This disclosure relates to suture clips and devices and methods for securing sutures using suture clips.
Sutures are used for a variety of surgical purposes, such as approximation of tissue and ligation of tissue. When placing sutures, the strand of suture material to be used typically has a needle affixed to one end which is passed (looped) through the tissue to be approximated or ligated, forming a stitch. The stitch is then tensioned appropriately, and the two free ends of the suture loop, the needle end and the non-needle end, are knotted to retain the desired tension in the stitch. Forming knots in suture during open surgery is a simple matter, though time-consuming, but forming knots in sutures during endoscopic surgery can require two surgeons to cooperate in a multi-step process which is performed with multiple instruments to pass the needle and suture back and forth to tie the suture knot.
Suture locking devices that eliminate the need to tie knots in order to speed up surgical procedures are known. Suture retainers or locks are used in place of suture knots to prevent passage of a suture end into and through tissue and to maintain the tension applied to the suture material during a suturing procedure.
When using a method that employs a clip to secure sutures, the clip can be delivered by advancing the clip along the suture lines to the area of interest, and then engaging the clip to the sutures such that the clip secures the sutures in place. With the clip thus secured, the excess sutures can be cut and removed from the patient. However, deployment of several suture clips during a procedure can be very time consuming, difficult to accomplish without error, and prone to inconsistent tensioning from one clip to the next. In light of the foregoing, there is presently a need for improved systems for securing sutures with suture clips.
Disclosed herein are improved suture clip delivery devices that can be loaded with and deliver several suture clips to respective sutures in succession without reloading the device with additional suture clips. Disclosed devices and methods can be useful for securing heart valve repair devices or valve replacement prostheses in or near the heart, for example. The devices and methods can also be used for various other types of surgical procedures. The devices and methods disclosed herein can eliminate the need for suture knots, thus reducing surgical time and exposure. Further, the disclosed devices and methods can improve the ease of implantation because the clinician need not tie knots in the limited space in and around the target anatomy.
An exemplary disk-shaped suture clip disclosed herein includes an annular outer body, one or more resiliently deformable flaps that project radially inwardly from the annular outer body and define a suture engagement aperture for frictionally engaging one or more sutures passing therethrough, and one or more tabs projecting radially outwardly from the annular outer body. The suture clip is generally disk-shaped with the outer body, flaps, and tabs being substantially coplanar when the suture clip in its natural configuration. The one or more tabs project radially outwardly from the outer perimeter of the annular outer body. In some embodiments, the clip includes two or more radially projecting tabs spaced about the outer perimeter of the annular outer body. The suture clip has a resiliently deformed configuration when mounted on the delivery device, wherein the one or more resiliently deformable flaps are deflected out of a plane defined by the annular outer body and the one or more tabs, such that the suture engagement aperture enlarges sufficiently to receive a mandrel of the device.
Some embodiments of suture clip delivery devices described herein comprise a proximal handle portion including an actuation mechanism and a shaft portion including a mandrel loaded with plural suture clips. The mandrel has an inner lumen for receiving sutures, a proximal end portion coupled to the actuation mechanism, and a distal end portion having a distal opening in communication with the inner lumen. The suture clips are mounted annularly around the distal end portion of the mandrel. The suture clips are generally disk shaped and have a diameter oriented in the radial dimension of the shaft portion and a thickness oriented in the axial dimension of the shaft portion, wherein the thickness is substantially smaller than the diameter.
The actuation mechanism causes the mandrel to move proximally relative to the suture clips, such that a distal-most one of the suture clips slides off of a distal end of the mandrel and onto one or more sutures extending into the distal opening of the mandrel. After the distal-most one of the suture clips is deployed onto one or more sutures, the actuation mechanism causes the mandrel and a remaining portion of the suture clips to move distally relative to the handle portion such that a distal-most one of the remaining portion of the suture clips is ready to be successively deployed.
The shaft portion can also include a retainer positioned at least partially around the mandrel and coupled to the actuation mechanism independently of the mandrel. The retainer is configured to restrict the suture clips from moving proximally relative to the handle portion when the mandrel moves proximally relative to the handle portion. The actuation mechanism causes the retainer to rotate relative to the mandrel and the suture clips. This rotation can cause cutting of the one or more sutures and/or can free the suture clips to move distally along with the mandrel relative to the handle portion.
The retainer can include at least one axially extending slot that includes a plurality of circumferentially extending notches. The radially extending tabs on the suture clips can project into the axially extending slot in the retainer and can be positioned in respective ones of the circumferentially extending notches. The retainer can have a first rotational position wherein the suture clip tabs are positioned in the notches, such that axial motion of the suture clips relative to the retainer is restricted, and the retainer can have a second rotational position wherein the suture clip tabs are not positioned in the notches and the suture clips are allowed to move axially relative to the retainer. In the second position, the clips can move distally along with the mandrel to reset the device after each suture clip deployment.
