Suture anchor and method

Information

  • Patent Grant
  • 8083770
  • Patent Number
    8,083,770
  • Date Filed
    Tuesday, May 13, 2008
    16 years ago
  • Date Issued
    Tuesday, December 27, 2011
    12 years ago
Abstract
A suture anchor is provided for approximating tissue to bone or other tissue. The suture anchor comprises an anchor member to fixedly engage the bone for securing the anchor member relative to the bone. A plurality of sutures are mounted to the proximal end of the anchor member so that the sutures extend outwardly from the anchor member. Each suture has a sharp pointed distal end for penetrating the tissue and a plurality of barbs extending from the periphery and disposed along the length of the body of the suture. The barbs permit movement of the sutures through the tissue in a direction of movement of the pointed end and prevent movement of the sutures relative to the tissue in a direction opposite the direction of movement of the pointed end. At least one pointed distal end of at least one suture comprises a needle.
Description
BACKGROUND

This invention relates generally to a device and method for anchoring tissue within a body and, more particularly, to a suture anchor for use in surgical procedures requiring attachment of tissue, such as ligaments, tendons and the like, to other, preferably harder or more fibrous, tissue, such as a bone surface.


Suture anchors are used in surgical procedures wherein it is necessary for a surgeon to attach tissue to the surface of bone, for example, during joint reconstruction and ligament repair or replacement. Suture anchors generally comprise an anchor portion for fixed attachment to the bone, and a suture portion extending from the anchor portion used to connect the tissue to the bone. The anchor portion is often a generally cylindrical body having a sharp pointed end. An impact tool is typically used for driving the pointed end of the anchor into the bone. The outer surface of the anchor portion may be barbed or serrated to prevent the suture anchor from being withdrawn from the bone. The outer surface of the anchor portion could also be threaded and a driver, turned by a conventional drill, used to seat the threaded anchor portion into the bone. The anchor portion may also be fitted into a hole formed in the bone.


With the anchor portion securely in the bone, the suture portion is used for securing the tissue to the bone. The procedure typically involves passing a needle with the suture attached through the tissue. The tissue is advanced along the suture and tension is applied to the suture to draw the tissue tightly against the bone. The needle is removed and the tissue is secured against the bone by knotting the ends of the suture extending from the tissue. The knot is brought down to the surface of the tissue and tightened sufficiently to secure the tissue and bone in close approximation to promote reattachment and healing. A sliding retainer is sometimes used with the suture to pin the tissue against the bone.


There are other conventional suture anchors for attaching tissue to bone. For example, the anchor portion could take other forms including a staple which is driven into the bone surface with the suture positioned between the staple legs and the staple web fixing the suture to the bone surface. Also, a pair of closely-spaced holes can be drilled in the bone for passing the suture into one hole and out the other. However, these procedures are often difficult to perform, particularly in areas with limited access, such as deep wounds.


Further, conventional methods for approximating tissue to bone using a suture are difficult and inefficient because the procedure requires manipulation of the suture for securing the tissue in place. This is a time-consuming part of most surgical procedures, particularly in microsurgery and endoscopic surgery where there is insufficient space to properly manipulate the suture.


For the foregoing reasons, there is a need for an improved suture anchor for use in surgical procedures. The new suture anchor should eliminate the need for tying the suture to hold the tissue against the bone or other tissue surface. The method for using the suture anchor in surgical applications should allow a surgeon to approximate tissue to the bone or tissue surface in an efficient manner. A particularly useful new suture anchor would be used in surgical applications where space is limited such as microsurgery, endoscopic surgery or arthroscopic surgery.


SUMMARY

According to the present invention, a suture anchor is provided for approximating tissue to bone or other tissue. The suture anchor comprises an anchor member adapted to fixedly engage the bone for securing the anchor member relative to the bone. The anchor member has a distal end and a proximal end. A plurality of sutures are mounted to the proximal end of the anchor member so that the sutures extend outwardly from the anchor member. Each suture has a sharp pointed distal end for penetrating the tissue and a plurality of barbs extending from the periphery and disposed along the length of the body of the suture. The barbs permit movement of the sutures through the tissue in a direction of movement of the pointed end and prevent movement of the sutures relative to the tissue in a direction opposite the direction of movement of the pointed end. At least one pointed distal end of at least one suture comprises a needle.


Also according to the present invention, a suture anchor is for approximating tissue to bone or other tissue. The suture anchor comprises an anchor member having a distal end and a proximal end. The anchor member is adapted to fixedly engage the bone to secure the anchor member relative to the bone. A plurality of sutures are mounted to the proximal end of the anchor member so that the sutures extend outwardly from the anchor member. Each suture has a sharp pointed distal end for penetrating the tissue and a plurality of barbs extending from the periphery of the body of the suture. The barbs permit movement of the sutures through the tissue in a direction of movement of the pointed end and prevent movement of the sutures relative to the tissue in a direction opposite the direction of movement of the pointed end. At least one pointed distal end of at least one suture comprises a needle. Means are provided for mounting the sutures to the proximal end of the anchor member, the suture mounting means including a portion of the body of the anchor member which defines an opening in the proximal end of the anchor member for accepting the sutures.





BRIEF DESCRIPTION OF DRAWINGS

For a more complete understanding of the present invention, reference should now be had to the embodiments shown in the accompanying drawings and described below. In the drawings:



FIG. 1 is a perspective view of an embodiment of a suture anchor according to the present invention;



FIG. 2 is a perspective view of another embodiment of a suture anchor including a plurality of barbed sutures according to the present invention;



FIG. 3 is a side elevation view of an ankle with a portion of the outer layer of tissue cut-away to schematically show a torn Achilles tendon;



FIGS. 4-6 are schematic views of an embodiment of a method according to the present invention for reattaching the Achilles tendon to bone;



FIGS. 7-10 are perspective views of a method for joining two ends of a severed tendon according to the present invention;



FIGS. 11-13 are perspective, side and top plan views, respectively, of the suture pattern generated by the method shown in FIGS. 7-10;



FIGS. 14-17 are perspective views of another method for joining two ends of a severed tendon according to the present invention;



FIGS. 18 and 19 are perspective and side elevation views, respectively, of the suture pattern generated by the method shown in FIGS. 14-17; and



FIGS. 20 and 21 are side and rear elevation views, respectively, of the ankle shown in FIG. 3 with the torn Achilles tendon reattached to the bone using the suture anchor and method shown in FIGS. 7-13 according to the present invention.





DESCRIPTION

As used herein, the term “tissue” includes tendons, ligaments, cartilage, muscle, skin, organs, and other soft tissue. The term “bone” includes bone, cartilage, tendon, ligament, fascia, and other connective or fibrous tissue suitable for anchor for a suture.


Certain other terminology is used herein for convenience only and is not to be taken as a limitation on the invention. For example, words such as “upper,” “lower,” “left,” “right,” “horizontal,” “vertical,” “upward,” and “downward” merely describe the configuration shown in the FIGs. It is understood that the components may be oriented in any direction and the terminology, therefore, should be understood as encompassing such variations unless specified otherwise.


Referring now to the drawings, wherein like reference numerals designate corresponding or similar elements throughout the several views, there is shown in FIG. 1 a suture anchor for use according to the present invention and generally designated at 30. The suture anchor 30 includes an anchor portion 32 and a suture portion 34. The anchor portion 32 comprises an elongated body 36 having a distal pointed tip 38 which serves as a leading end of the suture anchor 30 when the suture anchor is inserted into bone. A blind bore 40, or opening, is formed at the proximal end 41 of the anchor portion 32. A crossbar 42 integral with the anchor body 36 spans the opening 40 for threadably receiving the suture portion 34 at the proximal end of the anchor portion 32.


The anchor portion 32 is shown as having a circular cross-section, although other cross-sectional shapes could be utilized without departing from the present invention. As shown in FIG. 1, ridges 44, or barbs, may be formed on the outer surface of the anchor portion 32 which allow movement of the anchor portion 32 through bone in one direction but which resist the withdrawal of the anchor portion 32 after the anchor portion has been implanted in the bone.


As described above, the anchor portion 32 is driven into the bone surface, pointed tip 38 first, by impact against the proximal end 41, or by turning as when the anchor portion 32 is threaded (not shown). The anchor portion 32 can also be disposed into a hole bored in the bone, in which case insertion can be accomplished with direct pressure or gentle tapping on the proximal end 41 of the anchor portion 32. The ridges 44 on the surface of the anchor body 36 grasp the bone rendering the anchor portion 32 substantially irremovable from the bone. Tension on the suture portion 34 enhances this effect.


