b shows a front suspension in which the wheel hub 34 is attached to a link that is in turn attached via two links to the front forks 70. The two links converge away from the forks 70, extensions of the links intersecting at a point which describes a virtual centre about which the wheel hub 34 rotates instantaneously. The braking couple is reacted through the link to which the wheel hub 34 is attached.
c shows a front suspension in which the wheel hub 34 is attached to the end of a telescopic fork 70 and is constrained to move in a direction parallel to its axis of sliding. The brake couple is transmitted to a link via a brake reaction lever that is itself connected to the wheel hub 34 via a bearing concentric with the wheel bearing.
d shows a front suspension in which the wheel hub 34 is attached to a telescopic fork 70, the fork 70 being located to the frame 14 via a lower wishbone and a spherical upper joint. The handlebars are connected directly to the upper part of the fork 70 so that steering movement of the handlebars will be transmitted to the fork 70. The intersection of the lower wishbone axis, in the side view, and a line drawn perpendicular to the fork sliding axis through the upper spherical joint, defines the virtual centre of the wheel hub 34. The braking couple is reacted through the fork 70.
In the suspensions shown in
The suspension shown in
The combination of a front suspension with a high degree of anti-brake dive and rear suspension with high anti-brake lift and anti-squat will enable lower stiffness to be achieved in pitch. However with conventional suspension systems, the stiffness in pitch (anti-phase motion) must be compromised in order to achieve sufficient stiffness for in-phase motion, in order to avoid excessive lowering of the suspension due to the weight of the rider, which may, for example, cause problems with ground clearance, particularly pedal clearance when cornering. For anti-phase motion a relatively soft suspension is desirable, in order to isolate the rider from shocks.
The present invention provides a suspension system having; a front suspension assembly with a high degree of anti-brake dive and a rear suspension assembly with high anti-brake lift and anti-squat, the suspension being relatively stiff for in-phase motion and relatively soft for anti-phase motion.
According to one aspect of the present invention a suspension system for a vehicle with a chain driven rear wheel comprises;
The invention is now described, by way of example only, with reference to the accompanying drawings, in which:
b is a diagrammatic view of bicycle wheel in bump, showing the wheel centre trajectory Twc; and contact patch trajectory Tcp;
a is a diagrammatic illustration of one form or rear suspension assembly used on bicycles hitherto;
b is a diagrammatic illustration of a second form or rear suspension assembly used on bicycles hitherto;
c is a diagrammatic illustration of a third form or rear suspension assembly used on bicycles hitherto;
a is a diagrammatic illustration of one form or front suspension assembly used on bicycles hitherto;
b is a diagrammatic illustration of a second form or front suspension assembly used on bicycles hitherto;
c is a diagrammatic illustration of a third form or front suspension assembly used on bicycles hitherto;
d is a diagrammatic illustration of a fourth form or front suspension assembly used on bicycles hitherto;
The assembly for suspension of the rear wheel illustrated in
In accordance with the assembly illustrated in
Movement of the pivot 16 in this manner will introduce coupling between the transmission and the suspension, the tension in the chain 18 varying on movement of the trailing arm 12. Tensioning means 22, for example the tensioning mechanism of a Derailleur type gear mechanism, is consequently required, in order to maintain appropriate tension in the chain 18.
In the suspension assembly illustrated in
As illustrated in
Other forms of hub mounted brake, for example a disc brake in which the brake disk is mounted on the hub and the brake caliper is mounted to the brake reaction lever, may be used in place of the hub mounted drum brake.
The tensioning mechanism 22 of a Derailleur type gear mechanism will only be capable of accommodating a limited degree of coupling between the transmission and the suspension and consequently there is a limit on the amount by which the pivot 16 may be raised. Use of other tensioning means may however overcome this limitation.
In the embodiment illustrated in
With this assembly the anti-squat angle q and anti-brake lift angle g are equal, both being defined by the line joining the tyre contact patch centre 26 and the axis of pivot 46.
In the modification illustrated in
In the embodiment illustrated in
Alternatively in this embodiment, torque may be transmitted from the pedal crank to an idler gear by other forms of transmission, for example bevel gears and drive shafts or hydraulic means.