In some embodiments, the shaft portion includes an electrical heating element positioned at a distal end of the mandrel and the heating element is configured to cut a suture after a suture clip is deployed onto the suture. The heating element can be coupled to a switch in the handle portion that is activated for a short time when the actuator is depressed.
A further understanding of the features and advantages of the disclosed technology will become apparent from a consideration of the following detailed description.
Described herein are devices and methods for securing sutures with suture clips.
As shown in
The disclosed suture clip delivery devices can be used for many different procedures where sutures are used, such as to secure an artificial heart valve or other prosthetic device with the heart, to repair or treat native organs or tissues, to close openings or occlude lumens within the body, or for other procedures. Additional information regarding procedures for which the disclosed suture clip delivery devices can be used, and other information regarding exemplary suture clips and suture clip delivery devices, are disclosed in the following references, the entire contents of which are expressly incorporated by reference herein: U.S. Pat. Nos. 6,626,930; 7,094,244; 7,083,628; and 7,381,210; and U.S. Patent Application Publication Nos. 2007/0005079 and 2013/0165953.
As shown in more detail in
The distal end of the retainer 14 is shown in more detail in
The mandrel 16 has an outer profile that is shaped to fit through the suture clips 18 with a friction fit as shown in
The clip 18 is generally disk shaped with two suture engagement flaps 56 that project inwardly toward each other and define a suture engagement slot 58. The suture engagement slot 58 can include a tortuous portion 60 at either end to prevent sutures that are pinched between the flaps 56 in the suture engagement slot 58 from sliding laterally out of the slot 58 into either of the arcuate slots 62 that extend from the ends of the slot 58. The arcuate slots 62 space the flaps 56 from an outer annular portion 64 of the clip 18 and allow the flaps 56 to articulate out of the plane of
The suture clips 18, and other suture clip embodiments, can be made from a variety of materials including, for example, nickel-titanium alloys, shape-memory alloys, stainless steel, titanium, various plastics, and other biologically-compatible materials. Exemplary suture clips can be formed from shape memory and/or pseudoelastic materials such as nitinol. In some embodiments, the suture clips can be formed from nitinol (e.g., with an alloy of nickel at 54.5-57% by weight with titanium accounting for the balance except for residual amounts (less than 0.05% each) of oxygen, carbon, and hydrogen) or another shape memory and/or pseudoelastic material, with the suture clips formed so that the clip assumes its closed position (e.g., the flat position shown in
A suture clip can be formed from material that will assume its martensite condition when subjected to sufficient stress, such as the stress applied to the clip's engagement flaps 56 and annular outer body 64 when the suture clip is mounted onto the mandrel 16, as shown in
When the clips 18 are loaded onto the mandrel 16, as shown in
The clips 18 when loaded on the mandrel 16 can be spaced apart at regular axial intervals that correspond to the axial spacing of the notches 36 in the axial slots 34 of the retainer 14 (see
Once a desired positioning of the distal-most clip 18 relative to the sutures 70 is obtained and a desired tension is applied to the sutures 70, the distal-most clip can be deployed onto the sutures 70. As shown in
As shown in
With the free ends 74 of the sutures cut off and the distal-most clip 18 secured onto the sutures 70, the device 2 can be retract from the clip deployment site, allowing the distal-most clip to exit the distal end of the device and remain secured to the sutures at the deployment site.
As shown in
In the position shown in
With reference to
One or both of the gears 22 can also include a lateral projection 90 that is offset radially from the gear's rotation axis and which lateral projection 90 fits into a hole 91 in the bracket 80 to fix the bracket's rotational motion to that of the gears 22 and the cam 24. When the actuator 8 is depressed (moves to the right in
As shown in
As shown in
As shown in
Once sutures are loaded through the device 200, the device can be advanced over the sutures distally toward the location where the sutures exit the tissue or other material to locate the distal-most suture clip adjacent that location. Desired tension can then be applied to the sutures by rotating the tensioner knob 208 and/or pulling on the free ends of the sutures. The distal-most suture clip can then be deployed onto the sutures using an actuation mechanism similar to that shown in
As shown in
In alternative embodiments of the devices disclosed herein, a suture clip can be deployed onto sutures without cutting the sutures immediately thereafter. After a suture clip is deployed onto the sutures, the device can be retracted proximally over the free ends of the sutures to allow a user to inspect the clip deployment location to verify a clip was deployed and check the accuracy and viability of the deployment clip. If the clip deployment is undesirable, the clip can be removed and a new clip can be deployed to the sutures before they are cut. The deployed clip can also be adjusted and/or the suture tension can be adjusted before cutting off the free ends of the sutures. If the clip deployment is sufficient, the device can be moved back distally over the sutures to adjacent the deployed clip, and the device can be further used to cut off the free ends of the sutures. In such embodiments, the device can include a double actuation mechanism to independently deploy the clip and re-cock the device with one user motion, and then cut the sutures with another user motion. Alternatively, another device can be used to cut the sutures after the deployment device has been removed.