The suture portion 34 of the suture anchor 30 has an elongated body 46 and a plurality of barbs 48 disposed along the length of the body 46. First and second ends 50, 52 of the suture body 46 terminate in points 54, 56 for penetrating tissue. The body 46 of the suture portion 34 is, in one embodiment, circular in cross section. Suitable diameters for the body 46 range from about 0.001 mm to about 5.0 mm. The body 46 of the suture portion 34 could also have a non-circular cross-sectional shape which would increase the surface area of the body 46 and facilitate the formation of multiple barbs 48. The length of the suture portion 34 can vary depending on several factors, including the desired surgical application, the type of tissue to be approximated to the bone, the location of the bone, and the like. A suture portion 34 of proper length is selected for achieving suitable results in a particular application.


The plurality of barbs 48 is axially-spaced along the body 46 of the suture portion 34. The barbs 48 are oriented in one direction facing toward the first end 50 of the suture body 46 for a first portion 58 of the length of the suture portion 34 and in an opposite direction facing the second end 52 of the suture body 46 for a second portion 60 of the suture portion 34. The point on the suture body 46 where the barbs 48 change direction is preferably positioned adjacent the crossbar 42 at the proximal end of the anchor body 36. The barbs 48 are yieldable toward the body 46. The barbs 48 on each portion 58, 60 of the suture body 46 are oriented so as to allow movement of the suture portion 34 through the tissue in one direction along with the corresponding end 50, 52 of the suture portion 34. The barbs 48 are generally rigid in an opposite direction to prevent the suture body 46 from moving in the tissue in the opposite direction.


The barbs 48 can be arranged in any suitable pattern, for example, in a helical pattern as shown in FIG. 1. The number, configuration, spacing and surface area of the barbs 48 can vary depending upon the tissue in which the suture portion 34 is used, and depending on the composition and geometry of the suture body 46. The proportions of the barbs 48 may remain relatively constant while the overall length and spacing of the barbs 48 are determined by the tissue being approximated to the bone. For example, if the suture portion 34 is intended to be used in tendon, the barbs 48 can be made relatively short and more rigid to facilitate entry into this rather firm, fibrous tissue. If the suture portion 34 is intended for use in soft tissue, such as fat, the barbs 48 can be made longer and spaced farther apart to increase the holding ability in the soft tissue. Moreover, the ratio of the number of barbs 48 on the first portion 58 of the suture body 46 to the number of barbs 48 on the second portion 60, and the lengths of each portion 58, 60, can vary depending on the surgical application and needs.


The surface area of the barbs 48 can also vary. For example, fuller-tipped barbs 48 can be made of varying sizes designed for specific surgical applications. For joining fat and relatively soft tissues, larger barbs 48 are desired, whereas smaller barbs 48 are more suited for collagen-dense tissues. There are also situations where a combination of large and small barbs 48 within the same structure will be beneficial such as when the suture portion 34 is used in the repair of tissue with differing layered structures. Use of the combination of large and small barbs 48 with the same suture portion 34 wherein barb 48 sizes are customized for each tissue layer will ensure maximum anchoring properties.


The barbs 48 may be formed on the surface of the suture body 46 according to any suitable method, including cutting, molding, and the like. The preferred method is cutting with acute angular cuts directly into the suture body 46 with the cut portions pushed outwardly and separated from the body 46. The depth of the barbs 48 formed in the suture body 46 depends on the diameter of the suture material and the depth of cut. Embodiments of a suitable cutting device for cutting a plurality of axially spaced barbs 48 on the exterior of suture filaments are shown and described in U.S. patent application Ser. No. 09/943,733, entitled “Method Of Forming Barbs On A Suture And Apparatus For Performing Same”, which was filed on Aug. 31, 2001, the contents of which are hereby incorporated by reference. This cutting device utilizes a cutting bed, a cutting bed vise, a cutting template, and a blade assembly to perform the cutting. When operated, the cutting device has the ability to produce a plurality of axially spaced barbs 48 in the same or random configuration and at different angles in relation to each other. Various other suitable methods of cutting the barbs 48 have been proposed including the use of a laser. The barbs 48 could also be cut manually. However, manually cutting the barbs 48 is labor intensive, decreases consistency, and is not cost effective. The suture portion 34 could also be formed by injection molding, extrusion, stamping and the like.


Barbed sutures suitable for use according to the methods of the present invention are described in U.S. Pat. No. 5,342,376, entitled “Inserting Device for a Barbed Tissue Connector”, U.S. Pat. No. 6,241,747, entitled “Barbed Bodily Tissue Connector”, and U.S. Pat. No. 5,931,855. The contents of U.S. Pat. Nos. 5,342,376, 5,931,855 and 6,241,747 are hereby incorporated by reference.


The suture portion 34 is attached to the proximal end of the anchor portion 32. As seen in FIG. 1, the suture portion 34 is threaded around the crossbar 42 on the anchor body 36. It is understood that the suture portion 34 may be attached to the anchor portion 32 in a number of ways, including inserting the end of the suture body 46 into the bore 40 formed in the proximal end of the anchor body 36 and securing the suture body 46 in place with a set screw, rivet, or the like, or, wherein the material of the anchor portion 32 is metal, by swaging or crimping. The anchor portion 32 and suture portion 34 could also be formed in one piece in the manufacturing process. However, the preferred attachment of the suture portion 34 is as shown in FIG. 1 since this arrangement allows a simple, secure threading of a double-ended suture portion 34 during manufacture or prior to use. Moreover, as seen in FIG. 2, the user may selectively attach several suture portions 34 to the anchor portion 32 depending upon the surgical application.


Suitable material for the body 46 of the suture portion 34 is available in a wide variety of monofilament suture material. The particular suture material chosen depends on strength and flexibility requirements. In one embodiment, the material for the suture body 46 is flexible and substantially nonresilient so that the shape of an inserted suture portion 34 will be determined by the path of insertion and the surrounding tissue. In some applications, however, it may be desirable for at least a portion of the suture body 46 to have sufficient dimensional stability to assume a substantially rigid configuration during use and sufficient resiliency to return to a predetermined position after deflection therefrom. The portions of the ends 50, 52 of the suture body 46 adjacent the points 54, 56 may be formed of a material sufficiently stiff to enable the points 54, 56 to penetrate tissue in which the suture portion 34 is used when a substantially axial force is applied to the body 46. Variations in surface texture of the suture body 46 can impart different interaction characteristics with the tissue.


The ends 50, 52 of the suture portion 34 may be straight (FIG. 1) or curved (FIG. 2). In one embodiment, the ends 50, 52 of the suture portion 34 may be surgical needles secured at each end of the suture portion 34 so that the body 46 extends between the shank ends of the two needles. The needles are preferably constructed of stainless steel or other surgical-grade metal alloy. The needles may be secured to the suture body 46 by means of adhesives, crimping, swaging, or the like, or the joint may be formed by heat shrinkable tubing. A detachable connection may also be employed such that the needles may be removed from the suture body 46 by a sharp tug or pull or by cutting. The length of the needles is selected to serve the type of tissue being repaired so that the needles can be completely removed leaving the suture body 46 in the desired position within the tissue.


The suture anchor 30 of the present invention can be formed of a bioabsorbable material which allows the suture anchor 30 to be absorbed by the body over time. Bioabsorbable material is particularly useful in arthroscopic surgery and procedures. Many compositions useful as bioabsorbable materials can be used to make the suture anchor 30. Generally, bioabsorbable materials are thermoplastic polymers. Selection of the particular material is determined by the desired absorption or degradation time period which depends upon the anticipated healing time for the subject of the procedure. Biodegradable polymers and co-polymers range in degradation time from about one month to over twenty-four months. They include, but are not limited to, polydioxanone, polylactide, polyglycolide, polycaprolactone, and copolymers thereof. Other copolymers with trimethylene carbonate can also be used. Examples are PDS II (polydioxanone), Maxon (copolymer of 67% glycolide and 33% trimethylene carbonate), and Monocryl (copolymer of 75% glycolide and 25% caprolactone). Germicides can also be incorporated into the suture anchor 30 to provide long lasting germicidal properties.


Alternatively, either the anchor portion 32 or the suture portion 34 of the suture anchor 30 can be formed from non-absorbable material such as, for example, nylon, polyethylene terephthalate (polyester), polypropylene, and expanded polytetrafluoroethylene (ePTFE). The suture body 46 can also be formed of metal (e.g. steel), metal alloys, or the like. Titanium is a preferred material when the anchor portion 32 is to remain permanently in the bone. A suitable anchor portion 32 for use according to the present invention is available from Mitek Products of Norwood, Mass. Alternatively, the anchor portion 32 can also be a rigid barbed structure made from thick monofilament suture material with barbs suitable for anchoring in bone.


