The present invention relates to a sustained release preparation comprising an insect pest-targeting gel composition, particularly to a sustained release preparation comprising a polymer tube having one sharp end.
Mating disruption, emergence forecasting, mass trapping and the like can be accomplished by the sustained release of a pheromone substance, an attractant or the like. As a method of sustainably releasing a volatile substance which is effective for insect pest control, over a long period of time, a method of sustainably releasing a volatile substance in liquid form, a method of sustainably releasing a volatile substance in gel form and other methods are known. For example, Patent Document 1 discloses a method comprising the steps of enclosing a volatile substance in a polymer vessel and sustainably releasing it from the polymer surface through the polymer wall; Patent Document 2 discloses a method comprising the steps of forming a volatile substance into a fluid gel and sustainably releasing the gel through a polymer film; and Patent Document 3 discloses a method comprising the steps of entrapping a volatile substance in a polymer lattice and sustainably releasing it in a solid or gel form. In addition, when a sustained release preparation having a volatile substance enclosed therein is placed in a field, it is attached to a suspending jig or attached to trees or shelves for plant cultivation (Patent Document 4).
However, a preparation obtained by the method comprising the step of enclosing a volatile substance in liquid form in a polymer vessel as described in Patent Document 1 has a problem that holes or cracks are caused in the vessel as a result of rude treatment by users upon use and the volatile substance enclosed in the vessel leaks from it so that the release period is markedly decreased. The fluid gel described in Patent Document 2 also has a problem, in addition to the possibility of leakage, that a large amount of diluent has to be added to give fluidity so that the release rate of the volatile substance is decreased as the time elapses. Accordingly, there is a demand for the development of a sustained release preparation which can release a volatile substance at a constant rate without causing leakage of the volatile substance.
The polymer gel described in Patent Document 3 has no possibility of leakage of the volatile substance. However, since the gel is produced by polymerization in the presence of a volatile substance, the method cannot be applied to a volatile substance having an instable functional group which may react under polymerization conditions. Accordingly, there is a strong demand for the development of a sustained release preparation in gel form which can be produced without exposing the volatile substance to severe conditions such as polymerization conditions.
In many fields for vegetables and like, branches, trees, shelves, supports or the like for attaching sustained release preparations thereto are not available so that supports have to be prepared and installed separately from the preparations. However, installment of the supports or the like brings not only disturbance to the field work but also unfavorable cost increase. In this case, direct scattering or direct placement of the sustained release preparations on the ground without installment of the supports or the like can be considered, but is not effective. It is because when the preparations come in contact with the soil, a volatile substance released from them is adsorbed to the soil. Accordingly, with respect to crops such as vegetables, there is a demand for the development of sustained release preparations not requiring installment of the supports or the like and not coming in contact with the soil.
With the foregoing in view, an object of the invention is to provide a sustained release preparation comprising an insect pest-targeting gel composition, which preparation is free from leakage or reaction of one or more volatile substances, does not come in contact with the soil even without installment of a stake or the like, and a sustained release rate of the one or more volatile substances is kept constant.
In order to achieve the above-mentioned object, the present inventors have studied a sustained release preparation comprising an insect pest-targeting gel composition, which preparation can sustainably and stably release a volatile substance effective for insect pest control at a given or faster rate over a long period of time. As a result, it has been unexpectedly found that the above-mentioned object is achieved by producing a sustained release preparation comprising a polymer tube having a sharp end and an insect pest-targeting gel composition in the polymer tube, the composition comprising one or more volatile substances and an oil gelling agent, wherein the volatile substances are comprised in an amount of from 70.0 to 99.0% by weight by the insect pest-targeting gel composition and is released outside of the polymer tube through the wall of the polymer tube. Thus, the invention has been completed.
According to the invention, the sustained release preparation comprising an insect pest-targeting gel composition can reduce the possibility of leakage of a volatile substance and suppress a loss of the volatile substance due to the reaction at the time of gelling because the volatile substance is gelled under mild conditions. In addition, the sustained release preparation does not contain a diluent component such as a solvent so that the release at a given or faster rate can be maintained stably for a long period of time. Furthermore, the release rate can be regulated, depending on the material, thickness or the like of the polymer tube. Even a volatile substance having high volatility and therefore not suited for use in conventional sustained release preparations can be released stably when used in the sustained release preparation of the invention. In addition, the sustained release preparation of the invention can be easily placed in the field. It is only necessary to insert the sharp end of the sustained release preparation into the surface of the ground of the field.
The sustained release preparation of the invention comprises a polymer tube having a sharp end and an insect pest-targeting gel composition in the polymer tube, the composition comprising one or more volatile substances and an oil gelling agent. As a material of the polymer tube, a material which can release a volatile substance from the polymer tube to the outside through the wall of the polymer tube is used. Examples of the volatile substance to be used in the invention include a pheromone substance, an attractant, a repellent and a mixture thereof.