In the embodiment illustrated in
While in the embodiments illustrated in FIGS. 7 to 10, Derailleur type gear mechanisms are shown, it will be appreciated that other types of gear mechanism, such as hub gears, may be used. The embodiments illustrated in FIGS. 4 to 6, may also be adapted, by use of independent tensioning means, for use with other types of gear mechanism.
In the above examples of rear suspension assemblies, it is anticipated that the suspension would have significantly lower than normal stiffness (especially in the pitch direction), one that could be expected to utilise a large amount of its available travel, accordingly the properties of anti-squat, anti-lift etc. are required to be as insensitive as possible to suspension travel. To this end, it is foreseen that the length of this portion of chain will be approximately equal to the wheel radius in length or longer. This will correspond to the length of suspension link or links that will be required to achieve this particular aim.
Where the transmission is de-coupled from the suspension, as in the assemblies illustrated in FIGS. 7 to 10, a change of gear will not result in any interference between transmission and suspension.
While all four of the front suspension assemblies illustrated in
The upper wishbone 74 is connected to the handlebars 72 by pivot 80 which permits pivotal movement about an axis parallel to the axis of rotation of the front wheel 84. The wishbone 74 is connected to the upper end of the fork assembly 70 by universal joint 82. The axis of universal joint 82 is coaxial with the axis of the fork assembly 70, to allow angular displacement between the fork assembly 70 and upper wishbone 74 other than along the axis of the fork assembly 70, so that steering movements of the handlebars 72 will be transmitted by the fork assembly 70, to the front wheel 84.
Alternatively the universal joint 82 may be replaced by a pivot which allows pivotal movement about an axis parallel to the axis of rotation of the wheel, while permitting a small amount of angular compliance in the plane at right angles to the axis of the fork assembly 70. The lower wishbone 76 is connected to the frame 14 by pivot the axis of which is normal to the plane of the frame 14; and to the fork assembly by a spherical joint 88, which will permit steering of the fork assembly 70 as well as upward and downward pivoting of the wishbone 76.
A brake reaction lever 90, is provided on the wheel hub 34, in similar manner to that described above, with reference to
With this front suspension assembly, when the brakes are applied, the brake torque is reacted by the brake reaction link 92. The brake reaction link 92 will be in tension, transmitting a downward force to the upper wishbone, at pivot 96. This will result in an upward force being applied by the upper wishbone 74, to the front end of frame 14 at pivot 80, through the handlebars 72 and steering tube 98. The magnitude of this force will depend on the relative lengths of the upper wishbone 74 and brake reaction lever 90 and the location of universal joint 82 along the upper wishbone 74. By such means the front suspension may be tuned to provide sufficient anti-dive, independent of wheel trajectory angle. The wheel trajectory angle for this assembly will be upwards and rearwards, as desired.
A further advantage of this specific arrangement is that the loads in the brake reaction link 92 will always be tensile so long as the brakes are applied whilst travelling in the forwards direction. Although the brakes may be required to operate in reverse to small degree, e.g. stopping the bicycle from rolling backwards on a hill, the forces will be small. The brake reaction link 92 can therefore be made from narrow gauge material.
With conventional front suspension assemblies including telescopic (sliding) forks, the vertical contact patch reaction will impose a side on the piston and seal, causing stiction. The front suspension assembly illustrated in
The front and rear suspension assemblies disclosed above, with reference to FIGS. 4 to 11, may be used to advantage on their own or in combination, to provide independent suspension of the front and/or rear wheel of a bicycle, motor cycle or similar vehicle.
However, in accordance with preferred embodiments of the present invention, the front and rear suspension assemblies are interconnected, so that the front and rear suspensions have lower stiffness in anti-phase motion, than would a vehicle with independent front and rear suspensions, of a given stiffness in in-phase motion.
The trailing arm 42 is pivotally attached to a bracket 100 on the rear tube of frame 14, so that the axis of pivot 46 passes through the point of contact of the chain 18′ with idler sprocket wheel 44″, on the tension side. The trailing arm 42 has an extension 102 which extends forwardly of the pivot 46. The extension 102 is connected forwardly of the pivot 46, to a balance beam 104, by means of a link 106, the link being pivotally connected at opposite ends to the extension 102 of the trailing arm 42 and to the balance beam 104. A series of longitudinally spaced apertures 108 is provided for connecting the link 106 to extension 102.