In use in an orthopedic surgical procedure, the anchor portion 32 of the suture anchor 30 of the present invention is inserted into bone. Once the anchor portion 32 is fixed in place, the suture portion 34 extends outwardly from the anchor portion 32 and the bone for surgical suturing to tissue to be approximated to the bone. The tissue is brought into position over the suture anchor 30 site. The point 54 at one end 50 of the suture portion 34 is inserted into the tissue such that the point 54 pierces the tissue and the barbs 48 on the portion 58 of the suture body 46 corresponding to the one end 50 yield toward the body 46 to facilitate movement of the suture body as it is drawn through the tissue in the direction of insertion. The point 56 at the other end 52 of the suture portion 34 is also inserted into the tissue and advanced through the tissue in like manner. The tissue is then advanced along the suture portions 58, 60 within the tissue to close the gap between the tissue and the bone. The barbs 48 of the suture body 46 grasp the surrounding tissue and maintain the tissue in position adjacent to the bone during healing. The leading ends 50, 52 of the suture body 46 protruding from the tissue are then cut and discarded.


According to the present invention, a surgical procedure using the suture anchor 30 is provided for approximating a torn Achilles tendon to bone for reattachment and healing. It is understood that the applicants do not intend to limit the suture anchor 30 and method of the present invention to only the reattachment of the Achilles tendon.


Referring to FIG. 3, a human foot 70 is shown with a portion of the outer layer 72 of skin and tissue cutaway to schematically show the Achilles tendon 74 tom away from the heel bone 76. In this embodiment of the present invention, the user, such as a surgeon, selects a suture anchor 30 (FIG. 4) having a suture portion 34 of sufficient length and having curved ends 50, 52 which, in one embodiment, as noted above may be surgical needles. As seen in FIG. 4, the surgeon begins by inserting the suture anchor 30 into the heel bone 76. The first and second portions 58, 60 of the elongated suture portion 34 extend from the anchor portion 32. Next the surgeon inserts the first end 50 (FIG. 5), or surgical needle, into the free end of the Achilles tendon 74 and pushes the needle 50 through the tendon 74 along a selected curvilinear path until the point 54 at the first end of the needle 50 extends from an exit point 78 at the periphery of the tendon 74 longitudinally spaced from the end of the tendon. The surgeon grips the needle 50 and pulls the needle out of the tendon 74 for drawing the first portion 58 of the suture body 46 through the tendon 74 leaving a length of the first portion 58 of the suture body 46 in the tendon 74 between the end of the tendon and the exit point 78, as seen in FIG. 6. These steps are repeated with the second portion 60 of the suture body 46 beginning with insertion into the end of the tendon 74.


Methods according to the present invention useful in binding together partially or completely severed tendons, or other internal tissue repairs requiring considerable tensile strength, are suitable for use in attaching tissue to bone. One such method for joining two ends 82, 84 of a tendon 80 is shown in FIGS. 7-10. Referring to FIG. 7, the surgeon begins by inserting a first end 92 of a two-way barbed suture 90, which may comprise a straight or curved surgical needle, into one end 82 of the tendon 80 and pushing the needle 92 through the tendon 80 along a selected curvilinear path until the point 94 of the needle 92 extends from an exit point 96 in the periphery of the tendon 80 longitudinally spaced from the one end 82 of the tendon 80. The first needle 92 is gripped and pulled out of the tendon 80 for drawing a first portion 98 of the suture 90 through the tendon 80 leaving a length of the first portion 98 of the suture 90 in the tendon end 82 between the end of the tendon 80 and the exit point 96. As seen in FIG. 7, these steps are repeated with a second portion 100 of the suture 90 at the other end 84 of the tendon 80, wherein a second end 93 of the suture 90 is inserted into the tendon end 84 and advanced along a selected curvilinear path to an exit point 97 longitudinally spaced from the end 84 of the tendon 80. The second end 93 of the suture 90 projecting from the exit point 97 is gripped and pulled out of the tendon 80 for drawing the second portion 100 of the suture 90 through the tendon 80 and leaving a length of the second portion 100 of the suture 90 in the tendon end 84 (FIG. 8).


Referring now to FIG. 8, a second suture 90a is introduced into the ends 82, 84 of the tendon 80. The first needle 92a of the second suture 90a is inserted into the one end 82 of the tendon 80 and pushed through the tendon along a selected curvilinear path until the needle 92a extends from an exit point 96a in the periphery of the tendon 82 substantially co-located with the first exit point 96 of the first portion 98 of the first suture 90. These steps are repeated with the second portion 100a of the second suture 90a at the other end 84 of the tendon 80 such that the exit point 97a in the periphery of the end of the tendon 84 is substantially co-located with the first exit point 97 of the second portion 100 of the first suture 90. The needles 92a, 93a of the second suture 90a are pulled out of the tendon 80 for drawing the first and second portions 98a, 100a, respectively, of the second suture 90a through the tendon 80 leaving a length of the second suture 90a in the tendon 80 between the exit points 96a, 97a.


As shown in FIG. 9, the surgeon reinserts the first needle 92 of the first suture 90 into the periphery of the one end 82 of the tendon 80 at an entry point 102 immediately adjacent the exit point 96 and pushes the needle 92 along a selected curvilinear path until the point 94 of the needle 92 exits the same side of the tendon 82 at an exit point 104 that is longitudinally spaced from the entry point 102. It is understood that the surgeon could use the exit point 96 as the entry point 102 for the needle 92 if desired. The surgeon pulls the needle 92 out of the tendon 82 for drawing the first portion 98 of the suture 90 through the tendon 82. The surgeon may then reinsert the needle 92 into the tendon 82 at an entry point (not shown) immediately adjacent the exit point 104 and push the needle 92 along a selected curvilinear path and out of the same side of the tendon 82 at an exit point (not shown) longitudinally spaced from the previous entry point. It is understood that the surgeon makes as many passes as deemed necessary in a “wave-like” pattern for holding the end 82 of the tendon, or as the length or thickness of the tendon 82 allows, and removes the remaining length of the first portion 98 of the suture 90.


The surgeon repeats the steps described above with the first portion 98a of the second suture 90a (FIG. 10) by reinserting the needle 92a into the tendon 82 at an entry point 102a adjacent the exit point 96a, crossing over the first portion 98 of the first suture 90, and pushing the needle 92a along a selected curvilinear path until the needle 92a emerges from an exit point 104a in the periphery of the tendon 82 substantially co-located with the second exit point 104 of the first portion 98 of the first suture 90. In this manner, the surgeon advances longitudinally along the end 82 of the tendon 80 with the first portion 98a of the second suture 90a in a “wave-like” pattern which generally mirrors that of the first portion 98 of the first suture 90.


The previous steps are repeated at the other end 84 of the tendon 80 with the second portions 100, 100a of the first suture 90 and second suture 90a. The pattern of the second portions 100, 100a of the sutures 90, 90a in the second end 84 of the tendon 80 generally mirrors that of the first portions 98, 98a of the sutures in the first end 82 of the tendon 80. Thus, the exit points and entry points of the first and second sutures 90, 90a are substantially co-located.


The ends 82, 84 of the tendon 80 are brought together by pushing the tendon ends along the sutures while maintaining tension on the free ends 92, 92a, 93, 93a of the sutures 90, 90a. The barbs 48 maintain the sutures 90, 90a in place and resist movement of the tendon ends 82, 84 away from this position. The needles along with remaining lengths of the suture portions 98, 98a, 100, 100a are cut and discarded.



FIGS. 11-13 show the suture pattern resulting from use of the above-described method of the present invention. It is understood that we do not intend to limit ourselves to the depth or length of the suture paths shown in the FIGs. as the amount of tissue grasped by each pass, which is related to the depth of the suture path into the tissue and the length of the pass from entry point to exit point, may be determined by the surgeon based on a number of factors including the tissue to be joined.


