The present application claims the benefit of British Patent Application No. 1008708.8 filed on 25 May 2010, which is incorporated herein in its entirety.
This invention relates to a suspension unit and particularly, but not exclusively, relates to a suspension unit for use on a tracked vehicle.
A tracked vehicle has a track extending around a series of track guide wheels. At least some of the guide wheels support the weight of the vehicle hull on the section of the track which is in contact with the ground. In this specification, the expression “hull” is used to refer to the main body of the vehicle. The hull serves the same purpose as the chassis of a conventional vehicle, whether or not the chassis is constituted wholly or partially by the bodywork of the vehicle. Consequently, in the context of the present invention, the word “hull” is considered to be equivalent to a vehicle chassis.
The track guide wheels which support the weight of the vehicle on the ground need to be connected to the vehicle hull by a suspension arrangement which enables the track guide wheel to move up and down relative to the hull.
A suspension system is known in which the suspension system comprises an arm which is pivotable relative to the hull about a pivot axis. A wheel-supporting shaft is carried by the arm at a position away from the pivot axis, for supporting a track guide wheel. A resilient damping arrangement is accommodated within the arm for providing damped resilient resistance to deflection of the arm away from a static position in a direction corresponding to movement of the hull towards the ground.
At least one displaceable element of the resilient damping arrangement is connected to the hull via a connecting rod that is connected for rotation with a crank pin. The crank pin is carried in a hub that is rigidly connected to the hull of the vehicle. In conventional systems, the crank pin is supported for rotation within the hub by two simple cylindrical bearing shells spaced equally in the axial direction about a central region, over which the connecting rod is connected to the crank pin. This connection is achieved by an end of the connecting rod completely encircling the crank pin. Load is transmitted from the connecting rod through the crank pin and is reacted through the bearing shells to the surrounding structure. It is essential that the bearing shells of such a system are sufficiently large to achieve unit loading of the bearing shells that is within the load capabilities of the bearing shell material. In addition, the crank pin must be sufficiently large in diameter to withstand the bending loads applied when the force transmitted through the connecting rod is reacted by the bearing shells.
In certain applications, the space claim of each individual component is highly restricted. In addition, the load patterns experienced by the components may be substantially consistent, for example compression only loading through the connecting rod. In such applications in particular, there exists a need to provide a reduced diameter crank pin while still maintaining crank pin integrity and unit bearing loading within the bearing material rated capabilities.
According to an aspect of the present invention, there is provided a suspension unit comprising a hub, a bearing sleeve eccentrically mounted within the hub, a crank pin rotatably received within the bearing sleeve and a connecting rod, a first end of which is connected for rotation with the crank pin over a connecting area that comprises less than a complete circumference of the crank pin, the bearing sleeve comprising a slot through which the connecting rod extends from the first end to a second end.
By connecting the connecting rod to the crank pin over only a part of the circumference of the crank pin, the crank pin can be supported within a single bearing sleeve having a slot to accommodate the connection with the connecting rod. The slot will necessarily be substantially on the side of the bearing on which tensile loads are reacted, ensuring that on the side of the bearing that reacts compressive loads, a greater amount of bearing material is available to react those loads. In addition, bearing material is available to react the compressive loads transmitted by the connecting rod along the axis of application of those loads, thus reducing the bending loads applied to the crank pin. The reduction in bending loads, together with the increase in available bearing material to react compressive loads, means that the diameter of the crank pin and bearing sleeve can be reduced without any loss of performance either of the crank pin or of the bearing sleeve.
The connecting rod may be connected to the crank pin with a longitudinal axis of the connecting rod extending substantially perpendicularly to an axis of rotation of the crank pin.
The connecting rod may be connected to the crank pin in a central region of the crank pin, distant from each opposed end of the crank pin. For example, the connecting rod may be connected to the crank pin at an axial centre of the crank pin, such that a longitudinal axis of the connecting rod bisects the crank pin.
The connecting area may trace an arc of between 90 and 180 degrees about the circumference of the crank pin.