Examples of the pheromone substance to be used in the invention include a linear aliphatic aldehyde having from 12 to 20 carbon atoms, a linear aliphatic acetate having from 12 to 20 carbon atoms which is saturated or has one or more double bonds, a linear aliphatic alcohol having from 7 to 20 carbon atoms, a spiroacetal having from 7 to 15 carbon atoms, a linear aliphatic ketone having from 10 to 25 carbon atoms, an aliphatic hydrocarbon having from 10 to 30 carbon atoms, and a carboxylic acid having from 10 to 20 carbon atoms. Of these examples, a linear aliphatic aldehyde having from 12 to 20 carbon atoms, a linear aliphatic acetate having from 12 to 20 carbon atoms which is saturated or has one or more double bonds, a linear aliphatic alcohol having from 7 to 20 carbon atoms and a spiroacetal having from 7 to 15 carbon atoms are particularly preferred. Specific examples include Z7Z11-hexadecadienyl acetate and Z7E11-hexadecadienyl acetate which are the sex pheromone substances of the pink bollworm (Pectinophora gossypiella); Z-8-dodecenyl acetate which is the sex pheromone substance of the oriental fruit moth (Grapholita molesta); E-5-decenyl acetate which is the sex pheromone substance of the peach twig borer (Anarsia lineatella); Z-9-dodecenyl acetate which is the sex pheromone substance of the grape berry moth (Eupoecilia ambiguella); E7Z9-dodecadienyl acetate which is the sex pheromone substance of the European grape vine moth (Lobesia botrana); E-11-tetradecenyl acetate which is the sex pheromone substance of the light brown apple moth (Epiphyas postvittana); E8E10-dodecadienol which is the sex pheromone substance of the codling moth (Cydia pomonella); Z-11-tetradecenyl acetate which is the sex pheromone substance of the leaf roller (Tortricidae); Z3—Z13-octadecadienyl acetate and E3Z13-octadecadienyl acetate which are the sex pheromone substances of the peach tree borer (Synanthedon exitiosa); Z11-hexadecenal which is the sex pheromone substance of the American bollworm (Helicoverpa armigera);
Z9-hexadecenal which is the pheromone substance of the oriental tobacco bud worm (Heliothis assulta); E8E10-dodecadienyl acetate which is the sex pheromone substance of the soybean pod borer (Leguminivora glycinivorella); Z-11-hexadecenyl acetate and Z-11-hexadecenal which are the sex pheromone substances of the diamondback moth (Plutella xylostella); Z-11-hexadecenyl acetate, Z-11-hexdecenol and n-hexadecyl acetate which are the sex pheromone substances of the cabbage armyworm (Mamestra brassicae); Z9E12-tetradecadienyl acetate and Z-9-tetradecenol which are the sex pheromone substances of the beat armyworm (Spodoptera exigua);
Z9E11-tetradecadienyl acetate and Z9E12-tetradecadienyl acetate which are the sex pheromone substances of the common cutworm (Spodoptera litura); Z-9-tetradecenyl acetate which is the sex pheromone substance of the fall armyworm (Spodoptera frugiperda); E-4-tridecenyl acetate which is the sex pheromone substance of the tomato pinworm (Keiferia lycopersicella); Z-11-hexadecenal and Z-13-octadecenal which are the sex pheromone substances of the rice stem borer (Scirpophaga incertulas);
5,9-dimethylpentadecane and 5,9-dimethylhexadecane which are the sex pheromone substance of the coffee leaf miner (Leucoptera coffeella); 14-methyl-1-octadecene which is the sex pheromone substance of the peach leaf miner (Lyonetia clerkella L.);
Z-13-icosen-10-one which is the sex pheromone substance of peach fruit moth (Carposina sasakii); 7,8-epoxy-2-methyloctadecane which is the sex pheromone substance of the gypsy moth (Lymantria dispar dispar); Z-13-hexadecen-1-nyl acetate which is the sex pheromone substance of the pine processionary moth (Thaumetopoea pityocampa); 2-butanol which is the sex pheromone substance of the white grub beetle (Dasylepida ishigaidensis); Z-7,15-hexadecadien-4-olide which is the sex pheromone substance of the yellowish elongate chafer (Heptophylla picea); n-dodecyl acetate which is the sex pheromone substance of the sugarcane wireworm (Melanotus oldnawensis); E-9,11-dodecadienyl butyrate and E-9,11-dodecadienyl hexanate which are the sex pheromone substances of the sugarcane wireworm (Melanotus saldshimensis); (R)—Z-5-(oct-1-enyl)-oxacyclopentan-2-one which is the sex pheromone substance of the cupreous chafer (Anomala cuprea); hexyl hexanoate, E-2-hexenyl hexanoate and octyl butyrate which are the sex pheromone substances of the rice leaf bug (Trigonotylus caelestialium); hexyl butyrate, E-2-hexenyl butyrate and E-4-oxo-2-hexenal which are the sex pheromone substances of the sorghum plant bug (Stenotus ntbrovittatus); (6R)—Z-3,9-dimethyl-6-isopropenyl-3,9-decadienyl propionate and (6R)—Z-3,9-dimethyl-6-isopropenyl-3,9-decadienol which are the sex pheromone substances of the white peach scale (Pseudaulacaspis pentagona);
(S)-5-methyl-2-(1-propen-2-yl)-4-hexenyl 3-methyl-2-butenoate which is the sex pheromone substance of the vine mealybug (Planococcus ficus); Z-9-tricosene which is the sex pheromone substance of the housefly (Musca domestica); gentisyl quinone isovalerate which is the sex pheromone of the German cockroach (Blattella germanica); and 1,7-dioxaspiro[5.5]undecane which is the sex pheromone substance of the olive fruit fly (Bactrocera oleae).
Other examples of the pheromone substance to be used in the invention include a linear aliphatic aldehyde having from 12 to 20 carbon atoms, a linear aliphatic acetate having from 12 to 20 carbon atoms which is saturated or has one or more double bonds, a linear aliphatic alcohol having from 7 to 20 carbon atoms, a spiroacetal having from 7 to 15 carbon atoms, a linear aliphatic ketone having from 10 to 25 carbon atoms, an aliphatic hydrocarbon having from 10 to 30 carbon atoms and a carboxylic acid having from 10 to 20 carbon atoms, other than those exemplified above.