In some embodiments, a vacuum system can be used to draw free ends sutures into the lumen of the mandrel. A vacuum source can be provided external to the device, or an internal vacuum source can be provided, such as within the handle portion. A hose or other conduit can couple the vacuum source to the shaft portion in order to draw air proximally through the shaft portion and create a low pressure region within the shaft that draws free ends of sutures in. In some embodiments, the shaft portion can include an adjustable door that covers and uncovers a lateral opening passing through the outer shaft, retainer and mandrel. When the door is closed, low pressure can be created inside the mandrel to draw in sutures. When the door is opened, the sutured can be grasped and pulled out laterally through the door. In other embodiments, the vacuum can be used to draw sutures all the way through the mandrel into the handle portion and/or out through a proximal opening in the handle portion. A suture clip deployment device can be configured to activate the vacuum source when the actuator is depressed, or can include a separate control for the vacuum source. Using a vacuum system to draw in sutures can eliminate the need for a snare, or can be used in conjunction with a snare.
In some embodiments, the device can comprise a vacuum monitoring system that determines and displays the pressure/vacuum level in the shaft portion and/or the amount or status of vacuum being generated or applied from a vacuum source. In some embodiments, an indicator on a display, such as the display 210, can indicate whether or not the vacuum is being applied, while in other embodiments, a level of vacuum or pressure can be displayed.
In some embodiments, the device can comprise a suture clip monitoring system that tracks/determines and displays the number of clips remaining loaded in the device. The device can comprise a display, such as the rear display 210, that shows how many clips remain. In some embodiments, when the last clip has been deployed, the clip monitoring system can cause the device to become locked such that actuator cannot be pulled. In some embodiments, the clip monitoring system can also display a lock-out indicator on the display. The display can be mechanical or electronic, analog or digital.
In some embodiments, the devices disclosed herein can be disposable after being used during a surgery and/or when all the loaded clips have been deployed. In other embodiments, the device can be cleaned and/or reloaded with clips and reused.
In some embodiments, the device can be reloaded with additional suture clips by removing the empty mandrel, or just the distal portion of the mandrel, and replacing it with a new mandrel or mandrel portion that is loaded with additional suture clips. For example, the mandrel can comprise a distal piece and a proximal piece that readily disconnect and reconnect. The distal piece can be removed and replaced with a new distal piece loaded with additional suture clips. In other embodiments, the mandrel and the retainer (or distal parts thereof) can be replaced together. In other embodiments, the entire shaft portion (of a distal part thereof) can be replaced to reload the device. In still other embodiments, additional suture clips can be placed onto the existing mandrel to reload the device.
In some embodiments, any of the devices disclosed herein can include a visual monitoring system configured to capture visual information from or near the distal end of the shaft and transfer the captured visual information to a proximal visual display. For example, the device can include a camera or endoscope positioned near the distal end of the outer shaft that is coupled via wiring to an adaptor extending from the handle and configured to be coupled to an external monitor that a user can view to assist in the clip deployment process.
General Considerations
For purposes of this description, certain aspects, advantages, and novel features of the embodiments of this disclosure are described herein. The disclosed methods, apparatuses, and systems should not be construed as limiting in any way. Instead, the present disclosure is directed toward all novel and nonobvious features and aspects of the various disclosed embodiments, alone and in various combinations and sub-combinations with one another. The methods, apparatuses, and systems are not limited to any specific aspect or feature or combination thereof, nor do the disclosed embodiments require that any one or more specific advantages be present or problems be solved.
Features, integers, characteristics, compounds, chemical moieties or groups described in conjunction with a particular aspect, embodiment or example of the invention are to be understood to be applicable to any other aspect, embodiment or example described herein unless incompatible therewith. All of the features disclosed in this specification (including any accompanying claims, abstract and drawings), and/or all of the steps of any method or process so disclosed, may be combined in any combination, except combinations where at least some of such features and/or steps are mutually exclusive. The invention is not restricted to the details of any foregoing embodiments. The invention extends to any novel one, or any novel combination, of the features disclosed in this specification (including any accompanying claims, abstract and drawings), or to any novel one, or any novel combination, of the steps of any method or process so disclosed.
Although the operations of some of the disclosed methods are described in a particular, sequential order for convenient presentation, it should be understood that this manner of description encompasses rearrangement, unless a particular ordering is required by specific language. For example, operations described sequentially may in some cases be rearranged or performed concurrently. Moreover, for the sake of simplicity, the attached figures may not show the various ways in which the disclosed methods can be used in conjunction with other methods. As used herein, the terms “a”, “an”, and “at least one” encompass one or more of the specified element. That is, if two of a particular element are present, one of these elements is also present and thus “an” element is present. The terms “a plurality of” and “plural” mean two or more of the specified element.
As used herein, the term “and/or” used between the last two of a list of elements means any one or more of the listed elements. For example, the phrase “A, B, and/or C” means “A”, “B,”, “C”, “A and B”, “A and C”, “B and C”, or “A, B, and C.”