Another method according to the present invention for joining two ends 82, 84 of a tendon 80 which is suitable for use in attaching tissue to bone is shown in FIGS. 14-17. Referring to FIG. 14, the surgeon begins by inserting the first end 92 of a two-way barbed suture 90, which may comprise a straight or curved surgical needle, into one end 82 of the tendon 80 and pushing the needle 92 through the tendon 82 along a selected curvilinear path until the point 94 of the needle 92 extends from an exit point 96 in the periphery of the tendon 82 longitudinally spaced from the one end 82 of the tendon. The first needle 92 is gripped and pulled out of the tendon 82 for drawing the first portion 98 of the suture 90 through the tendon 80 leaving a length of the first portion 98 of the suture in the tendon 80 between the tendon end 82 and the exit point 96. As seen in FIG. 14, these steps are repeated with the second portion 100 of the suture 90 at the other end 84 of the tendon 80. That is, a second end 93 of the suture 90 is inserted into the tendon end 84 and advanced along a selected curvilinear path to an exit point 97 longitudinally spaced from the end 84 of the tendon 80. The exit point 97 of the second needle 93 is on the opposite side of the tendon 80 from the first exit point 96 of the first portion 98 of the suture 90. The second end 93 of the suture 90 projecting from the exit point 97 is gripped and pulled out of the tendon 80 for drawing the second portion 100 of the suture 90 through the tendon 80 and leaving a length of the second portion 100 of the suture 90 in the tendon end 84 (FIG. 15).


Referring now to FIG. 15, a second suture 90a is introduced into the ends 82, 84 of the tendon 80. The first needle 92a of the second suture 90a is inserted into the end 82 of the tendon 80 and pushed through the tendon along a selected curvilinear path until the needle 92a extends from an exit point 96a in the periphery of the tendon 82 substantially co-located with the first exit point 96 of the first portion 98 of the first suture 90. These steps are repeated with the second portion 100a of the second suture 90a at the other end 84 of the tendon 80 such that the exit point 97a in the periphery of the end of the tendon 84 is substantially co-located with the first exit point 97 of the second portion 100 of the first suture 90. The needles 92a, 93a of the second suture 90a are pulled out of the tendon 80 for drawing the first portion 98a and second portion 100a of the second suture 90a through the tendon 80 leaving a length of the second suture 90a in the tendon 80 between the exit points 96a, 97a.


As shown in FIG. 16, the surgeon reinserts the second needle 92a into the periphery of the one end 82 of the tendon 80 at an entry point 102a immediately adjacent the exit point 96a and pushes the needle 92a along a selected curvilinear path until the point 94a of the needle 92a exits the opposite side of the tendon 82 at an exit point 104a that is longitudinally spaced from the entry point 102a. It is understood that the surgeon could use the first exit point 96a as the entry point 102a for the needle 92a if desired. The surgeon pulls the needle 92a out of the tendon 82 for drawing the first portion 98a of the suture 90a through the tendon 82. The surgeon may then reinsert the needle 92a into the tendon 82 at an entry point (not shown) immediately adjacent the exit point 104a and push the needle 92a along a selected curvilinear path and out of the opposite side of the tendon 82 at an exit point (not shown) longitudinally spaced from the previous entry point. It is understood that the surgeon makes as many passes in a “side-to-side” pattern as deemed necessary for holding the end 82 of the tendon 80, or as the length or thickness of the tendon end 82 allows, and removes the remaining length of the first portion 98a of the second suture 90a. With each pass, the longitudinal distance between the entry point and exit point decreases. The surgeon repeats these steps with the second portion 100a of the second suture 90a at the other 84 of the tendon 80. The second end 93a of the suture 90a is inserted into the other end 84 of the tendon 80 at an entry point 106a immediately adjacent the first exit point 97a and advanced along a selected curvilinear path to an exit point 108a opposite and longitudinally spaced from the entry point 106a. The second portion 100a of the second suture 90a is drawn through the tendon 80 leaving a length of the second portion 100a of the suture 90a in the tendon (FIG. 17).


The surgeon repeats the steps described above with the first portion 98 and second portion 100 of the first suture 90 at the ends 82, 84 of the tendon 80. As seen in FIG. 17, the needle 92 at the end of the first portion 98 is inserted into the tendon end 82 at an entry point 102 adjacent the exit point 96 and pushed along a selected curvilinear path until the needle 92 emerges from an exit point 104 in the periphery of the tendon 82 substantially co-located with the second exit point 104a of the first portion 98a of the second suture 90a. In this manner, the surgeon advances longitudinally along the end 82 of the tendon 80 with the first portion 98 of the first suture 90 in a “side-to-side” pattern which generally mirrors that of the first portion 98a of the second suture 90a. Similar steps are taken with the second portion 100 of the first suture 90 in the other end 84 of the tendon 80. The pattern of the first suture 90 and second suture 90a, as well as the respective first portions 98, 98a and second portions 100, 100a of the sutures 90, 90a, generally mirror one another. The exit points and entry points of the sutures are substantially co-located. The ends 82, 84 of the tendon 80 are brought together by pushing the tendon ends along the sutures while maintaining tension on the free ends of the sutures 90, 90a. The barbs 48 maintain the sutures 90, 90a in place and resist movement of the tendon ends 82, 84 away from this position. The needles, along with remaining lengths of the sutures, are cut and discarded. FIGS. 18 and 19 show the suture pattern using the above-described method of the present invention.


It is understood that more sutures may be used in any of the methods of the present invention. The number of sutures used depends on the size, caliber, and length of the tendon to be repaired. Large tendons will require more than two sutures whereas one may suffice for very small tendons. Tendon repair with two sutures according to the present invention exhibits equivalent or better holding power than conventional techniques. Moreover, tendons repaired according to the methods of the present invention maintain their original configuration, profile, contour, and form better when subject to stretching forces. Other methods of tendon repair suitable for use according to the present invention are shown and described in U.S. patent application Ser. No. 09/896,455, entitled “Suture Method”, which was filed on Jun. 29, 2001, the contents of which are hereby incorporated by reference.



FIGS. 20 and 21 are two views of the Achilles tendon 74 reattached to the heel bone 76 to promote healing according to the present invention using the suture method shown in FIGS. 7-13. The tendon 74 and bone 76 will, over time, grow together.


The present invention provides a compact and easy to use suture anchor and method for reattaching tissue, such as tendons and ligaments, to bone or other connective tissue. The curvilinear placement paths of the suture portion, as contrasted with linear insertion, provide substantially increased biomechanical strength for approximating tissue and bone, or the ends of tendon. The barbed suture portion permits tissue to be approximated and held snug during suturing with less slippage of the suture in the wound. The barbs spread out the holding forces evenly thereby significantly reducing tissue distortion. The suture anchor is useful in endoscopic and arthroscopic procedures and microsurgery. Since knots do not have to be tied, arthroscopic knot tying instruments are unnecessary. If there is an accidental breakage of the barbed suture, the wound is minimally disturbed whereas, with conventional sutures, dehiscence would occur.


Although the present invention has been shown and described in considerable detail with respect to only a few exemplary embodiments thereof, it should be understood by those skilled in the art that we do not intend to limit the invention to the embodiments since various modifications, omissions and additions may be made to the disclosed embodiments without materially departing from the novel teachings and advantages of the invention, particularly in light of the foregoing teachings. For example, the methods of the present invention can be used with a suture anchor alone as a two-way barbed suture. Accordingly, we intend to cover all such modifications, omissions, additions and equivalents as may be included within the spirit and scope of the invention as defined by the following claims.

Claims
  • 1. A suture anchor for approximating tissue and bone, the suture anchor comprising: an anchor member having a distal end and a proximal end, the anchor member adapted to fixedly engage the bone to secure the anchor member relative to the bone; anda plurality of sutures mounted to the proximal end of the anchor member so that the sutures extend outwardly from the anchor member, each suture having a sharp pointed distal end for penetrating the tissue and a plurality of barbs extending from the periphery and disposed along the length of the body of the suture, the barbs permitting movement of the sutures through the tissue in a direction of movement of the pointed end and preventing movement of the sutures relative to the tissue in a direction opposite the direction of movement of the pointed end, wherein at least one pointed distal end of at least one suture comprises a needle.
  • 2. The suture anchor as recited in claim 1, wherein the distal end of the anchor member is pointed for driving into the bone.
  • 3. The suture anchor as recited in claim 1, wherein the anchor member comprises a plurality of barbs extending from the periphery of the body of the anchor member, the barbs permitting movement of the anchor member through the bone in a direction of movement of the distal end and preventing movement of the relative to the bone in a direction opposite the direction of movement of the distal end.
  • 4. The suture anchor as recited in claim 1, further comprising means for mounting the sutures to the proximal end of the anchor member.
  • 5. The suture anchor as recited in claim 1, wherein the suture anchor is formed from a material that is absorbed by the body after a predetermined period of time.
  • 6. The suture anchor as recited in claim 1, wherein the suture anchor is formed from a material that is not absorbed by the body.
  • 7. The suture anchor as recited in claim 1, wherein the anchor member is formed from a material that is absorbed by the body after a predetermined period of time.
  • 8. The suture anchor as recited in claim 1, wherein the anchor member is formed from a material that is not absorbed by the body.
  • 9. The suture anchor as recited in claim 1, wherein the sutures are formed from a material that is absorbed by the body after a predetermined period of time.
  • 10. The suture anchor as recited in claim 1, wherein the sutures are formed from a material that is not absorbed by the body.
  • 11. A suture anchor for approximating tissue and bone, the suture anchor comprising: an anchor member having a distal end and a proximal end, the anchor member adapted to fixedly engage the bone to secure the anchor member relative to the bone;a plurality of sutures mounted to the proximal end of the anchor member so that the sutures extend outwardly from the anchor member, each suture having a sharp pointed distal end for penetrating the tissue and a plurality of barbs extending from the periphery of the body of the suture, the barbs permitting movement of the sutures through the tissue in a direction of movement of the pointed end and preventing movement of the sutures relative to the tissue in a direction opposite the direction of movement of the pointed end, wherein at least one pointed distal end of at least one suture comprises a needle; andmeans for mounting the sutures to the proximal end of the anchor member, wherein the suture mounting means includes a portion of the body of the anchor member, which defines an opening in the proximal end of the anchor member for accepting the sutures.
CROSS-REFERENCES