Specific examples of the linear aliphatic aldehyde having from 10 to 20 carbon atoms include Z-5-decenal, 10-undecenal, n-dodecanal, Z-9-dodecenal, E5Z10-dodecadienal, E8E10-dodecadienal, n-tetradecanal, Z7-tetradecenal, Z9-tetradecenal, Z11-tetradecenal, Z9E11-tetradecadienal, Z9Z11-tetradecadienal, Z9E12-tetradecadienal, Z9E11,13-tetradecatrienol, Z10-pentadecenal, E9Z11-pentadecadienal, n-hexadecanal, Z7-hexadecenal, E6Z11-hexadecadienal, E4Z6-hexadecadienal, E4E6Z 11-hexadecatrienal, E 10E12E14-hexadecatrienal, n-octadecanal, Z9-octadecenal, E14-octadecenal, E2Z13-octadecadienal, Z3Z13-octadecadienal, Z9Z12-octadecadienal, and Z9Z12Z15-octadecatrienal.
Specific examples of the linear aliphatic acetate having from 12 to 20 carbon atoms which is saturated or has a double bond include decyl acetate, Z3-decenyl acetate, Z4-decenyl acetate, undecyl acetate, Z7-undecenyl acetate, Z8-undecenyl acetate, E9-undecenyl acetate, dodecyl acetate, E7-dodecenyl acetate, Z7-dodecenyl acetate, E8-dodecenyl acetate, E9-dodecenyl acetate, 11-dodecenyl acetate, 10-methyldodecenyl acetate, tridecyl acetate, Z4-tridecenyl acetate, E6-tridecenyl acetate, E8-tridecenyl acetate, Z8-tridecenyl acetate, tetradecyl acetate, Z7-tetradecenyl acetate, E8-tetradecenyl acetate, Z8-tetradecenyl acetate, E9-tetradecenyl acetate, Z9-tetradecenyl acetate, E10-tetradecenyl acetate, Z10-tetradecenyl acetate, E12-tetradecenyl acetate, Z12-tetradecenyl acetate, 12-methyltetradecenyl acetate, pentadecyl acetate, Z8-pentadecenyl acetate, E9-pentadecenyl acetate, hexadecyl acetate, Z3-hexadecenyl acetate, Z5-hexadecenyl acetate, E6-hexadecenyl acetate, Z7-hexadecenyl acetate, Z9-hexadecenyl acetate, Z10-hexadecenyl acetate, Z12-hexadecenyl acetate, heptadecyl acetate, Z11-heptadecenyl acetate, octadecyl acetate, E2-octadecenyl acetate, Z11-octadecenyl acetate, and E13-octadecenyl acetate.
Specific examples of the linear aliphatic acetate having from 12 to 20 carbon atoms and having two or more double bonds include a conjugated diene-based and/or 1,4-pentadiene-based acetate such as Z3E5-decadienyl acetate, Z3E5-dodecadienyl acetate, E3Z5-dodecadienyl acetate, E4Z10-dodecadienyl acetate, Z5E7-dodecadienyl acetate, E5Z7-dodecadienyl acetate, Z8Z10-dodecadienyl acetate, 9,11-dodecadienyl acetate, E4Z7-tridecadienyl acetate, 11-methyl-Z9,12-tridecadienyl acetate, E3E5-tetradecadienyl acetate, E8E10-tetradecadienyl acetate, Z10Z12-tetradecadienyl acetate, Z10E12-tetradecadienyl acetate, E10Z12-tetradecadienyl acetate, E10E12-tetradecadienyl acetate, E11,13-tetradecadienyl acetate, Z8Z10-pentadecadienyl acetate, Z8E10-pentadecadienyl acetate, Z8Z10-hexadecadienyl acetate, Z10E12-hexadecadienyl acetate, Z11Z13-hexadecadienyl acetate, Z11E13-hexadecadienyl acetate, E11Z13-hexadecadienyl acetate, and Z11E14-hexadecadienyl acetate.
Specific examples of the linear aliphatic alcohol having from 7 to 20 carbon atoms include a saturated linear aliphatic alcohol and a linear aliphatic alcohol having one or more double bonds such as n-heptanol, Z4-heptenol, Z6-nonenol, Z6,8-nonadienol, E6,8-nonadienol, n-decanol, Z5-decenol, E5-decenol, n-undecanol, undecenol, 11-chloro-E8E10-undecadienol, n-dodecanol, Z5-dodecenol, Z7-dodecenol, E7-dodecenol, Z8-dodecenol, E8-dodecenol, Z9-dodecenol, E9-dodecenol, E10-dodecenol, 11-dodecenol, Z5E7-dodecadienol, E5Z7-dodecadienol, E5E7-dodecadienol, Z7Z9-dodecadienol, Z7E9-dodecadienol, E7Z9-dodecadienol, 8,9-difluoro-E8E10-dodecadienol, 10,11-difloro-E8E10-dodecadienol, 8,9,10,11-tetrafluoro-E8E10-dodecadienol, Z9,11-dodecadienol, E9, E11-dodecadienol, n-tridecanol, n-tetradecanol, Z5-tetradecenol, E5-tetradecenol, Z7-tetradecenol, Z8-tetradecenol, Z11-tetradecenol, E11-tetradecenol, Z9Z11-tetradecadienol, Z9E11-tetradecadienol, Z9Z12-tetradecadienol, Z9E12-tetradecadienol, Z10Z12-tetradecadienol, E10E12-tetradecadienol, n-pentadecanol, 6,10,14-trimethyl-2-pentadecanol, n-hexadecanol, Z9-hexadecenol, Z11-hexadecenol, E11-hexadecenol, Z7Z11-hexadecadienol, Z7E11-hexadecadienol, E10Z12-hexadecadienol, E10E12-hexadecadienol, Z11Z13-hexadecadienol, Z11E13-hexadecadienol, E11Z13-hexadecadienol, E11Z13-hexadecadienol, E4Z6Z10-hexadecatrienol, E4E6Z10-hexadecatrienol, n-octadecanol, Z13-octadecenol, E2Z13-octadecadienol, Z3 Z13-octadecadienol, E3Z13-octadecadienol and n-eicosanol.