As used herein, the term “coupled” generally means physically coupled or linked and does not exclude the presence of intermediate elements between the coupled items absent specific contrary language.
In view of the many possible embodiments to which the principles of the disclosure may be applied, it should be recognized that the illustrated embodiments are only preferred examples and should not be taken as limiting the scope of the disclosure. Rather, the scope of the disclosure is at least as broad as the following claims. We therefore claim all that comes within the scope of the following claims.
This application claims the benefit of U.S. Provisional Patent Application No. 62/096,749 filed Dec. 24, 2014, which is incorporated by reference herein in its entirety. This application is also related to U.S. patent application Ser. No. 14/868,741, filed Sep. 29, 2015; U.S. patent application Ser. No. 14/543,240, filed Nov. 17, 2014; U.S. Pat. No. 9,017,347, issued on Apr. 28, 2015; U.S. patent application Ser. No. 13/938,071, filed Jul. 9, 2013; U.S. patent application Ser. No. 14/307,694, filed Jun. 18, 2014; U.S. patent application Ser. No. 14/329,797, filed Jul. 11, 2014; U.S. patent application Ser. No. 14/965,323, filed Dec. 10, 2015; and U.S. patent application Ser. No. 14/658,575, filed Mar. 16, 2015; all which are incorporated by reference herein in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
1358477 | Stout | Nov 1920 | A |
2264679 | Ravel | Dec 1941 | A |
2516710 | Mascolo | Jul 1950 | A |
2715486 | Marcoff-Moghadam et al. | Aug 1955 | A |
2890519 | Storz, Jr. | Jun 1959 | A |
2981990 | Balderree, Jr. | May 1961 | A |
3143742 | Cromie | Aug 1964 | A |
3249104 | Hohnstein | May 1966 | A |
3274658 | Pile | Sep 1966 | A |
3452742 | Muller | Jul 1969 | A |
3506012 | Brown | Apr 1970 | A |
3509882 | Blake | May 1970 | A |
3541591 | Hoegerman | Nov 1970 | A |
3547103 | Cook | Dec 1970 | A |
3570497 | Lemole | Mar 1971 | A |
3608095 | Barry | Sep 1971 | A |
3638654 | Akuba | Feb 1972 | A |
RE27391 | Merser | Jun 1972 | E |
3753438 | Wood et al. | Aug 1973 | A |
3859668 | Anderson | Jan 1975 | A |
3875648 | Bone | Apr 1975 | A |
3898999 | Haller | Aug 1975 | A |
3910281 | Kletschka et al. | Oct 1975 | A |
3954108 | Davis | May 1976 | A |
3954109 | Patel | May 1976 | A |
3958576 | Komiya | May 1976 | A |
3976079 | Samuels et al. | Aug 1976 | A |
3988810 | Emery | Nov 1976 | A |
3996623 | Kaster | Dec 1976 | A |
4038725 | Keefe | Aug 1977 | A |
4039078 | Bone | Aug 1977 | A |
4103690 | Harris | Aug 1978 | A |
4140125 | Smith | Feb 1979 | A |
4170990 | Baumgart et al. | Oct 1979 | A |
4192315 | Hilzinger et al. | Mar 1980 | A |
4217902 | March | Aug 1980 | A |
4324248 | Perlin | Apr 1982 | A |
4345601 | Fukuda | Aug 1982 | A |
4416266 | Baucom | Nov 1983 | A |
4456017 | Miles | Jun 1984 | A |
4485816 | Krumme | Dec 1984 | A |
4522207 | Klieman et al. | Jun 1985 | A |
4535764 | Ebert | Aug 1985 | A |
4548202 | Duncan | Oct 1985 | A |
4549545 | Levy | Oct 1985 | A |
4570304 | Montreuil et al. | Feb 1986 | A |
4586502 | Bedi et al. | May 1986 | A |
4586503 | Kirsch et al. | May 1986 | A |
4595007 | Mericle | Jun 1986 | A |
4612932 | Caspar et al. | Sep 1986 | A |
4637380 | Orejola | Jan 1987 | A |
4665906 | Jervis | May 1987 | A |
4683895 | Pohndorf | Aug 1987 | A |
4705040 | Mueller et al. | Nov 1987 | A |
4719924 | Crittenden et al. | Jan 1988 | A |
4730615 | Sutherland et al. | Mar 1988 | A |