This application is a divisional application of patent application Ser. No. 10/914,755, filed Aug. 9, 2004, and issued as U.S. Pat. No. 7,371,253 on May 13, 2008, which is a divisional of application Ser. No. 10/216,516, filed Aug. 9, 2002, and issued as U.S. Pat. No. 6,773,450 on Aug. 10, 2004, the contents of both of which are incorporated here by reference.

US Referenced Citations (679)
Number Name Date Kind
709392 Brown Sep 1902 A
733723 Lukens Jul 1903 A
789401 Acheson May 1905 A
816026 Meier Mar 1906 A
879758 Foster Feb 1908 A
1142510 Engle Jun 1915 A
1248825 Dederer Dec 1917 A
1321011 Cottes Nov 1919 A
1558037 Morton Oct 1925 A
1728316 Wachenfeldt Sep 1929 A
1886721 O'Brien Nov 1932 A
2094578 Blumenthal Oct 1937 A
2201610 Dawson, Jr. May 1940 A
2232142 Schumann Feb 1941 A
2254620 Miller Sep 1941 A
2347956 Lansing May 1944 A
2355907 Cox Aug 1944 A
2421193 Gardner May 1947 A
2472009 Gardner May 1949 A
2572936 Kulp Oct 1951 A
2684070 Kelsey Jul 1954 A
2779083 Eaton Jan 1957 A
2814296 Everett Nov 1957 A
2817339 Sullivan Dec 1957 A
2866256 Matlin Dec 1958 A
2910067 White Oct 1959 A
2988028 Alcamo Jun 1961 A
3003155 Mielzynski Oct 1961 A
3068869 Shelden Dec 1962 A
3068870 Levin Dec 1962 A
3123077 Alcamo Mar 1964 A
3166072 Sullivan Jan 1965 A
3187752 Glick Jun 1965 A
3206018 Lewis Sep 1965 A
3209652 Burgsmueller Oct 1965 A
3209754 Brown Oct 1965 A
3214810 Mathison Nov 1965 A
3221746 Noble Dec 1965 A
3234636 Brown Feb 1966 A
3273562 Brown Sep 1966 A
3352191 Crawford Nov 1967 A
3378010 Codling Apr 1968 A
3385299 Le Roy May 1968 A
3494006 Brumlik Feb 1970 A
3525340 Gilbert Aug 1970 A
3527223 Shein Sep 1970 A
3545608 Berger Dec 1970 A
3570497 Lemole Mar 1971 A
3586002 Wood Jun 1971 A
3608095 Barry Sep 1971 A
3608539 Miller Sep 1971 A
3646615 Ness Mar 1972 A
3683926 Suzuki Aug 1972 A
3700433 Duhl Oct 1972 A
3716058 Tanner, Jr. Feb 1973 A
3720055 deMestral Mar 1973 A
3825010 McDonald Jul 1974 A
3833972 Brumlik Sep 1974 A
3845641 Waller Nov 1974 A
3847156 Trumble Nov 1974 A
3918455 Coplan Nov 1975 A
3951261 Mandel Apr 1976 A
3981051 Brumlik Sep 1976 A
3981307 Borysko Sep 1976 A
3985138 Jarvik Oct 1976 A
3985227 Thyen Oct 1976 A
4006747 Kronenthal Feb 1977 A
4008303 Glick Feb 1977 A
4027608 Arbuckle Jun 1977 A
4043344 Landi Aug 1977 A
D246911 Bess, Jr. Jan 1978 S
4069825 Akiyama Jan 1978 A
4073298 Le Roy Feb 1978 A
4137921 Okuzumi Feb 1979 A
4198734 Brumlik Apr 1980 A
4204541 Kapitanov May 1980 A
4204542 Bokros May 1980 A
4259959 Walker Apr 1981 A
4300424 Flinn Nov 1981 A
4311002 Dipalma Jan 1982 A
4313448 Stokes Feb 1982 A
4316469 Kapitanov Feb 1982 A
4317451 Cerwin Mar 1982 A
4428376 Mericle Jan 1984 A
4430998 Harvey Feb 1984 A
4434796 Karapetian Mar 1984 A
4454875 Pratt Jun 1984 A
4467805 Fukuda Aug 1984 A
4492075 Faure Jan 1985 A
4493323 Albright Jan 1985 A
4505274 Speelman Mar 1985 A
4510934 Batra Apr 1985 A
4531522 Bedi Jul 1985 A
4532926 O'Holla Aug 1985 A
4535772 Sheehan Aug 1985 A
4548202 Duncan Oct 1985 A
4553544 Nomoto Nov 1985 A
4610250 Green Sep 1986 A
4610251 Kumar Sep 1986 A
4635637 Schreiber Jan 1987 A
4637380 Orejola Jan 1987 A
4653486 Coker Mar 1987 A
4669473 Richards Jun 1987 A
4676245 Fukuda Jun 1987 A
4719917 Barrows Jan 1988 A
4741330 Hayhurst May 1988 A
4750910 Takayanagi Jun 1988 A
4751621 Jenkins Jun 1988 A
4776337 Palmaz Oct 1988 A
4832025 Coates May 1989 A
4841960 Garner Jun 1989 A
4865026 Barrett Sep 1989 A
4873976 Schreiber Oct 1989 A
4887601 Richards Dec 1989 A
4895148 Bays Jan 1990 A
4898156 Gatturna Feb 1990 A
4899743 Nicholson Feb 1990 A
4900605 Thorgersen Feb 1990 A
4905367 Pinchuk Mar 1990 A
4930945 Arai Jun 1990 A
4932962 Yoon Jun 1990 A
4946468 Li Aug 1990 A
4948444 Schutz Aug 1990 A
4950258 Kawai Aug 1990 A
4950285 Wilk Aug 1990 A
4968315 Gatturna Nov 1990 A
4976715 Bays Dec 1990 A
4981149 Yoon Jan 1991 A
4994073 Green Feb 1991 A
4997439 Chen Mar 1991 A
5002550 Li Mar 1991 A
5002562 Oberlander Mar 1991 A
5007921 Brown Apr 1991 A
5007922 Chen Apr 1991 A
5026390 Brown Jun 1991 A
5037422 Hayhurst Aug 1991 A
5041129 Hayhurst Aug 1991 A
5046513 Gatturna Sep 1991 A
5047047 Yoon Sep 1991 A
5053047 Yoon Oct 1991 A
5084063 Korthoff Jan 1992 A
5089010 Korthoff Feb 1992 A
5101968 Henderson Apr 1992 A
5102418 Granger Apr 1992 A
5102421 Anspach, Jr. Apr 1992 A
5103073 Danilov Apr 1992 A
5112344 Petros May 1992 A
5123911 Granger Jun 1992 A
5123913 Wilk Jun 1992 A
5123919 Sauter Jun 1992 A
5127413 Ebert Jul 1992 A
5133738 Korthoff Jul 1992 A
5141520 Goble Aug 1992 A
5147382 Gertzman Sep 1992 A
5156788 Chesterfield Oct 1992 A
5176692 Wilk Jan 1993 A
5179964 Cook Jan 1993 A
5192274 Bierman Mar 1993 A
5192302 Kensey Mar 1993 A
5192303 Gatturna Mar 1993 A
5197597 Leary Mar 1993 A
5207679 Li May 1993 A
5207694 Broome May 1993 A
5217486 Rice Jun 1993 A
5217494 Coggins Jun 1993 A
5222508 Contarini Jun 1993 A
5222976 Yoon Jun 1993 A
5224946 Hayhurst Jul 1993 A
5242457 Akopov Sep 1993 A
5246441 Ross Sep 1993 A
5249673 Sinn Oct 1993 A
5258013 Granger Nov 1993 A
5263973 Cook Nov 1993 A
5269783 Sander Dec 1993 A
5282832 Toso Feb 1994 A
5292326 Green Mar 1994 A
5306288 Granger Apr 1994 A
5306290 Martins Apr 1994 A
5320629 Noda Jun 1994 A
5330488 Goldrath Jul 1994 A
5330503 Yoon Jul 1994 A
5336239 Gimpelson Aug 1994 A
5341922 Cerwin Aug 1994 A
5342376 Ruff Aug 1994 A
5342395 Jarrett Aug 1994 A
5352515 Jarrett Oct 1994 A