The slot in the bearing sleeve may be circumferential and may trace an angle of between 150 and 270 degrees about a circumference of the bearing sleeve.
The dimensions of the connecting area and bearing slot may ensure that relative rotation is available between the connected crank pin and connecting rod and the bearing sleeve.
The angle of relative rotation between the connected crank pin and connecting rod and the bearing sleeve may be between 1 and 180 degrees.
The first end of the connecting rod may comprise a connecting surface and a mounting protrusion. The connecting rod may be connected to the crank pin via an attachment mechanism which may pass through the mounting protrusion into the crank pin. The attachment mechanism may pass through a centre of rotation of the crank pin.
The attachment mechanism may comprise a bolt, and/or pin that may be received in a corresponding bore formed in the crank pin. The bore may be a blind bore and may for example comprise an internal thread. In alternative embodiments, the attachment mechanism may comprise a plate that may be received in a slot formed in the crank pin. The attachment mechanism may be integrally formed with either the connecting rod or the crank pin.
The bearing sleeve may encompass a complete axial length of the crank pin.
The suspension unit may further comprise: a connecting element secured to the hub and adapted to be secured to a vehicle chassis, a suspension arm mounted on the hub for pivoting movement about an axis of the hub, a wheel supporting shaft provided on the suspension arm, the wheel supporting shaft being parallel to, and spaced from, the axis of the hub, and a resilient damping arrangement accommodated within the suspension arm, the second end of the connecting rod being connected to at least one moveable member within the resilient damping unit.
According to another aspect of the present invention, there is provided a vehicle having a suspension unit in accordance with the first aspect of the present invention.
The vehicle may be a tracked vehicle and the suspension unit may support a track guide wheel of the vehicle.
For a better understanding of the present invention, and to show more clearly how it may be carried into effect, reference will now be made by way of example to the following drawings, in which:—
With reference to
When the suspension unit 2 is mounted on a vehicle, the suspension hub 6 is secured to the vehicle hull via a connecting element in the form of a flange 8. Bolts (not shown) extend through plain holes 10 in the flanges 8 to engage threaded holes in the vehicle hull (not shown). The holes 10 in the flanges 8 are arranged in a pattern which corresponds to the holes in the vehicle hull.
The cylindrical outer surface of the suspension hub 6 is received within a cylindrical opening 12 in the suspension arm 4. Thus, in use, the suspension hub 6 is secured to the vehicle hull by way of the flange 8 and the suspension arm 4 can pivot about the central axis of the suspension hub axis defined by the cooperating cylindrical surfaces of the body of the suspension hub 6 and the cylindrical opening 12.
The suspension arm 4 accommodates a resilient damping arrangement 14 that comprises at least one displaceable element in the form of a piston 16 which is slidably disposed within a cylinder 18. The piston 16 is connected via a connecting rod 20 to a crank pin 22 that is eccentrically mounted in the hub 6. The crank pin 22 is mounted in the hub 6 via a bearing sleeve 24, within which the crank pin 22 is rotatably received.
With reference also to
The connecting rod 20 is connected to the crank pin 22 over a connecting surface or area 26 that extends over the thickness t of the connecting rod 20 in the axial direction of the crank pin 22 and extends over an arc a of the circumference of the crank pin 22. The arc a is preferably greater than 90 degrees and less than 180 degrees. The angle over which the arc a extends may be varied according to a particular application for which the suspension unit 2 is required. According to one embodiment, the arc a extends over an angle of approximately 140 degrees. In this manner, the connecting rod 20 is connected to the crank pin 22 on one side only of the crank pin 22, leaving at least one half of the circumference of the crank pin 22, at the axial region of the pin where the connecting rod 20 is connected, free from additional encumbrance or thickness.