Specific examples of the spiroacetal having from 7 to 15 carbon atoms include 1,6-dioxaspiro[4.5]decane, 2-ethyl-1,6-dioxaspiro[4.4]nonane, 3-hydroxy-1,7-dioxaspiro[5.5]undecane, 4-hydroxy-1,7-dioxaspiro[5.5]undecane, 7-methyl-1,6-dioxaspiro[4.5]decane, 2-methyl-1,6-dioxaspiro[4.5]decane, 2,7-dimethyl-1,6-dioxaspiro[4.4]nonane, 2,4,8-trimethyl-1,7-dioxaspiro[5.5]undecane, 2-methyl-1,7-dioxaspiro[5.5]undecane, 1,7-dioxaspiro[5.6]dodecane, 2,8-dimethyl-1,7-dioxaspiro[5.5]undecane, 2,2,8-trimethyl-1,7-dioxaspiro[5.5]undecane, 2-ethyl-1,7-dioxaspiro[5.5]undecane, 2-methyl-1,7-dioxaspiro[5.6]dodecane, 2-ethyl-7-methyl-1,6-dioxaspiro[5.6]decane, 7-ethyl-2-methyl-1,6-dioxaspiro[5.6]decane, 2,7-diethyl-1,6-dioxaspiro[4.4]nonane, 2,7-dimethyl-1,6-dioxaspiro[4.6]undecane, 2-methyl-7-propyl-1,6-dioxaspiro[4.4]nonane, 3-hydroxy-2,8-dimethyl-1,7-dioxaspiro[5.5]undecane, 2-propyl-1,7-dioxaspiro[5.5]undecane, 2-ethyl-8-methyl-1,7-dioxaspiro[5.5]undecane, 8-ethyl-2-methyl-1,7-dioxaspiro[5.5]undecane, 2,7-diethyl-1,6-dioxaspiro[4.5]decane, 2,7-dipropyl-1,6-dioxaspiro[4.4]nonane, 7-butyl-2-methyl-1,6-dioxaspiro[4.5]decane, 8-methyl-2-propyl-1,7-dioxaspiro[5.5]undecane, and 2-propyl-8-methyl-1,7-dioxaspiro[5.5]undecane.
Specific examples of the linear aliphatic ketone having from 10 to 25 carbon atoms include heptadecan-2-one, Z12-nonadecen-9-one, Z6Z9-nonadecadien-3-one, Z13-icosen-10-one, Z6-heneicosen-1′-one, Z6-heneicosen-9-one, Z6E8-heneicosadien-11-one, Z6E9-heneicosadien-11-one, Z6Z9-heneicosadien-11-one, and Z7-tricosen-11-one.
Specific examples of the aliphatic hydrocarbon having from 10 to 30 carbon atoms include 1E11-pentadecadiene, 1Z11-pentadecadiene, 5,9-dimethylpentadecane, 2-methylhexadecane, 3,13-dimethylhexadecane, 5,9-dimethylhexadecane, n-heptadecane, 2-methylheptadecane, 2,5-dimethylheptadecane, 5-methylheptadecane, 5,11-dimethylheptadecane, 7-methylheptadecane, 7,11-dimethylheptadecane, Z3Z6Z9-heptadecatriene, Z6Z9-heptadecadiene, Z7-octadecene, 10,14-dimethyl-1-octadecene, 5,9-dimethyloctadecane, 2-methyloctadecane, 14-methyloctadecane, Z3Z6Z9-octadecatriene, n-nonadecane, 2-methylnonadecane, 9-methylnonadecane, Z3Z6Z9Z11-nonadecatetraene, 1E3Z6Z9-nonadecatetraene, Z3Z6Z9-nonadecatriene, Z6Z9-nonadecadiene, Z9-nonadecene, n-eicosane, Z9-eicosene, Z3Z6-eicosadiene, Z3Z6Z9-eicosatriene, 1Z3Z6Z9-eicosatetraene, 1Z3Z6Z9-heneicosatetraene, n-heneicosane, Z3Z6-heneicosadiene, Z6Z9-heneicosadiene, Z6Z9,20-heneicosatriene, Z3Z6Z9-heneicosatriene, Z6-13-methylheneicosene, Z9-heneicosene, n-docosaene, Z3Z6Z9-docosatriene, Z6Z9-docosadiene, n-tricosane, Z7-tricosene, Z3Z6Z9-tricosatriene, Z6Z9-tricosadiene, n-tetracosane, n-pentacosane, Z3Z6Z9-pentacosatriene, n-hexacosane, n-heptacosane, n-octacosane, and n-nonacosane.
Specific examples of the carboxylic acid having from 10 to 20 carbon atoms are not particularly limited insofar they contain a carboxyl group. Examples include carboxylic acids having, in the carbon skeleton thereof, two or more methyl groups, one or more double bond or the like, such as 3,5-dimethyldodecanoeic acid, Z-5-undecenoic acid, E-5-undecenoic acid, and (E,Z)-3,5-tetradecadienoic acid.