4741330 | Hayhurst | May 1988 | A |
4743253 | Magladry | May 1988 | A |
4750492 | Jacobs | Jun 1988 | A |
4809695 | Gwathmey et al. | Mar 1989 | A |
4823794 | Pierce | Apr 1989 | A |
4863460 | Magladry | Sep 1989 | A |
4873975 | Walsh et al. | Oct 1989 | A |
4896668 | Popoff et al. | Jan 1990 | A |
4899744 | Fujitsuka et al. | Feb 1990 | A |
4901721 | Hakki | Feb 1990 | A |
4914789 | Pedersen | Apr 1990 | A |
4924866 | Yoon | May 1990 | A |
4926860 | Stice et al. | May 1990 | A |
4929240 | Kirsch et al. | May 1990 | A |
4932955 | Merz et al. | Jun 1990 | A |
4950283 | Dzubow et al. | Aug 1990 | A |
4950285 | Wilk | Aug 1990 | A |
4955913 | Robinson | Sep 1990 | A |
4976715 | Bays et al. | Dec 1990 | A |
4983176 | Cushman et al. | Jan 1991 | A |
4990152 | Yoon | Feb 1991 | A |
4997439 | Chen | Mar 1991 | A |
5002550 | Li | Mar 1991 | A |
5002562 | Oberlander | Mar 1991 | A |
5002563 | Pyka et al. | Mar 1991 | A |
5026379 | Yoon | Jun 1991 | A |
5047047 | Yoon | Sep 1991 | A |
5053047 | Yoon | Oct 1991 | A |
5070805 | Plante | Dec 1991 | A |
5071431 | Sauter et al. | Dec 1991 | A |
5074874 | Yoon et al. | Dec 1991 | A |
5078731 | Hayhurst | Jan 1992 | A |
5100418 | Yoon et al. | Mar 1992 | A |
5116840 | Ganguly et al. | May 1992 | A |
5123913 | Wilk et al. | Jun 1992 | A |
RE34021 | Mueller et al. | Aug 1992 | E |
5152769 | Baber | Oct 1992 | A |
5154189 | Oberlander | Oct 1992 | A |
5158566 | Pianetti | Oct 1992 | A |
5163954 | Curcio et al. | Nov 1992 | A |
5171250 | Yoon | Dec 1992 | A |
5171251 | Bregen et al. | Dec 1992 | A |
5171252 | Friedland | Dec 1992 | A |
5174087 | Bruno | Dec 1992 | A |
5196022 | Bilweis | Mar 1993 | A |
5219358 | Bendel et al. | Jun 1993 | A |
5222976 | Yoon | Jun 1993 | A |
5231735 | Paxton | Aug 1993 | A |
5234449 | Bruker et al. | Aug 1993 | A |
5236440 | Hlavacek | Aug 1993 | A |
5242456 | Nash et al. | Sep 1993 | A |
5246443 | Mai | Sep 1993 | A |
5258011 | Drews | Nov 1993 | A |
5258015 | Li et al. | Nov 1993 | A |
5269783 | Sander | Dec 1993 | A |
5269809 | Hayhurst et al. | Dec 1993 | A |
5282832 | Toso et al. | Feb 1994 | A |
5290289 | Sanders et al. | Mar 1994 | A |
5304204 | Bregen | Apr 1994 | A |
5306290 | Martins et al. | Apr 1994 | A |
5306296 | Wright et al. | Apr 1994 | A |
5312423 | Rosenbluth et al. | May 1994 | A |
5312436 | Coffey et al. | May 1994 | A |
5330442 | Green et al. | Jul 1994 | A |
5330503 | Yoon | Jul 1994 | A |
5336239 | Gimpelson | Aug 1994 | A |
5356424 | Buzerak et al. | Oct 1994 | A |
5374268 | Sander | Dec 1994 | A |
5381588 | Nelson | Jan 1995 | A |
5383904 | Totakura et al. | Jan 1995 | A |
5383905 | Golds et al. | Jan 1995 | A |
5391173 | Wilk | Feb 1995 | A |
5403346 | Loeser | Apr 1995 | A |
5409499 | Yi | Apr 1995 | A |
5437680 | Yoon | Aug 1995 | A |
5437685 | Blasnik | Aug 1995 | A |
5439479 | Shichman et al. | Aug 1995 | A |
5445167 | Yoon et al. | Aug 1995 | A |
5450860 | O'Connor | Sep 1995 | A |
5452733 | Sterman et al. | Sep 1995 | A |
5456246 | Schmieding et al. | Oct 1995 | A |
5462558 | Kolesa | Oct 1995 | A |
5462561 | Voda | Oct 1995 | A |
5474557 | Mai | Dec 1995 | A |
5474572 | Hayhurst | Dec 1995 | A |
5480405 | Yoon | Jan 1996 | A |
5486197 | Le et al. | Jan 1996 | A |
5496336 | Cosgrove et al. | Mar 1996 | A |
5499990 | Schulken et al. | Mar 1996 | A |
5500000 | Feagin et al. | Mar 1996 | A |
5520691 | Branch | May 1996 | A |
5520702 | Sauer et al. | May 1996 | A |
5527342 | Pietrzak et al. | Jun 1996 | A |