The first end 28 of the connecting rod 20 comprises a mounting protrusion 30 that projects from a surface of the connecting rod 20. A bore 32 extends through the mounting protrusion 30 and opens onto the connecting surface 26 of the connecting rod 20, over which the connecting rod 20 is connected to the crank pin 22. A corresponding blind bore 34 extends into the crank pin 22 from a connecting surface of the crank pin 22. In use, an attachment mechanism in the form of a bolt 38 is driven into the cooperating bores 32, 34 of the mounting protrusion 30 and crank pin 22 until a head 36 of the bolt engages an annular shoulder 40 of the mounting protrusion 30. The bolt 38 fixedly connects the connecting rod 20 and the crank pin 22 such that the crank pin 22 and connecting rod 20 rotate as a single unit. In an alternative embodiment (not shown), an attachment mechanism in the form of a pin or extending plate may be employed. The attachment mechanism may be engaged in corresponding bores or slots formed in the mounting protrusion 30 and crank pin 22. Additional alternative arrangements for connecting the connecting rod 20 and crank pin 22 could also be contemplated.
With reference to
In use, the crank pin 22 is received within the bearing sleeve 24 and the connecting rod 20 is connected to the crank pin 22 via the bolt 38 and cooperating bores 32, 34 or other attachment mechanism as described above. The connecting rod 20 thus extends away from the crank pin 22, through the slot 52 in the bearing sleeve 24, towards its second end (not shown). The circumferential extent of the slot 52 and the thickness t of the connecting rod 20 are such as to permit at least 60 degrees of relative rotation between the bearing 24 and crank pin 22/connecting rod 20, when the components are assembled together.
As discussed above, the connecting rod 20 transmits force through the crank pin to be reacted through the bearing shells to the surrounding structure. Compressive loads F transmitted through the connecting rod 20 are reacted by the continuous bearing sleeve 24 over the entire length/of the crank pin, as seen in
The apparatus of the present invention thus provides a reduced space claim for the connecting rod, crank pin and bearing system of a suspension unit while maintaining unit loading within current bearing material limits. The reduced crank pin size is obtained by attaching the connecting rod, which inputs load to the crank pin and bearing, to one side only of the crank pin as shown particularly in
Number | Date | Country | Kind |
---|---|---|---|
1008708.8 | May 2010 | GB | national |
Number | Name | Date | Kind |
---|---|---|---|
4156536 | Brandstadter | May 1979 | A |
4447073 | Brandstadter | May 1984 | A |
4537422 | O'Rourke | Aug 1985 | A |
4552344 | Johnson | Nov 1985 | A |
4700970 | Joseph | Oct 1987 | A |
4721327 | Chauveau et al. | Jan 1988 | A |
4721328 | Chauveau et al. | Jan 1988 | A |
4795008 | Joseph et al. | Jan 1989 | A |
4858736 | Arnaud et al. | Aug 1989 | A |
5105918 | Hagiwara et al. | Apr 1992 | A |
5183287 | VanSweden | Feb 1993 | A |
5324065 | Derrien et al. | Jun 1994 | A |
Number | Date | Country |
---|---|---|
3637387 | May 1988 | DE |
0450942 | Oct 1991 | EP |
0525957 | Feb 1993 | EP |
1418364 | May 2004 | EP |
1597922 | Sep 1981 | GB |
2313203 | Nov 1997 | GB |
62011156 | Jan 1987 | JP |
2009101864 | May 2009 | JP |
2004076211 | Sep 2004 | WO |
Entry |
---|
UK Search Report Issued on Aug. 23, 2010 for Application No. GB1008709.6, 1 page. |
UK Search Report Issued on Feb. 10, 2011 for Application No. GB1008705.4, 1 page. |
UK Search Report Issued on Aug. 18, 2010 for Application No. GB1008708.8, 1 page. |
UK Search Report Issued on Aug. 16, 2010 for Application No. GB1008706.2, 1 page. |
UK Search Report Issued on Sep. 20, 2011 for Application No. GB 1108677.4, 1 page. |
UK Search Report Issued on Aug. 17, 2010 for Application No. GB1008707.0, 1 page. |
Number | Date | Country | |
---|---|---|---|
20110291369 A1 | Dec 2011 | US |