Specific examples of the attractant include an aliphatic carboxylic acid such as formic acid, acetic acid, propionic acid, n-butyric acid, isobutyric acid, n-valeric acid, isovaleric acid, caproic acid, isocaproic acid, E2-butenoic acid, 2-hydroxypropionic acid and malonic acid; an aliphatic aldehyde such as acetaldehyde, propanal, pentanal and E2-hexanal; an aliphatic ketone such as 2-butanone, pentane-2,4-dione and cyclohexanone; an aliphatic carboxylate ester such as ethyl lactate, ethyl acetate, isoamyl acetate, Z3-hexenyl acetate, decyl acetate, hexyl 2-methylbutyrate, butyl hexanoate, ethyl octanoate, ethyl nonanoate, ethyl decanoate, ethyl undecanoate, ethyl dodecanoate, ethyl myristate, ethyl palmitate, ethyl E2Z4-decadienoate, tert-butyl 2-methyl-4-cyclohexenecarboxylate and tert-butyl 4(or 5)-chloro-2-methyl-cyclohexanecarboxylate; an aliphatic alcohol such as ethanol, isobutyl alcohol, isopentyl alcohol, 2-ethylhexanol, Z3-hexenol, 1-octen-3-ol, nonanol, decanol, cyclohexanol, acetoin and propane 1,2-diol; an aliphatic ether such as diethyl ether and acetal; an aliphatic hydrocarbon such as α,β-ionone, undecane, tridecane, hexadecane, heptadecane and Z9-tricosene; an aromatic compound such as methyl phenylacetate, ethyl phenylacetate, propyl phenylacetate, phenetyl phenylacetate, Z3-hexenyl benzoate, eugenol, methyl isoeugenol, methyl eugenol, veratric acid, 2-allyloxy-3-ethoxybenzaldehyde, 4-(p-acetoxyphenyl)-2-butanone, 4-(p-hydroxyphenyl)-2-butanone (Raspberry ketone), anisylacetone, methyl anthranilate, ethyl anthranilate, benzyl salicylate, methyl salicylate, phenethyl alcohol, phenethyl propionate, phenethyl butyrate, anethole, vanillin, ethyl vanillin, isovanillin, heliotropin, piperonal acetone and phthiocol; a heterocyclic compound such as maltol, ethyl maltol, 2,5-dimethylpyrazine, γ-(4-pentenyl)-γ-butyrolactone, δ-nonyllactone and frontalin; a sulfur-containing compound such as dimethyl disulfide, dimethyl trisulfide, dipropyl disulfide, methyl isothiocyanate and 3-butenyl isothiocyanate; a nitrogen-containing compound such as trimethylamine, hexylamine, 1,4-diaminobutane, allylnitrile and methyl 2-amino-3-methylvalerate; and a terpene compound such as geraniol, farnesol, linalool, linalool oxide, citronellol, cineol, geranyl acetate, citronellyl acetate, citral, carvone, d-limonene, β-pinene, farnesene and 4,8-dimethyl-1,E3,7-nonatriene.
Other specific examples of the attractant include an essential oil such as angelica oil, citronella oil and mustard oil; and an extract from a plant such as aloe and eucalyptus.
Specific examples of the repellent include an aliphatic carboxylic acid such as Z9Z12-octadienoic acid and 3,7,11-trimethyl-6,10-dodecadinoic acid; an aliphatic aldehyde such as E2-hexenal, Z2E6-3,7-dimethyloctadienal, 3,7-dimethyl-6-octenal and E2Z6-nonadienal; an aliphatic ketone such as 2-heptanone, 2-dodecanone, 2-tridecanone, 3-methyl-2-cyclohexenone, E3E5-octadien-2-one and E3Z7-decadien-2-one; an aliphatic carboxylate ester such as butyl acetate, octyl acetate, methyl myristate, methyl palmitate and methyl 6-n-pentylcyclonexene-1-carboxylate; an aliphatic alcohol such as octanol, 1-octen-3-ol, 2-ethyl-1,3-hexanediol, menthol and n-hexyltriethylene glycol monoether; an aliphatic hydrocarbon such as tridecane; an aromatic compound such as cinnamic alcohol, cinnamic aldehyde, methyleugenol, phenyl acetaldehyde, benzaldehyde, anethole, diethyltoluamide, N,N-diethyl-3-methylbenzamide (DEET), dimethyl phthalate, dioctyl phthalate and naphthalene; a heterocyclic compound such as γ-nonyllactone, butyl 3,4-dihydro-2,2-dimethyl-4-oxo-2H-pyran-6-carboxylate, furfural and 4-octanoyl morpholine; a sulfur-containing compound such as propyl isothiocyanate; a nitrogen-containing compound such as methyl piperidine, 2,6-dimethylpiperidine and 2-ethylpiperidine; and a terpene compound such as geraniol, cineol, linalool, terpineol, citral, citronellal, neryl formate, α-pinene, carvone, d-limonene and camphor.
Additional examples may include an essential oil such as rose geranium oil, sandalwood oil, pepper oil (peppermint oil) and lemongrass oil; and an extract from a plant such as cinnamon, camphor, clover, thyme, geranium, bergamot, laurel, pine, Gaultheria adenothrix, pennyroyal, eucalyptus and neem tree.
The oil gelling agent to be used in the invention has, in the molecule thereof, at least one polar functional group capable of forming an intermolecular hydrogen bond such as a carboxyl group, a hydroxyl group, an ester group or an amide group, so that the intermolecular hydrogen bonds are present through the polar functional group. When the oil gelling agent is dissolved uniformly in the volatile substance by heating (preferably at from 60 to 150° C.), the intermolecular hydrogen bonds of the oil gelling agent are cut temporarily, but are formed again by cooling (including cooling by being left standing). Since a large amount of the volatile substance exists around the molecules of the oil gelling agent, the oil gelling agent forms the intermolecular hydrogen bonds again while incorporating therein the volatile substance. Only weak interaction such as Van der Waals force works between the volatile substance and the molecules of the oil gelling agent so that the volatility of the volatile substance even after gelling is almost the same as that before gelling.