5531763 | Mastri et al. | Jul 1996 | A |
5545178 | Kensey et al. | Aug 1996 | A |
5549619 | Peters et al. | Aug 1996 | A |
5562685 | Mollenauer et al. | Oct 1996 | A |
5569274 | Rapacki et al. | Oct 1996 | A |
5569301 | Granger et al. | Oct 1996 | A |
5573543 | Akopov et al. | Nov 1996 | A |
5582616 | Bolduc et al. | Dec 1996 | A |
5582619 | Ken | Dec 1996 | A |
5586983 | Sanders et al. | Dec 1996 | A |
5591179 | Edelstein | Jan 1997 | A |
5593414 | Shipp et al. | Jan 1997 | A |
5593424 | Northrup, III | Jan 1997 | A |
5609608 | Benett et al. | Mar 1997 | A |
5626590 | Wilk | May 1997 | A |
5630824 | Hart | May 1997 | A |
5632752 | Buelna | May 1997 | A |
5632753 | Loeser | May 1997 | A |
5634584 | Okorocha et al. | Jun 1997 | A |
5643289 | Sauer et al. | Jul 1997 | A |
5643295 | Yoon | Jul 1997 | A |
5645553 | Kolesa et al. | Jul 1997 | A |
5645568 | Chervitz et al. | Jul 1997 | A |
5665109 | Yoon | Sep 1997 | A |
5669917 | Sauer et al. | Sep 1997 | A |
5669935 | Rosenman et al. | Sep 1997 | A |
5681351 | Jamiolkowski et al. | Oct 1997 | A |
5683417 | Cooper | Nov 1997 | A |
5695505 | Yoon | Dec 1997 | A |
5697943 | Sauer et al. | Dec 1997 | A |
5700270 | Peyser et al. | Dec 1997 | A |
5700271 | Whitfield et al. | Dec 1997 | A |
5707380 | Hinchliffe et al. | Jan 1998 | A |
5709693 | Taylor | Jan 1998 | A |
5709695 | Northrup, III | Jan 1998 | A |
5725539 | Matern | Mar 1998 | A |
5725542 | Yoon | Mar 1998 | A |
5725556 | Moser et al. | Mar 1998 | A |
5728135 | Bregen et al. | Mar 1998 | A |
5735290 | Sterman et al. | Apr 1998 | A |
5735877 | Pagedas | Apr 1998 | A |
5766183 | Sauer | Jun 1998 | A |
5776188 | Shepherd et al. | Jul 1998 | A |
5799661 | Boyd et al. | Sep 1998 | A |
5810851 | Yoon | Sep 1998 | A |
5810882 | Bolduc et al. | Sep 1998 | A |
5820631 | Nobles | Oct 1998 | A |
5824008 | Bolduc et al. | Oct 1998 | A |
5830221 | Stein et al. | Nov 1998 | A |
5833696 | Whitfield et al. | Nov 1998 | A |
5845645 | Bonutti | Dec 1998 | A |
5849019 | Yoon | Dec 1998 | A |
5852851 | Cooper | Dec 1998 | A |
5861004 | Kensey et al. | Jan 1999 | A |
5879371 | Gardiner et al. | Mar 1999 | A |
5891130 | Palermo et al. | Apr 1999 | A |
5891160 | Williamson, IV et al. | Apr 1999 | A |
5895393 | Pagedas | Apr 1999 | A |
5895394 | Kienzle et al. | Apr 1999 | A |
5919207 | Taheri | Jul 1999 | A |
5948001 | Larsen | Sep 1999 | A |
5961481 | Sterman et al. | Oct 1999 | A |
5961539 | Northrup, III et al. | Oct 1999 | A |
5964772 | Bolduc et al. | Oct 1999 | A |
5972024 | Northrup, III et al. | Oct 1999 | A |
5976159 | Bolduc et al. | Nov 1999 | A |
5984917 | Fleischman et al. | Nov 1999 | A |
5989242 | Saadat et al. | Nov 1999 | A |
5989268 | Pugsley, Jr. et al. | Nov 1999 | A |
5997556 | Tanner | Dec 1999 | A |
6001110 | Adams | Dec 1999 | A |
6013084 | Ken et al. | Jan 2000 | A |
6015428 | Pagedas | Jan 2000 | A |
6039176 | Wright | Mar 2000 | A |
6066160 | Colvin et al. | May 2000 | A |
6074409 | Goldfarb | Jun 2000 | A |
6120524 | Taheri | Sep 2000 | A |
6132438 | Fleischman et al. | Oct 2000 | A |
6139540 | Rost et al. | Oct 2000 | A |
6143004 | Davis et al. | Nov 2000 | A |
6176413 | Heck et al. | Jan 2001 | B1 |
6190373 | Palermo et al. | Feb 2001 | B1 |
6193733 | Adams | Feb 2001 | B1 |
6193734 | Bolduc et al. | Feb 2001 | B1 |
6231592 | Bonutti et al. | May 2001 | B1 |
6241765 | Griffin et al. | Jun 2001 | B1 |
6254615 | Bolduc et al. | Jul 2001 | B1 |
6306141 | Jervis | Oct 2001 | B1 |