5354271 Voda Oct 1994 A
5354298 Lee Oct 1994 A
5358511 Gatturna Oct 1994 A
5372146 Branch Dec 1994 A
5374268 Sander Dec 1994 A
5374278 Chesterfield Dec 1994 A
5380334 Torrie Jan 1995 A
5391173 Wilk Feb 1995 A
5395126 Tresslar Mar 1995 A
5403346 Loeser Apr 1995 A
5411523 Goble May 1995 A
5414988 Di Palma May 1995 A
5417691 Hayhurst May 1995 A
5425746 Proto Jun 1995 A
5425747 Brotz Jun 1995 A
5437680 Yoon Aug 1995 A
5450860 O'Connor Sep 1995 A
5451461 Broyer Sep 1995 A
5462561 Voda Oct 1995 A
5464427 Curtis Nov 1995 A
5472452 Trott Dec 1995 A
5478353 Yoon Dec 1995 A
5480403 Lee Jan 1996 A
5480411 Liu Jan 1996 A
5484451 Akopov Jan 1996 A
5486197 Le Jan 1996 A
5494154 Ainsworth Feb 1996 A
5500000 Feagin Mar 1996 A
5500991 Demarest Mar 1996 A
5520084 Chesterfield May 1996 A
5520691 Branch May 1996 A
5522845 Wenstrom, Jr. Jun 1996 A
5531760 Alwafaie Jul 1996 A
5531761 Yoon Jul 1996 A
5531790 Frechet Jul 1996 A
5533982 Rizk Jul 1996 A
5536582 Prasad Jul 1996 A
5540705 Meade Jul 1996 A
5540718 Bartlett Jul 1996 A
5546957 Heske Aug 1996 A
5554171 Gatturna Sep 1996 A
5566822 Scanlon Oct 1996 A
5571175 Vanney Nov 1996 A
5571216 Anderson Nov 1996 A
5573543 Akopov Nov 1996 A
5584859 Brotz Dec 1996 A
5601557 Hayhurst Feb 1997 A
5626590 Wilk May 1997 A
5632753 Loeser May 1997 A
5643288 Thompson Jul 1997 A
5643295 Yoon Jul 1997 A
5643319 Green Jul 1997 A
5647874 Hayhurst Jul 1997 A
5649939 Reddick Jul 1997 A
5653716 Malo Aug 1997 A
5662714 Charvin Sep 1997 A
5669935 Rosenman Sep 1997 A
D386583 Ferragamo Nov 1997 S
5683417 Cooper Nov 1997 A
5697976 Chesterfield Dec 1997 A
5702462 Oberlander Dec 1997 A
5709692 Mollenauer Jan 1998 A
5716358 Ochoa Feb 1998 A
5716376 Roby Feb 1998 A
5722991 Colligan Mar 1998 A
5723008 Gordon Mar 1998 A
5725557 Gatturna Mar 1998 A
5728114 Evans Mar 1998 A
5741277 Gordon Apr 1998 A
5763411 Edwardson Jun 1998 A
5765560 Verkerke Jun 1998 A
5779719 Klein Jul 1998 A
5782864 Lizardi Jul 1998 A
5807403 Beyar Sep 1998 A
5807406 Brauker Sep 1998 A
5810853 Yoon Sep 1998 A
5814051 Wenstrom, Jr. Sep 1998 A
5843087 Jensen Dec 1998 A
5843178 Vanney Dec 1998 A
5863360 Wood Jan 1999 A
5884859 Ma Mar 1999 A
5887594 LoCicero, III Mar 1999 A
5891166 Schervinsky Apr 1999 A
5893856 Jacob Apr 1999 A
5895395 Yeung Apr 1999 A
5895413 Nordstrom Apr 1999 A
5897572 Schulsinger Apr 1999 A
5899911 Carter May 1999 A
5916224 Esplin Jun 1999 A
5919234 Lemperle Jul 1999 A
5921982 Lesh Jul 1999 A
5925078 Anderson Jul 1999 A
5931855 Buncke Aug 1999 A
5935138 McJames, II Aug 1999 A
5938668 Scirica Aug 1999 A
5950633 Lynch Sep 1999 A
5954747 Clark Sep 1999 A
5968097 Frechet Oct 1999 A
5972024 Northrup, III Oct 1999 A
5984933 Yoon Nov 1999 A
5993459 Larsen Nov 1999 A
6001111 Sepetka Dec 1999 A
6012216 Esteves Jan 2000 A
6015410 Tormala Jan 2000 A
6024757 Haase Feb 2000 A
6027523 Schmieding Feb 2000 A
6039741 Meislin Mar 2000 A
6056778 Grafton May 2000 A
6063105 Totakura May 2000 A
6074419 Healy Jun 2000 A
6076255 Shikakubo Jun 2000 A
6083244 Lubbers Jul 2000 A
6102947 Gordon Aug 2000 A
6106544 Brazeau Aug 2000 A
D433753 Weiss Nov 2000 S
6146406 Shluzas Nov 2000 A
6146407 Krebs Nov 2000 A
6149660 Laufer Nov 2000 A
6163948 Esteves Dec 2000 A
6165203 Krebs Dec 2000 A
6168633 Shoher Jan 2001 B1
6174324 Egan Jan 2001 B1
6183499 Fischer Feb 2001 B1
6187095 Labrecque Feb 2001 B1
6206908 Roby Mar 2001 B1
6235869 Roby May 2001 B1
6241747 Ruff Jun 2001 B1
6251143 Schwartz Jun 2001 B1
6264675 Brotz Jul 2001 B1
6267772 Mulhauser Jul 2001 B1
6270517 Brotz Aug 2001 B1
6315788 Roby Nov 2001 B1
6319231 Andrulitis Nov 2001 B1
6334865 Redmond Jan 2002 B1
6387363 Gruskin May 2002 B1
6388043 Langer May 2002 B1
6395029 Levy May 2002 B1
D462766 Jacobs Sep 2002 S
6443962 Gaber Sep 2002 B1
6463719 Dey Oct 2002 B2
6471715 Weiss Oct 2002 B1
6478809 Brotz Nov 2002 B1
6485503 Jacobs Nov 2002 B2
6491701 Tierney Dec 2002 B2
6494898 Roby Dec 2002 B1
6495127 Wallace Dec 2002 B1
RE037963 Thal Jan 2003 E
6506190 Walshe Jan 2003 B1
6511488 Marshall Jan 2003 B1
6514265 Ho Feb 2003 B2
6527795 Lizardi Mar 2003 B1
6551343 Tormala et al. Apr 2003 B1
6554802 Pearson Apr 2003 B1
6565597 Fearnot May 2003 B1
6592609 Bonutti Jul 2003 B1
6596296 Nelson Jul 2003 B1
6599310 Leung Jul 2003 B2
6607541 Gardiner Aug 2003 B1
6610078 Bru-Magniez Aug 2003 B1
6613059 Schaller Sep 2003 B2
6613254 Shiffer Sep 2003 B1
6616982 Merrill Sep 2003 B2
6623492 Berube Sep 2003 B1
6626930 Allen Sep 2003 B1
6641592 Sauer Nov 2003 B1
6641593 Schaller Nov 2003 B1
6645226 Jacobs Nov 2003 B1
6645227 Fallin Nov 2003 B2
6648921 Anderson Nov 2003 B2
6656182 Hayhurst Dec 2003 B1
6689153 Skiba Feb 2004 B1
6702844 Lazarus Mar 2004 B1
6712830 Esplin Mar 2004 B2
6716234 Grafton Apr 2004 B2
6720402 Langer Apr 2004 B2
6726705 Peterson Apr 2004 B2
6746443 Morley Jun 2004 B1
6746458 Cloud Jun 2004 B1
6749616 Nath Jun 2004 B1
6773450 Leung et al. Aug 2004 B2
6783554 Amara Aug 2004 B2
6814748 Baker Nov 2004 B1
6818010 Eichhorn Nov 2004 B2
6838493 Williams Jan 2005 B2
6848152 Genova Feb 2005 B2
6852825 Lendlein Feb 2005 B2
6858222 Nelson Feb 2005 B2
6860891 Schulze Mar 2005 B2
6860901 Baker Mar 2005 B1
6877934 Gainer Apr 2005 B2
6881766 Hain Apr 2005 B2
6893452 Jacobs May 2005 B2
6905484 Buckman Jun 2005 B2
6911035 Blomme Jun 2005 B1
6911037 Gainer Jun 2005 B2
6913607 Ainsworth Jul 2005 B2
6921811 Zamora Jul 2005 B2
6923819 Meade Aug 2005 B2