Specific examples of the oil gelling agent include an amino acid derivative, a long-chain fatty acid, a polyvalent metal salt of a long-chain fatty acid, a sugar derivative and wax. Of these examples, an amino acid derivative and a long-chain fatty acid are particularly preferred.
Specifically preferred examples of the amino acid derivative include an amino-acylated and carboxyl-esterified or carboxyl-amidated derivative of an amino acid having from 2 to 15 carbon atoms, such as di(cholesteryl/behenyl/octyldodecyl) N-lauroyl-L-glutamate, di(cholesteryl/octyldodecyl) N-lauroyl-L-glutamate, di(phytosteryl/behenyl/octyldodecyl) N-lauroyl-L-glutamate, di(phytosterylloctyldodecyl) N-lauroyl-L-glutamate, N-lauroyl-L-glutamic acid dibutylamide, and N-ethylhexanoyl-L-glutamic acid dibutylamide. Of these examples, N-lauroyl-L-glutamic acid dibutylamide and N-ethylhexanoyl-L-glutamic acid dibutylamide are particularly preferred.
Specific examples of the long-chain fatty acid include a saturated or unsaturated fatty acid having from 8 to 24 carbon atoms, and an analog of a long-chain fatty acid such as 12-hydroxystearic acid. Specific examples of the saturated fatty acid include octanoic acid, 2-ethylhexanoic acid, decanoic acid, lauric acid, myristic acid, stearic acid, palmitic acid, arachidic acid and behenic acid. Specific examples of the unsaturated fatty acid include palmitoleic acid, oleic acid, vaccenic acid, linoleic acid, linolenic acid, arachidonic acid, icosadienoic acid and erucic acid.
Specific examples of the metal salt of a long-chain fatty acid include a metal salt of the long-chain fatty acid described above and a metal salt of a saturated fatty acid, for example, having a carbon chain of 18 carbon atoms such as aluminum stearate, magnesium stearate, manganese stearate, iron stearate, cobalt stearate, calcium stearate and lead stearate.
Specific examples of the saccharide derivative include a dextrin fatty acid ester such as dextrin laurate, dextrin myristate, dextrin palmitate, dextrin margarate, dextrin stearate, dextrin arachidate, dextrin lignocerate, dextrin cerotate, dextrin 2-ethylhexanoate palmitate and dextrin palmitate stearate; a sucrose fatty acid ester such as sucrose palmitate, sucrose stearate and sucrose acetate/stearate; a fructooligosaccharide fatty acid ester such as fructooligosaccharide stearate and fructooligosaccharide 2-etylhexanoate; and a benzylidene derivative of sorbitol such as monobenzylidene sorbitol and dibenzylidene sorbitol.
Specific examples of the wax include haze wax (Japan wax derived from Rhus succedanea seeds; main component: triglyceride of palmitic acid), urushi wax (Japan wax derived from Rhus verniciflua; main component: glyceride palmitate), carnauba wax (myricyl cerotate and myricyl alcohol), sugarcane wax (myricyl palmitate), palm wax (myricyl palmitate), beeswax (cerotic acid and myricyl palmitate), whale wax (cetyl palmitate), wool wax (ceryl alcohol and/or myristic acid) and paraffin wax (linear hydrocarbon).
A critical gelling concentration at which a volatile substance gels differs, depending on the structure of a polar functional group, the strength of hydrogen bonds and an asymmetric structure of the oil gelling agent. The strength of hydrogen bonds of the oil gelling agent is sometimes weakened by the coordination of the functional group (polar group) and a non-polar group of the volatile substance. The critical gelling concentration differs, depending on the chemical structure of the volatile substance and the kind of the gelling agent. In consideration of the release performance and cost, the gel composition is charged in the polymer tube desirably at a concentration near the critical gelling concentration. More specifically, the insect pest-targeting gel composition comprises therein from 70.0 to 99.0% by weight, preferably from 85.0 to 99.0% by weight, still more preferably from 90.0 to 99.0% by weight of the volatile substance. When the amount of the volatile substance in the insect pest-targeting gel composition is less than 70.0% by weight, the active ingredient of the volatile substance is enclosed in the gel so that the volatile substance cannot be released stably, thereby making it impossible to achieve long-term and constant sustained-release. In addition, it may increase the cost. When the volatile substance in the insect pest-targeting gel composition exceeds 99.0% by weight, the insect pest-targeting gel composition having fluidity only can be obtained.
For example, when Z11-tetradecenyl acetate, which is the pheromone substance of a leaf roller, is used as the volatile substance and stearic acid is used as the oil gelling agent, the resulting insect pest-targeting gel composition comprises preferably from 90 to 99% by weight of Z11-tetradecenyl acetate. When E8E10-dodecadienol, which is the pheromone substance of the codling moth, is used as the volatile substance and stearic acid is used as the oil gelling agent, the resulting insect pest-targeting gel composition comprises preferably from 70 to 80% by weight of E8E10-dodecadienol. When E8E10-dodecadienol is used as the volatile substance and N-lauroyl-L-glutamic acid dibutylamide is used as the oil gelling agent, the resulting insect pest-targeting gel composition comprises preferably from 90 to 97% by weight of E8E10-dodecadienol.