6346112 | Adams | Feb 2002 | B2 |
6368334 | Sauer | Apr 2002 | B1 |
6432123 | Schwartz et al. | Aug 2002 | B2 |
6475230 | Bonutti et al. | Nov 2002 | B1 |
6514265 | Ho et al. | Feb 2003 | B2 |
6533796 | Sauer et al. | Mar 2003 | B1 |
6537290 | Adams et al. | Mar 2003 | B2 |
6551332 | Nguyen et al. | Apr 2003 | B1 |
6589279 | Anderson et al. | Jul 2003 | B1 |
6607541 | Gardiner et al. | Aug 2003 | B1 |
6613059 | Schaller et al. | Sep 2003 | B2 |
6626930 | Allen et al. | Sep 2003 | B1 |
6641592 | Sauer et al. | Nov 2003 | B1 |
6641593 | Schaller et al. | Nov 2003 | B1 |
6682540 | Sancoff et al. | Jan 2004 | B1 |
6719767 | Kimblad | Apr 2004 | B1 |
6746457 | Dana et al. | Jun 2004 | B2 |
6749622 | McGuckin, Jr. et al. | Jun 2004 | B2 |
6776784 | Ginn | Aug 2004 | B2 |
6860890 | Bachman et al. | Mar 2005 | B2 |
6896686 | Weber | May 2005 | B2 |
6913607 | Ainsworth et al. | Jul 2005 | B2 |
6918917 | Nguyen et al. | Jul 2005 | B1 |
6921407 | Nguyen et al. | Jul 2005 | B2 |
6926730 | Nguyen et al. | Aug 2005 | B1 |
6945980 | Nguyen et al. | Sep 2005 | B2 |
6960221 | Ho et al. | Nov 2005 | B2 |
7011669 | Kimblad | Mar 2006 | B2 |
7083628 | Bachman | Aug 2006 | B2 |
7094244 | Schreck | Aug 2006 | B2 |
7112207 | Allen et al. | Sep 2006 | B2 |
7220266 | Gambale | May 2007 | B2 |
7235086 | Sauer et al. | Jun 2007 | B2 |
7264625 | Buncke | Sep 2007 | B1 |
7381210 | Zarbatany et al. | Jun 2008 | B2 |
7435251 | Green | Oct 2008 | B2 |
7628797 | Tieu et al. | Dec 2009 | B2 |
7677525 | Sanchez et al. | Mar 2010 | B2 |
7731727 | Sauer | Jun 2010 | B2 |
7833237 | Sauer | Nov 2010 | B2 |
7842051 | Dana et al. | Nov 2010 | B2 |
7862548 | Javer et al. | Jan 2011 | B2 |
7862584 | Lyons et al. | Jan 2011 | B2 |
7875056 | Jervis et al. | Jan 2011 | B2 |
7959674 | Shu et al. | Jun 2011 | B2 |
7981139 | Martin et al. | Jul 2011 | B2 |
8021421 | Fogarty et al. | Sep 2011 | B2 |
8100923 | Paraschac et al. | Jan 2012 | B2 |
8105355 | Page et al. | Jan 2012 | B2 |
8252005 | Findlay, III et al. | Aug 2012 | B2 |
8398657 | Sauer | Mar 2013 | B2 |
8398680 | Sauer et al. | Mar 2013 | B2 |
8425555 | Page et al. | Apr 2013 | B2 |
8465505 | Murillo et al. | Jun 2013 | B2 |
8480686 | Bakos et al. | Jul 2013 | B2 |
8523880 | Kissel | Sep 2013 | B2 |
8753373 | Chau et al. | Jun 2014 | B2 |
9017347 | Oba et al. | Apr 2015 | B2 |
9414837 | Oba | Aug 2016 | B2 |
9498202 | Jafari | Nov 2016 | B2 |
9549730 | Oba | Jan 2017 | B2 |
9592048 | Moehle | Mar 2017 | B2 |
20010025181 | Freedlan | Sep 2001 | A1 |
20020029060 | Hogendijk | Mar 2002 | A1 |
20030009196 | Peterson | Jan 2003 | A1 |
20030109922 | Peterson et al. | Jun 2003 | A1 |
20030195563 | Foerster | Oct 2003 | A1 |
20030233105 | Gayton | Dec 2003 | A1 |
20040181238 | Zarbatany et al. | Sep 2004 | A1 |
20040204724 | Kissel et al. | Oct 2004 | A1 |
20040249414 | Kissel et al. | Dec 2004 | A1 |
20050251206 | Maahs et al. | Nov 2005 | A1 |
20050251209 | Saadat et al. | Nov 2005 | A1 |
20060047314 | Green | Mar 2006 | A1 |
20060079913 | Whitfield et al. | Apr 2006 | A1 |
20060089571 | Gertner | Apr 2006 | A1 |
20060184203 | Martin et al. | Aug 2006 | A1 |
20060265010 | Paraschac et al. | Nov 2006 | A1 |
20060276871 | Lamson et al. | Dec 2006 | A1 |
20060282119 | Perchik | Dec 2006 | A1 |
20070005079 | Zarbatany et al. | Jan 2007 | A1 |
20070005081 | Findlay et al. | Jan 2007 | A1 |
20070043384 | Ortiz et al. | Feb 2007 | A1 |
20070049952 | Weiss | Mar 2007 | A1 |