6945980 Nguyen Sep 2005 B2
6960221 Ho Nov 2005 B2
6960233 Berg Nov 2005 B1
6974450 Weber Dec 2005 B2
6981983 Rosenblatt Jan 2006 B1
6984241 Lubbers Jan 2006 B2
6986780 Rudnick Jan 2006 B2
6991643 Saadat Jan 2006 B2
6996880 Kurtz, Jr. Feb 2006 B2
7021316 Leiboff Apr 2006 B2
7033379 Peterson Apr 2006 B2
7033603 Nelson Apr 2006 B2
7037984 Lendlein May 2006 B2
7048748 Üstüner May 2006 B1
7056331 Kaplan Jun 2006 B2
7056333 Walshe Jun 2006 B2
7057135 Li Jun 2006 B2
7070610 Im Jul 2006 B2
7081135 Smith Jul 2006 B2
7083637 Tannhauser Aug 2006 B1
7083648 Yu Aug 2006 B2
7107090 Salisbury, Jr. Sep 2006 B2
7112214 Peterson Sep 2006 B2
7125403 Julian Oct 2006 B2
7125413 Grigoryants Oct 2006 B2
D532107 Peterson Nov 2006 S
7138441 Zhang Nov 2006 B1
7141302 Mueller Nov 2006 B2
7144401 Yamamoto Dec 2006 B2
7144412 Wolf Dec 2006 B2
7144415 Del Rio Dec 2006 B2
7150757 Fallin Dec 2006 B2
7156858 Schuldt-Hempe Jan 2007 B2
7156862 Jacobs Jan 2007 B2
7160312 Saadat Jan 2007 B2
7166570 Hunter Jan 2007 B2
7172595 Goble Feb 2007 B1
7172615 Morriss Feb 2007 B2
7186262 Saadat Mar 2007 B2
7195634 Schmieding Mar 2007 B2
7211088 Grafton May 2007 B2
7214230 Brock May 2007 B2
7217744 Lendlein May 2007 B2
7225512 Genova Jun 2007 B2
7226468 Ruff Jun 2007 B2
7232447 Gellman Jun 2007 B2
7244270 Lesh Jul 2007 B2
7279612 Heaton Oct 2007 B1
7297142 Brock Nov 2007 B2
7322105 Lewis Jan 2008 B2
7371253 Leung May 2008 B2
7513904 Sulamanidze Apr 2009 B2
7514095 Nelson Apr 2009 B2
7582105 Kolster Sep 2009 B2
7601164 Wu Oct 2009 B2
7624487 Trull Dec 2009 B2
20010011187 Pavcnik Aug 2001 A1
20010018599 D'Aversa Aug 2001 A1
20010039450 Pavcnik Nov 2001 A1
20010044637 Jacobs Nov 2001 A1
20010051807 Grafton Dec 2001 A1
20010051815 Esplin Dec 2001 A1
20020007218 Cauthen Jan 2002 A1
20020022861 Jacobs Feb 2002 A1
20020029066 Foerster Mar 2002 A1
20020069617 Dey Jun 2002 A1
20020077448 Antal Jun 2002 A1
20020077631 Lubbers Jun 2002 A1
20020095164 Andreas Jul 2002 A1
20020099394 Houser Jul 2002 A1
20020111641 Peterson Aug 2002 A1
20020111688 Cauthen Aug 2002 A1
20020138009 Brockway Sep 2002 A1
20020151980 Cauthen Oct 2002 A1
20020173807 Jacobs Nov 2002 A1
20020173822 Justin Nov 2002 A1
20020179718 Murokh Dec 2002 A1
20030014077 Leung Jan 2003 A1
20030040795 Elson Feb 2003 A1
20030041426 Genova Mar 2003 A1
20030065360 Jacobs Apr 2003 A1
20030065402 Anderson Apr 2003 A1
20030069602 Jacobs Apr 2003 A1
20030074021 Morriss Apr 2003 A1
20030074023 Kaplan Apr 2003 A1
20030078604 Walshe Apr 2003 A1
20030088270 Lubbers May 2003 A1
20030097150 Fallin May 2003 A1
20030105489 Eichhorn Jun 2003 A1
20030149447 Morency Aug 2003 A1
20030158604 Cauthen, III Aug 2003 A1
20030167072 Oberlander Sep 2003 A1
20030203003 Nelson Oct 2003 A1
20030204195 Keane Oct 2003 A1
20030229361 Jackson Dec 2003 A1
20030236550 Peterson Dec 2003 A1
20030236551 Peterson Dec 2003 A1
20040010275 Jacobs Jan 2004 A1
20040010276 Jacobs Jan 2004 A1
20040015187 Lendlein Jan 2004 A1
20040024420 Lubbers Feb 2004 A1
20040028655 Nelson Feb 2004 A1
20040030354 Leung Feb 2004 A1
20040039415 Zamierowski Feb 2004 A1
20040059377 Peterson Mar 2004 A1
20040059378 Peterson Mar 2004 A1
20040060409 Leung Apr 2004 A1
20040060410 Leung Apr 2004 A1
20040068293 Scalzo Apr 2004 A1
20040068294 Scalzo Apr 2004 A1
20040088003 Leung May 2004 A1
20040093023 Allen May 2004 A1
20040093028 Ruff May 2004 A1
20040098051 Fallin May 2004 A1
20040106949 Cohn Jun 2004 A1
20040138683 Shelton Jul 2004 A1
20040153153 Elson Aug 2004 A1
20040167572 Roth Aug 2004 A1
20040167575 Roby Aug 2004 A1
20040193191 Starksen Sep 2004 A1
20040193217 Lubbers Sep 2004 A1
20040193257 Wu Sep 2004 A1
20040226427 Trull Nov 2004 A1
20040237736 Genova Dec 2004 A1
20040254609 Esplin Dec 2004 A1
20040260340 Jacobs Dec 2004 A1
20040265282 Wright Dec 2004 A1
20040267309 Garvin Dec 2004 A1
20050004601 Kong Jan 2005 A1
20050004602 Hart Jan 2005 A1
20050033324 Phan Feb 2005 A1
20050033367 Leung Feb 2005 A1
20050034431 Dey Feb 2005 A1
20050038472 Furst Feb 2005 A1
20050059984 Chanduszko Mar 2005 A1
20050065533 Magen Mar 2005 A1
20050070959 Cichocki, Jr. Mar 2005 A1
20050080455 Schmieding Apr 2005 A1
20050085857 Peterson Apr 2005 A1
20050096698 Lederman May 2005 A1
20050106211 Nelson May 2005 A1
20050113936 Brustad May 2005 A1
20050119694 Jacobs Jun 2005 A1
20050125020 Meade Jun 2005 A1
20050125034 Cichocki, Jr. Jun 2005 A1
20050125035 Cichocki, Jr. Jun 2005 A1
20050149064 Peterson Jul 2005 A1
20050149118 Koyfman Jul 2005 A1
20050154255 Jacobs Jul 2005 A1
20050171561 Songer Aug 2005 A1
20050177190 Zamierowski Aug 2005 A1
20050182444 Peterson Aug 2005 A1
20050182445 Zamierowski Aug 2005 A1
20050197699 Jacobs Sep 2005 A1
20050199249 Karram Sep 2005 A1
20050203576 Sulamanidze Sep 2005 A1
20050209542 Jacobs Sep 2005 A1
20050209612 Nakao Sep 2005 A1
20050234510 Zamierowski Oct 2005 A1
20050240220 Zamierowski Oct 2005 A1
20050240224 Wu Oct 2005 A1
20050267531 Ruff Dec 2005 A1
20050267532 Wu Dec 2005 A1
20050277984 Long Dec 2005 A1
20050283246 Cauthen Dec 2005 A1
20060020272 Gildenberg Jan 2006 A1
20060030884 Yeung Feb 2006 A1
20060036266 Sulamanidze Feb 2006 A1
20060058574 Priewe Mar 2006 A1
20060058799 Elson Mar 2006 A1
20060058844 White Mar 2006 A1
20060064115 Allen Mar 2006 A1
20060064116 Allen Mar 2006 A1
20060064127 Fallin Mar 2006 A1
20060079935 Kolster Apr 2006 A1
20060085016 Eremia Apr 2006 A1