The forward end of balance beam 104 is pivotally connected to an extension 110 of the lower trailing arm 76 of the front suspension, at a position spaced rearwards from the pivot 86.
The balance beam 104 is connected to the frame 14 by means of a pair of spring/damper units 112,114. The spring/damper units 112,114 are pivotally connected to a bracket 116. Spring/damper unit 112 is connected to balance beam 104 forwardly of spring/damper unit 114, each by means of one of a series of apertures 118, spaced longitudinally of the balance beam 104.
With the suspension system described above, when the front and rear suspension assemblies act in phase, for example due to sinkage, both spring/damper units 112,114 will act together to oppose downward movement of the suspension. However, when acting out of phase, one spring/damper unit 112,114 will be compressed, while the other spring/damper unit 114,112 will extend thereby producing a lower stiffness in pitch. For example if an upward force is applied to the front forks 70, upward pivoting of trailing arm 76 will cause to forward end of balance beam 102 to be depressed, depressing the spring/damper unit 112. Pivoting of the balance beam 102 about the connection thereof to spring/damper unit 112 will cause the trailing end of balance beam 102 to move upwardly, this motion being assisted by a reduction in the compressive force applied to spring/damper unit 114. Upward movement of the rear end of the balance beam 102 is transmitted by link 104 to the trailing arm 42 of the rear suspension, causing the trailing arm 42 to move downwards.
In similar manner, upward movement of trailing arm 42 will be transmitted to lower wishbone 74, causing the front suspension to move downwards, spring/damper unit 114 being compressed and spring/damper unit 112 extending.
The above described suspension system may be tuned by suitable selection of the spring rates of the spring/damper unit 112,114 and also by altering the apertures 108, 118 by which link 106 is connected to extension 102 and/or spring/damper units 112,114 are connected to the balance beam 104.
The embodiment of the invention illustrated in
The embodiment illustrated in
The rear suspension assembly is based on the suspension assembly described with reference to
In similar manner to the embodiments illustrated in
As with the embodiments illustrated in
The embodiment illustrated in
A third spring/damper unit 164 is connected by pivot 166 to the end of the balance lever 154 remote from pivot 156 and to the rear tube of the frame 14 by pivot 168. The third spring/damper unit 164 acts in both directions, having a central balanced position in which it does not apply a load to the balance lever 154 but when displaced to one side or the other will apply a restoring force to the balance lever 154, towards the balance position. The balance position corresponds to the desired pitch attitude of the bicycle.
With this system, for in-phase motion, both spring/damper units 150,160 will be under compression and as they are interconnected will be depressed to the same degree. The balance position of balance lever 154 will be maintained by spring/damper unit 164. For anti-phase motion, the spring/damper units 150,160 will act as a solid link so that, for example, upward movement of the front suspension will cause the balance arm 154 to rotate anticlockwise compressing spring/damper unit 164 in one direction and causing the rear suspension to move downwards and vice versa. The spring/damper unit 164 may consequently provide a suspension of relatively low stiffness in pitch.
As with previous embodiments the system may be tuned by variation of the positions of pivots 152, 158, 162 and 166 as well as appropriate selection of the spring rates of spring/damper units 150, 160, 164.
The embodiment illustrated in
A first plunger 172 is connected to the lower wishbone 76 of the front suspension assembly by pivot 170, at a position spaced downwards from the line joining the transverse axis of pivots 86,88. A second plunger 186 is connected to the trailing arm 42 by pivot 184, at a position spaced downwards from the line joining the transverse axis of pivot 46 and the rear hub. A cage 174 is slidably mounted on the plungers 172, 186, adjacent the free ends thereof. Head formations 182, 192 on provided on the free ends of plungers 172, 186 respectively. The lengths of plungers 172, 186 are such that the flange formations 182, 192 will remain separated when both the front and rear suspension assemblies are at their full extent of downward movement.