In the conventional gel composition, it is the common practice to dilute the gel composition with a solvent or the like to form a fluid gel in order to avoid a problem that the surface of the insect pest-targeting gel composition is dried to enclose the active ingredient of the volatile substance in the gel. However, when the gel contains a solvent or the like, it is difficult to obtain a stable release rate because due to the volatility of the solvent, the concentration of the volatile substance in the gel composition changes along with the sustained release. Moreover, this dilution causes problems such as necessity of measures against liquid leakage and unnecessary increase in volume. With the foregoing in view, as described above, the sustained release preparation in the invention comprises, in a polymer tube thereof, an insect pest-targeting gel composition comprising a volatile substance and an oil gelling agent, wherein the volatile substance is comprised in an amount of from 70.0 to 99.0% by weight by the insect pest-targeting gel composition.
The insect pest-targeting gel composition of the invention does not require measures against liquid leakage because it is a non-fluid gel comprising, in addition to the volatile substance, substantially only the oil gelling agent and an optional additive which will be described later. Furthermore, it does not cause the unnecessary volume increase because it does not comprise a solvent or the like. Moreover, the volatile substance in the insect pest-targeting gel composition is released to the surroundings and the gelling agent which has contributed to the gelling of the sustainably released volatile substance remains on the gel surface in powder form so that the concentration of the volatile substance in the insect pest-targeting gel composition becomes substantially constant throughout the release period, making it possible to achieve a stable release rate.
Thus, the insect pest-targeting gel composition of the invention is in non-fluid form, can be stored for a long period of time, and fluidization of the insect pest-targeting gel composition does not occur insofar as it is stored at normal temperature.
The insect pest-targeting gel composition may comprise an additive. The examples of the additive include an antioxidant such as a synthetic antioxidant, e.g., BHT (butylhydroxytoluene), BHA (butylhydroxyanisole), ethyl protocatechuate, isoamyl gallate and propyl gallate, and a natural antioxidant, e.g., NDGA (nordihydroguaiaretic acid) and guaiac gum; and a ultraviolet absorber such as a para-aminobenzoic acid-based one, e.g., octyl para-dimethylaminobenzoate, a benzophenone derivative such as oxybenzone (2-hydroxy-4-methoxy-benzophenone) and 2-hydroxy-4-octoxybenzophenone, a methoxycinnamic acid derivative and a salicylic acid derivative. The content of each additive in the insect pest-targeting gel composition is preferably from 0.01 to 5% by weight and the total content of them is preferably from 0.02 to 10% by weight.
The insect pest-targeting gel composition can be obtained by heating the volatile substance, the oil gelling agent and an optional additive preferably at about 60 to 150° C. for dissolution, and then cooling the resulting solution. The cooling is preferably cooling by being left standing.
According to the invention, a polymer tube (polymer tube) is used as a vessel into which the insect pest-targeting gel composition is introduced. The polymer tube is not particularly limited insofar as it uses a material of permitting penetration, transmission and/or diffusion of one or more volatile substances therethrough and allowing the one or more volatile substances be released (for example, evaporated) from the outer surface of the tube. Specific examples of the material include a thermoplastic polymer such as low-density polyethylene, high-density polyethylene, polypropylene, ethylene-propylene copolymers, ethylene vinyl acetate copolymers, ethylene acrylate ester-based copolymers, polyvinyl acetate, polyvinyl chloride-based resins, polymethyl methacrylate, polyvinyl alcohol, polyvinylidene chloride, polybutylene, methyl methacrylate-styrene copolymers, methylpentene resins, ionomers, polyacetal, cellulose acetate, cellulose acetate butyrate, polyvinylidene fluoride, and silicon resins. Examples of a biodegradable polymer include condensation polymers between at least one dicarboxylic acid selected from the group consisting of oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, sebacic acid, fumaric acid and maleic acid, and at least one polyol selected from the group consisting of ethylene glycol, propylene glycol, butanediol, pentanediol, hexanediol, octanediol and decanediol; condensation polymers of at least one monomer selected from group consisting of lactic acid, hydroxyvaleric acid, hydroxycaproic acid and hydroxycapric acid; and an aliphatic polyester-based thermoplastic polymer such as polycaprolactone obtained by ring-opening polymerization of s-caprolactone. To these polymer materials, a lubricant, a plasticizer, a stabilizer, a pigment or a filler may be added to improve their processability.
The polymer tube may be sealed at either one end or both ends thereof, or may be open with an opening portion at either one end or both ends thereof. It is preferable to seal the tube at both ends in order to prevent a reaction such as oxidation or hydrolysis which will otherwise occur due to direct contact between the volatile substance and an outside environment.
The release rate of the volatile substance can be regulated by the material or thickness of the polymer tube. It can also be regulated by the presence or absence of the opening portion, but a ratio of the opening portion relative to the total area of the thin tube including the side surface of the tube from which the substance is released is small so that regulation of the release rate by the presence or absence of the opening portion is limited.
The polymer tube having one sharp end has preferably an inner diameter of from 0.5 to 15 mm, a thickness of from 0.2 to 1.5 mm, and a length of from 10 to 5,000 mm. The tube includes an ampule. The polymer tube having one sharp end includes a polymer tube having a sharp jig attached to one end of the tube, and a polymer tube having one sharp end of the tube itself.
The sharp jig may be attached to one end of the polymer tube by inserting the sharp jig into the inside of one end portion of the polymer tube or inserting one end portion of the polymer tube into the inside of the sharp jig.
The material of the sharp jig is preferably the same type of polymer material as the polymer material of the polymer tube, bamboo, wood, or the like. The material should have enough strength to avoid breaking when inserted in the soil of the field. Moreover, both the polymer tube and the sharp jig are preferably made of a biodegradable material because they can be subjected to plowing together with the soil in the field after use.