20070049970 | Belef et al. | Mar 2007 | A1 |
20070088391 | McAlexander et al. | Apr 2007 | A1 |
20070179530 | Tieu et al. | Aug 2007 | A1 |
20070255296 | Sauer | Nov 2007 | A1 |
20070270907 | Stokes et al. | Nov 2007 | A1 |
20080154286 | Abbott et al. | Jun 2008 | A1 |
20080255591 | Harada et al. | Oct 2008 | A1 |
20080281356 | Chau et al. | Nov 2008 | A1 |
20090143821 | Stupak | Jun 2009 | A1 |
20090272783 | Crainich et al. | Nov 2009 | A1 |
20090281377 | Newell et al. | Nov 2009 | A1 |
20090281568 | Cendan et al. | Nov 2009 | A1 |
20100001038 | Levin et al. | Jan 2010 | A1 |
20100076462 | Bakos et al. | Mar 2010 | A1 |
20100324597 | Shikhman | Dec 2010 | A1 |
20100324598 | Anderson | Dec 2010 | A1 |
20110087241 | Nguyen | Apr 2011 | A1 |
20110087242 | Pribanic et al. | Apr 2011 | A1 |
20110224485 | Boulnois et al. | Sep 2011 | A1 |
20110224714 | Gertner | Sep 2011 | A1 |
20110283514 | Fogarty et al. | Nov 2011 | A1 |
20120080495 | Holcomb et al. | Apr 2012 | A1 |
20120089182 | Page et al. | Apr 2012 | A1 |
20120101526 | Bennett | Apr 2012 | A1 |
20120102526 | Lejeune | Apr 2012 | A1 |
20130053884 | Roorda | Feb 2013 | A1 |
20130110164 | Milazzo et al. | May 2013 | A1 |
20130158600 | Conklin et al. | Jun 2013 | A1 |
20130267998 | Vijay et al. | Oct 2013 | A1 |
20130282028 | Conklin et al. | Oct 2013 | A1 |
20140031864 | Jafari et al. | Jan 2014 | A1 |
20140303652 | Oba | Oct 2014 | A1 |
20150018879 | Moehle | Jan 2015 | A1 |
20150142021 | Smith et al. | May 2015 | A1 |
Number | Date | Country |
---|---|---|
2141911 | Aug 1995 | CA |
2141913 | Aug 1995 | CA |
2558335 | Jul 2003 | CN |
69512446 | May 2000 | DE |
69612447 | Jul 2001 | DE |
0669101 | Aug 1995 | EP |
0669103 | Aug 1995 | EP |
1484023 | Dec 2004 | EP |
2337934 | Dec 1999 | GB |
01049207 | Jul 2001 | WO |
0166001 | Sep 2001 | WO |
2004112841 | Dec 2004 | WO |
2013096313 | Jun 2013 | WO |
2014011794 | Jan 2014 | WO |
2015074040 | May 2015 | WO |
Entry |
---|
European Search Report issued for Application No. 12858766.4, dated Sep. 16, 2015. |
International Search Report for PCT/US2014/046423, dated Oct. 20, 2014. |
EP Supplementary Search Report for EP12858766, completed Sep. 7, 2015. |
CN Office Action for App No. 2012800690769, dated Mar. 23, 2015. |
European Supplementary Search Report dated Feb. 9, 2016 for EP13817447. |
Int'l. Search Report dated Sep. 1, 2015 for PCT/US2015/032271. |
Int'l. Search Report for PCT/US2012/070354, dated Apr. 4, 2013. |
Int'l. Search Report from PCT Application No. PCT/US2013/049958, dated Oct. 8, 2013. |
Int'l. Search Report for PCT/US2014/046423, dated Oct. 20, 2014. |
Int'l. Search Report for PCT/US14/66122 dated Feb. 11, 2015. |
LSI Solutions T-Knot Device 2, LSI Solutions, Inc., 2009-2011, http://www.lsisolutions.com/tkoutsideofcannula. |
LSI Solutions T-Knot Device, LSI Solutions, Inc., 2009-2011, http://www.lsisolutions.com/tkatscrubtable. |
TK Quick Load, LSI Solutions, http://www.lsisolutions.com/tkquickload. |
Int'l. Search Report for PCT/US2015/032271, dated Sep. 1, 2015. |
International Search Reportof PCT/US15/65033 dated Feb. 18, 2016. |
Int'l. Search Report for PCT/US2015/000255, dated May 4, 2016. |
Office Action and Search Report issued in CN2013800370375, dated Mar. 28, 2016. |
Int'l. Search Report for PCT/US2016/022495, dated Jun. 1, 2016. |
Number | Date | Country | |
---|---|---|---|
20160183937 A1 | Jun 2016 | US |
Number | Date | Country | |
---|---|---|---|
62096749 | Dec 2014 | US |