Exemplary embodiments of the present invention will be explained in detail below with reference to the accompanying drawings. It is to be noted that the present invention is not limited to the embodiments.
As shown in
The suspensions 20 are provided to be aligned in a comb-like fashion, and magnetic heads 21 each for recording/reproducing data in/from a disk are provided on tip ends of the respective suspensions 20. The actuator arms 22 are coupled to rear ends of the suspensions 20. Moreover, rear ends of the actuator arms 22 are fixedly coupled to the actuator block 30.
The suspension 20 can be manufactured by drawing, for example, a stainless plate or aluminum and then machining the drawn stainless plate or aluminum into a predetermined shape. Furthermore, a plurality of terminals 26 (eight in the example shown in
The actuator block 30 includes the pivot housing 32 that includes the pivot bearing 31 and the coil support 42 that holds the voice coil 41 fixed to the rear end (lower side in
The terminal connecting apparatus 50 connects the terminal 26 provided on the actuator arm 22 of the suspension 20 to the terminal 34 provided on the pivot housing 32 as will be explained later in detail.
A voice coil yoke (not shown) that constitutes, together with the voice coil 41, a voice coil motor is arranged on a rear end (lower side in
A tab 24 (see
In case of the HSA 10 shown in
As explained, the HSA 10 is configured so that the actuator arms 22 coupled to the suspensions 20, the actuator block 30, and the coil support 42 including the voice coil 41 are fixedly assembled with one another. As shown in
The terminal connecting apparatus 50 according to the embodiment is characterized as follows. To connect the terminals 26 of the suspensions 20 to the respective terminals 34 of the actuator block 30, the terminals 26 of all the suspensions 20 are integrally connected to and integrally positioned relative to the respective terminals 34 of the actuator block 30 differently from the conventional technique. According to the conventional terminal connecting apparatus 50a, the connection and positioning are performed per suspension. Furthermore, during the connection of the terminals 26 to the respective terminals 34, it is possible to accurately and easily perform lateral (X-direction) positioning (1), longitudinal (Y-direction) positioning (2), and height-direction (Z-direction) positioning (3).
The lateral (X-direction) positioning (1) is performed to correct a lateral displacement generated when the terminal 26 is connected to each terminal 34. The longitudinal (Y-direction) positioning (2) is performed to align the terminals 26 of the suspensions 20 in the longitudinal direction using the longitudinal positioning pin 70 (see
To perform these positioning operations, the terminal connecting apparatus 50 includes the pressure actuator 80, the terminal connection chip 90, and a lateral positioning mechanism 60 as shown in
As shown in
Namely, the moving claw 63 is configured to hold the tab 24 of each suspension 20 between the moving claw 63 and the fixed claw 61 and to integrally and freely move the suspensions 20 in the lateral direction (X direction).
It is thereby possible to integrally position the terminals 26 of the suspensions 20 in the lateral direction. In the embodiment, a compression spring is used as the compression spring member. Alternatively, a plate spring or the like can be used as the compression spring member.
As shown in
The pressure pins 81 are arranged at positions corresponding to positions of the terminals 26 of the suspensions 20 and the terminals 34 of the actuator block (at equal intervals). It is thereby possible to apply almost equal pressure to the terminals 26.
As a result, the terminal connecting apparatus 50 can integrally press the terminals 26 and 34, and ensure preventing positional deviations of the connection between the terminals 26 and 34 generated when the pressure actuator 80 contacts with the terminals 26.
Moreover, as shown in
Referring to
In a modification shown in
Referring to
As shown in
It is thereby possible to easily and accurately position the terminals 26 of the suspensions 20 relative to the terminals 34 of the actuator block 30 in the longitudinal direction. Furthermore, if the terminals 26 of the suspensions 20 are connected to the respective terminals 34 of the actuator block 30, it is possible to ensure preventing longitudinal displacements in the connection between the terminals 26 to the terminals 34.
Referring to a flowchart of
As shown in
It is determined whether all the suspensions 20 are completed with the lateral positioning processing and the longitudinal positioning processing at the steps S115 and S125, respectively (step S135). If all the suspensions 20 are completed with the lateral positioning processing and the longitudinal positioning processing (Yes at step S135), the processing goes to step S145. At the step S145, the pressure actuator 80 performs a terminal pressing process for pressing the terminals 26 of all the suspensions 20 against the respective terminals 34 of the actuator block 30 (step S145).