A first compression spring 176 is mounted about plunger 172 and acts between the forward end of cage 174 and a lug 178 mounted on the front tube of the frame 14. A second compression spring 188 is mounted about the second plunger 186 and acts between the rear tube of the frame 14 and the trailing end of the cage 174. The springs 176 and 188 are pre-compressed and urge the cage to a predetermined balance position, corresponding to the desired pitch attitude, throughout the permitted movement of the front and rear suspension assemblies.
Third and forth compression springs 180, 190 are mounted about plungers 172,186 and act between the inner ends of cage 174 and the head formations 182, 192 respectively.
For in-phase motion the springs 180, 190 will both be in compression, the cage 174 being maintained in its balance position by springs 176, 188. The stiffness of the suspension will consequently be relatively high. For anti-phase motion, for example if the front forks move upwardly, pivoting of the lower wishbone 76 will pull the plunger 172 forwards, compressing spring 180. This will cause the cage to move forwards compressing spring 176. Movement of the cage 174 will pull plunger 186 forwards pivoting the trailing arm downwards, until the compression in spring 190 is equal again to that in spring 180. Similarly on upward movement of the rear suspension, spring 190 will be compressed moving the cage rearwards, compressing spring 188 and causing the front suspension assembly to move downwards. The stiffness of the suspension in pitch will consequently depend on the stiffness of springs 176 and 188.
With suspension systems in accordance with the present invention, it is possible to utilise the interconnection of the front and rear suspension assemblies to control the pitch attitude set-up of the bicycle. For example while riding on the flat, a rider may require the front and rear suspensions to be set to provide a level riding position. However when riding up hill the rider may prefer the front suspension assembly to be raised and the rear suspension assembly lowered, so as to preserve a more or less horizontal riding position. Similarly the front suspension assembly may be lowered and rear suspension assembly raised when riding down hill. Alternatively pitch attitude control may be used to adjust the riders position to provide for example a streamlined head down position or a more comfortable upright position. Pitch attitude control may also be of advantage to compensate of uneven loading of the bicycle.
FIGS. 17 to 19 illustrate diagramatically a bicycle in accordance with the present invention, with pitch attitude control. In the embodiment illustrated in FIGS. 17 to 19 has a front suspension assembly of the type illustrated in
By this means, the lever 236 may be disengaged from a detent 238 and rotated to rotate the cradle 230, thereby altering the orientation of the connections with the spring/damper units 112,114, which in turn will alter the orientation of the balance beam 104. Movement of the balance beam 104 in this manner, will cause the front suspension assembly to be raised, while the rear suspension assembly is lowered, or vice versa. The lever 236 may then be re-engaged with the appropriate detent 238 to lock the suspension in that pitch attitude.
In the modified pitch attitude control lever illustrated in
In this modification, the control lever 236 is hollow and a locking rod 250 extends through the bore of the lever 236. The locking rod 250 may be moved axially of the control lever 236, by means of a cam lever 252 mounted at the top of control lever 236, to engage one of a number of angularly spaced detents formed in an arcuate plate 254 which underlies the portion of the shaft 232 to which the control lever is attached.
In addition to altering the pitch attitude, by rotation of the control lever 236, this modified control mechanism permits adjustment of the height of the suspension. For example, if the cradle 230 is moved downwards relative to the block 240, by means if the screw adjuster 246, the resulting lowering of the balance beam 104 will cause the lower wishbone 76 of the front suspension assembly and the trailing arm 42 or the rear suspension assembly to be raised, thereby lowering the suspension. Similarly, the suspension will be raised by moving the cradle 230 upwards relative to the block 240.
Various modifications may be made without departing from the invention. For example, while in the above embodiments the spring/damper units have been positioned in the linkage between the front and rear suspension assemblies, springs or spring/damper units may alternatively or additionally be included as part of the front and rear suspension assemblies.
While in the suspension systems described above the front and rear suspension assemblies are interconnected by mechanical linkages, they may alternatively be interconnected by hydrolastic or oleopneumatic means.
Number | Date | Country | Kind |
---|---|---|---|
0227191.4 | Nov 2002 | GB | national |
0227193.0 | Nov 2002 | GB | national |
0320995.4 | Sep 2003 | GB | national |
0322096.9 | Sep 2003 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/GB03/05078 | 11/21/2003 | WO | 5/19/2005 |