20060089525 Mamo Apr 2006 A1
20060089672 Martinek Apr 2006 A1
20060111734 Kaplan May 2006 A1
20060111742 Kaplan May 2006 A1
20060122608 Fallin Jun 2006 A1
20060135994 Ruff Jun 2006 A1
20060135995 Ruff Jun 2006 A1
20060142784 Kontos Jun 2006 A1
20060193769 Nelson Aug 2006 A1
20060194721 Allen Aug 2006 A1
20060200062 Saadat Sep 2006 A1
20060207612 Jackson Sep 2006 A1
20060229671 Steiner Oct 2006 A1
20060235445 Birk Oct 2006 A1
20060235447 Walshe Oct 2006 A1
20060235516 Cavazzoni Oct 2006 A1
20060241658 Cerundolo Oct 2006 A1
20060249405 Cerwin Nov 2006 A1
20060253126 Bjerken Nov 2006 A1
20060257629 Lendlein Nov 2006 A1
20060258938 Hoffman Nov 2006 A1
20060272979 Lubbers Dec 2006 A1
20060276808 Arnal Dec 2006 A1
20060282099 Stokes Dec 2006 A1
20060286289 Prajapati Dec 2006 A1
20060287675 Prajapati Dec 2006 A1
20060287676 Prajapati Dec 2006 A1
20060293710 Foerster Dec 2006 A1
20070005109 Popadiuk Jan 2007 A1
20070005110 Collier Jan 2007 A1
20070021779 Garvin Jan 2007 A1
20070027475 Pagedas Feb 2007 A1
20070038249 Kolster Feb 2007 A1
20070065663 Trull Mar 2007 A1
20070088391 McAlexander Apr 2007 A1
20070135840 Schmieding Jun 2007 A1
20070135843 Burkhart Jun 2007 A1
20070151961 Kleine Jul 2007 A1
20070156175 Weadock Jul 2007 A1
20070167958 Sulamanidze Jul 2007 A1
20070187861 Genova Aug 2007 A1
20070208355 Ruff Sep 2007 A1
20070208377 Kaplan Sep 2007 A1
20070219587 Accardo Sep 2007 A1
20070224237 Hwang Sep 2007 A1
20070225642 Houser Sep 2007 A1
20070225761 Shetty Sep 2007 A1
20070227914 Cerwin Oct 2007 A1
20070233188 Hunt Oct 2007 A1
20070239206 Shelton, IV Oct 2007 A1
20070257395 Lindh Nov 2007 A1
20070282247 Desai Dec 2007 A1
20080004603 Larkin Jan 2008 A1
20080009838 Schena Jan 2008 A1
20080009888 Ewers Jan 2008 A1
20080009902 Hunter Jan 2008 A1
20080027273 Gutterman Jan 2008 A1
20080027486 Jones Jan 2008 A1
20080046094 Han Feb 2008 A1
20080058869 Stopek Mar 2008 A1
20080066764 Paraschac Mar 2008 A1
20080066765 Paraschac Mar 2008 A1
20080066766 Paraschac Mar 2008 A1
20080066767 Paraschac Mar 2008 A1
20080077181 Jones Mar 2008 A1
20080082113 Bishop Apr 2008 A1
20080082129 Jones Apr 2008 A1
20080086169 Jones Apr 2008 A1
20080086170 Jones Apr 2008 A1
20080109036 Stopek May 2008 A1
20080132943 Maiorino Jun 2008 A1
20080195147 Stopek Aug 2008 A1
20080208358 Bellamkonda Aug 2008 A1
20080215072 Kelly Sep 2008 A1
20080221618 Chen Sep 2008 A1
20080234731 Leung Sep 2008 A1
20080248216 Yeung Oct 2008 A1
20080262542 Sulamanidze Oct 2008 A1
20080281338 Wohlert Nov 2008 A1
20080312688 Nawrocki Dec 2008 A1
20090012560 Hunter Jan 2009 A1
20090018577 Leung Jan 2009 A1
20090043336 Yuan Feb 2009 A1
20090076543 Maiorino Mar 2009 A1
20090099597 Isse Apr 2009 A1
20090107965 D'Agostino Apr 2009 A1
20090112259 D'Agostino Apr 2009 A1
20090200487 Maiorino Aug 2009 A1
20090210006 Cohen Aug 2009 A1
20090226500 Avelar Sep 2009 A1
20090248066 Wilkie Oct 2009 A1
20090248067 Maiorino Oct 2009 A1
20090248070 Kosa Oct 2009 A1
20090250356 Kirsch Oct 2009 A1
20090259233 Bogart Oct 2009 A1
20090259251 Cohen Oct 2009 A1
20090287245 Ostrovsky Nov 2009 A1
20090299407 Yuan Dec 2009 A1
20090299408 Schuldt-Hempe Dec 2009 A1
20090306710 Lindh, Sr. Dec 2009 A1
20100023055 Rousseau Jan 2010 A1
20100057123 D'Agostino Mar 2010 A1
20100063540 Maiorino Mar 2010 A1
20100071833 Maiorino Mar 2010 A1
20100087855 Leung Apr 2010 A1
20100101707 Maiorino Apr 2010 A1
20100140115 Kirsch Jun 2010 A1
20100294103 Genova Nov 2010 A1
20100294104 Genova Nov 2010 A1
20100294105 Genova Nov 2010 A1
20100294106 Genova Nov 2010 A1
20100294107 Genova Nov 2010 A1
20100298878 Leung et al. Nov 2010 A1
20100298879 Leung et al. Nov 2010 A1
20100313723 Genova Dec 2010 A1
20100313729 Genova Dec 2010 A1
20100313730 Genova Dec 2010 A1
20100318122 Leung et al. Dec 2010 A1
20110009902 Leung et al. Jan 2011 A1
Foreign Referenced Citations (59)
Number Date Country
1014364 Sep 2003 BE
2640420 Sep 2004 CN
1810800 Jun 1970 DE
3227984 Jul 1982 DE
4302895 Aug 1994 DE
19618891 Apr 1997 DE
19833703 Feb 2000 DE
102005004317 Jun 2006 DE
0329787 Aug 1989 EP
0428253 May 1991 EP
0576337 Dec 1993 EP
0632999 Jan 1995 EP
0612504 Nov 1997 EP
0826337 Mar 1998 EP
0839499 May 1998 EP
0913123 May 1999 EP
1075843 Feb 2001 EP
2619129 Feb 1989 FR
2693108 Jan 1994 FR
267007 Mar 1927 GB
1091282 Nov 1967 GB
1428560 Mar 1976 GB
1506362 Apr 1978 GB
354116419 Sep 1979 JP
63288146 Nov 1988 JP
01113091 May 1989 JP
0960600 Dec 1999 JP
11332828 Dec 1999 JP
6013299 Feb 2006 KR
501224 Mar 2002 NZ
531262 Jun 2002 NZ
1745214 Jul 1992 RU
1752358 Aug 1992 RU
2139690 Oct 1999 RU
WO9606565 Mar 1996 WO
WO9852473 Nov 1998 WO
WO9921488 May 1999 WO
WO9905477 Nov 1999 WO
WO0051658 Sep 2000 WO
WO03001979 Jan 2003 WO
WO03017850 Mar 2003 WO
WO03045255 Jun 2003 WO
WO03103733 Dec 2003 WO
WO03103972 Dec 2003 WO
WO2004014236 Feb 2004 WO
WO2004020520 Apr 2004 WO
WO2004030704 Apr 2004 WO
WO2004030705 Apr 2004 WO
WO2004112853 Dec 2004 WO
WO2006005144 Jan 2006 WO
WO2006061868 Jun 2006 WO
WO2006082060 Aug 2006 WO
WO2006099703 Sep 2006 WO
WO2007053812 May 2007 WO
WO2007133103 Nov 2007 WO
WO2007145614 Dec 2007 WO
WO2009068252 Jun 2009 WO
WO2009087105 Jul 2009 WO
WO2010052007 May 2010 WO
Related Publications (1)
Number Date Country
20080234731 A1 Sep 2008 US
Divisions (2)
Number Date Country
Parent 10914755 Aug 2004 US
Child 12119749 US
Parent 10216516 Aug 2002 US
Child 10914755 US