The terminal pressing process performed by the pressure actuator 80 enables simultaneously and sequentially connecting the terminals 26 of the suspensions 20 to the respective terminals 34 of the actuator block 30 by one operation. Furthermore, the terminals 26 can be held at predetermines positions (corresponding to the positions at which the respective terminals 34 of the actuator block 30 are arranged).
The terminal connection chip 90 performs a connection processing for connecting the terminals 26 to the terminals 34 by soldering (step S146). If it is determined that the terminals 26 of all the suspensions 20 are completed with the connection processing (Yes at step S150), the HSA 10 is ejected (step S160).
As explained so far, the terminal connecting apparatus 50 according to the embodiment includes the pressure actuator 80, the terminal connection chip 90, and the lateral positioning mechanism 60. The pressure actuator 80 integrally (simultaneously) pressures the terminals 26 of the suspensions 20 against the respective terminals 34 of the actuator block 30. The terminal connection chip 90 connects the terminals 26 of the suspension 20 to the respective terminals 34 of the actuator block 30. The lateral positioning mechanism 60 positions the terminals 26 relative to the terminals 34 in the lateral direction. Therefore, during the manufacturing of the HSA 10, the connection operation for connecting the terminals 26 of the suspensions 20 to the terminals 34 of the actuator block can be accurately and efficiently performed.
According to an experiment conducted by the inventor of the present invention, by performing the lateral, longitudinal, and height-direction positioning processes according to the embodiment, time required to position the suspensions 20 can be reduced to about 50% as compared with the conventional connection operation for connecting the terminal of each suspension to the terminal of the actuator block.
Namely, the result of the experiment indicates that it is possible to improve the number of produced HSAs, reduce cost, improve product reliability, and reduce production yield according to the embodiment.
In the embodiment, the suspension 20 includes the tab 24 in which the circular hole 25 into which the longitudinal positioning pin 70 is inserted. However, the circular hole 25 for the longitudinal positioning pin 70 is not always formed in the tab 24 of the suspension 20. The circular hole 25 can be replaced by an independently-provided suction nozzle.
As describe above, according to an embodiment of the present invention, the terminals of the suspensions can be simultaneously connected to the respective terminals of the actuator block by one operation in a sequential manner. It is thereby possible to reduce the operation time required for the terminal connection. Accordingly, the operation for connecting the terminals of the suspensions to the respective terminals of the actuator block can be accurately and efficiently performed. It is thereby possible to contribute to improvement of the number of produced HSAs and cost reduction.
Furthermore, according to an embodiment of the present invention, it is possible to integrally and accurately position the terminals of the suspensions in the height direction and the lateral direction.
Moreover, according to an embodiment of the present invention, during the connection of the terminals of the suspensions to the respective terminals of the actuator block, it is possible to ensure preventing the connection deviations among the terminals generated when the terminal pressing unit contacts with the terminals (positional deviations during pressing by the terminal pressing unit).
Furthermore, according to an embodiment of the present invention, during the connection of the terminals of the suspensions to the respective terminals of the actuator block, it is possible to easily and accurately position the terminals of the suspensions in the longitudinal direction.
Moreover, according to an embodiment of the present invention, the connection of the terminals of the suspensions to the respective terminals of the actuator block can be performed simultaneously and sequentially by one operation. It is thereby possible to reduce the operation time for the terminal connection processing. Accordingly, it is possible to accurately and efficiently perform the operation for connecting the terminals of the suspensions to the respective terminals of the actuator block. It is, therefore, possible to contribute to improvement of the number of produced HSAs and cost reduction.
Although the invention has been described with respect to a specific embodiment for a complete and clear disclosure, the appended claims are not to be thus limited but are to be construed as embodying all modifications and alternative constructions that may occur to one skilled in the art that fairly fall within the basic teaching herein set forth.
Number | Date | Country | Kind |
---|---|---|---|
2006-221181 | Aug 2006 | JP | national |