The sharp jig is required to be long enough to prevent the sustained release preparation inserted in the soil from falling down or turning over. The length is preferably from 20 to 300 mm. When the sharp jig has a length of less than 20 mm, a portion of the preparation may come in contact with the soil when it is inserted in the soil. As a result, one or more volatile substances may be adsorbed to the soil. When the sharp jig has a length of more than 300 mm, the preparation may fall down or turn over and disturb the farm work such as pesticide spraying.
The amount of the insect pest-targeting composition to be introduced into each polymer tube is preferably from 10 mg/tube to 6 g/tube, though it varies, depending on the kind of the volatile substance, a period of application or the like.
The tubes each filled with the insect pest-targeting gel composition are installed in a field preferably at from 20 tubes/ha to 100,000 tubes/ha, though it may vary, depending on a target insect pest.
Examples of a method for producing the sustained release preparation of the invention include a method comprising the steps of forming a polymer tube material with one sharp end and then introducing a gel composition solution into the material; a method comprising the steps of forming a polymer tube material, while introducing a gel composition solution comprising one or more volatile substances and an oil gelling agent into the material, and then attaching an sharp jig to one end of the material; and a method comprising the steps of forming a polymer tube material, introducing a gel composition solution into the material, and then attaching a sharp jig to one end of the material.
Examples of the method of comprising the steps of forming a polymer tube material, while introducing a gel composition solution therein include a method comprising the step of continuously forming, for example, by extrusion, an infinitely-long polymer tube material having a prepared gel composition filled. More specifically, a molten polymer is continuously extruded into a tubular form through a die to form a polymer tube material, while the polymer tube material is continuously filled with a prepared gel composition solution comprising one or more volatile substances and an oil gelling agent through a hole provided in the mandrel of the die. An elongated polymer tube material produced is taken up on a reel. The resulting elongated polymer tube material is cut into pieces of an appropriate length, or welded by a hot press and cut at intervals of an appropriate length. As a result, a polymer tube having both open ends or having one or both sealed ends can be obtained. Then, a sharp jig is attached to one end of the resulting polymer tube by hot welding or the like to obtain a sustained release preparation.
On the other hand, examples of the method comprising the steps of forming a polymer tube material and then introducing a gel composition solution therein include a method comprising the steps of continuously forming an elongated polymer tube material, for example, by extrusion, and then dividing the material into portions with required lengths, and then filling each portion with the prepared gel composition solution by pressure application or suction. After the gel composition solution becomes solidified, the polymer tube material portion is cut, or sealed and cut into a desired length. As a result, a polymer tube having both open ends or having one or both sealed ends can be obtained. Then, a sharp jig is attached in the same manner as in the above to obtain a sustained release preparation.
An example of a sustained release preparation comprising a polymer tube having one sharp end and the other open end is shown in
An example of a sustained release preparation comprising a polymer tube having one sharp end and the other sealed end is shown in
Another example of a sustained release preparation comprising a polymer tube having one sharp end and the other sealed end is shown in
The invention will be explained based on Examples. However, it should not be construed that the invention is limited to Examples.
Simultaneously with extrusion of a polymer tube material made of an ethylene/vinyl acetate copolymer (having a vinyl acetate content of 4% by weight) and having an inner diameter of 1.2 mm and a film thickness of 0.50 mm, the tube material was filled with a uniform solution prepared by adding dextrin myristate to E8E10-dodecadienol at the weight ratio of 10:90 and heating the resulting mixture to a temperature of 80° C. Thus, simultaneous extrusion and filling were carried out. It was confirmed as a result of observing the inside of the polymer tube material that the solution gelled in non-fluid form at room temperature. This polymer tube material was cut into a 200-mm piece. Then, an sharp jig made of bamboo and having an outer diameter of 1.2 mm and a length of 12 cm was inserted into the inside of the one end portion of the tube piece to obtain a sustained release preparation.
The sustained release preparations thus obtained were allowed to stand under the conditions of 25° C. and a wind speed of 0.7 m/sec to release the volatile substance therefrom. A decrease in the weight was measured with the elapsed time so that a release rate of E8E10-dodecadienol was determined. The results are shown in
As shown in
A polymer tube material made of a polybutylene adipate/polybutylene succinate copolymer having an inner diameter of 1.4 mm and a film thickness of 0.60 nm was produced by extrusion. The 2-butanol, the sex pheromone substance of the white grub beetle, was subject to addition of N-ethylhexanoyl-L-glutamic acid dibutylamide at the weight ratio of 90:10, followed by heating under stirring. The resulting solution became uniform at 60° C. After further heating to 80° C., the resulting solution was introduced into the polymer tube material by suction. The tube material thus obtained was then allowed to stand at room temperature for 2 hours. It was confirmed as a result of observing the inside of the polymer tube material that the solution gelled in non-fluid form at room temperature. The polymer tube material was cut into a 30-mm piece and a polymer tube having both sealed ends was produced. Then, a sharp jig made of polylactic acid and having an outer diameter of 1.4 mm and a length of 50 mm was inserted into the inside of the one end portion of the tube piece and attached by hot welding to obtain a sustained release preparation.
The sustained release preparation thus obtained was allowed to stand under the conditions of 25° C. and a wind speed of 0.7 msec to release the volatile substance therefrom. A decrease in the weight was measured with the elapsed time so that a release rate of 2-butanol was determined. The results are shown in
As shown in
Number | Date | Country | Kind |
---|---|---|---|
2011-270132 | Dec 2011 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2012/081628 | 12/6/2012 | WO | 00 | 6/2/2014 |