This invention relates generally to medical devices and more particularly to suturing devices for closing a hole in a corporeal vessel wall.
Various surgical procedures are routinely carried out intravascularly or intraluminally. For example, in the treatment of vascular disease, such as arteriosclerosis, it is a common practice to invade the artery and insert an instrument (e.g., a balloon or other type of catheter) to carry out a procedure within the artery. Such procedures usually involve the percutaneous puncture of the artery so that an insertion sheath can be placed in the artery. The insertion sheath enables the introduction of other instruments (e.g., a catheter) to an operative position within the vascular system. Intravascular and intraluminal procedures unavoidably present the problem of stopping the bleeding at the percutaneous puncture after the procedure has been completed and after the instrument (and any insertion sheaths used therewith) has been removed. Bleeding from puncture sites, particularly in the case of femoral arterial punctures, is typically stopped by utilizing vascular closure devices, such as those described in U.S. Pat. Nos. 6,179,863; 6,090,130; and 6,045,569, which are hereby incorporated by this reference.
The above patents describe a tissue puncture closure device in which, generically, a suture filament is pre-threaded through an elongated sheath (used to access the tissue puncture), through an anchor exterior to the distal tip of the sheath, and then back into the sheath where it is attached to a sealing plug disposed on the suture filament line within the sheath. The sheath is inserted through an incision in the skin and through the puncture in the tissue wall until the anchor is deployed within the luminal cavity of the organ or artery, with the sealing plug remaining outside the luminal cavity. Successful deployment of the sealing plug requires that the sealing plug be manually ejected from within the sheath and tamped down to the outer surface of the tissue puncture using a tamping tube, while simultaneously pulling on the filament to cinch tight the filament connecting the anchor and sealing plug. The anchor and the sealing plug are brought together in a pulley-like fashion with a self-tightening slip-knot in the filament, such that the tissue puncture is sandwiched between the anchor and sealing plug, thereby sealing the tissue puncture and stopping bleeding.
Using the prior devices, however, there is a risk of inserting the sealing plug into the artery. Complications may arise if the sealing plug enters the artery. In addition, the sealing plug may not be deployed close enough to the hole to effectively seal the puncture, which may result in prolonged bleeding and slower recovery. Some doctors would prefer to close the puncture instead by tying a suture across the hole. However, normally the puncture is relatively small, and often inaccessible through the incision leading to the puncture.
In one of many possible embodiments, the present invention provides a tissue puncture closure device. The tissue puncture closure device comprises a central shaft having first and second end portions and a slotted portion disposed between the first and second end portions, a filament extending from the first portion to the second portion, and first and second open loop knots disposed at least partially within the slotted portion. The slotted portion may comprise first and second elongated slots receptive of a needle. The slotted portion may also comprise third and fourth slots, wherein the third and fourth slots comprise a smaller width than the first and second slots. First portions of the first and second open loop knots may extend at least partially through the third slot, and second portions of the first and second open loop knots extend at least partially through the fourth slot. The first, second, third, and fourth slots may be arranged approximately 90 degrees from one another such that the first and second slots are substantially opposite of one another, and the third and fourth slots are substantially opposite of one another.
According to some aspects, the central shaft extends through a vascular access sheath. In addition, a first curved needle may extend through a first side port in the vascular access sheath, into the slotted portion, and at least partially through the first open loop knot. Similarly, a second curved needle may extend through a second side port in the vascular access sheath, into the slotted portion, and at least partially through the second open loop knot.
According to some embodiments, a first cannula needle extends through a first side port in the vascular access sheath and diverges from the vascular access sheath. A first needle passes through the first cannula needle, curves into the slotted portion, and extends at least partially through the first open loop knot. A second cannula needle extends through a second side port in the vascular access sheath and diverges from the vascular access sheath. A second needle extends through the second cannula needle, curves into the slotted portion, and extends at least partially through the second open loop knot. According to some aspects, the first and second open loop knots are remotely tightenable.
Other aspects of the invention provide a vascular closure system. The vascular closure system comprises a closure device including a central shaft having an open channel portion disposed between first and second end portions, and a filament looping through the central shaft such that the filament is tied into first and second open knots at the open channel portion. The system may include a vascular access sheath receptive of the closure device. The central shaft may include first and second end portions flanking the open channel portion such that the filament extends from the first end portion, to the second end portion, and back to the first end portion. One or more free ends of the filament are accessible to an operator. The system may also include first and second cannula needles extending through first and second side ports, respectively, in the vascular access sheath, a first curved needle extending through the first cannula needle, into the open channel portion, and partially through the first open loop knot, a second curved needle extending through the second cannula needle, into the open channel portion, and partially through the second open loop knot, such that each of the first and second curved needles comprises a step at an end thereof. Each of the first and second curved needles may comprises a nitinol needle having sufficient elasticity to pass through the first and second straight cannula needles and return to a curved shape after passing through ends thereof. The first and second open knots may be remotely tightenable against the steps of the first and second curved needles, respectively, by applying tension to the filament.
Another aspect of the invention provides a vascular closure system comprising a vascular access sheath having a plurality of side-ports disposed at a distal end portion, an open-loop knot carrying device insertable into the vascular access sheath, a plurality of cannula needles, each of the plurality of cannula needles insertable through a corresponding one of the plurality of side-ports, and a plurality of curved needles. Each of the plurality of curved needles is insertable through a corresponding one of the plurality of cannula needles.
Another aspect of the invention provides a method of closing a subcutaneous puncture. The method comprises inserting a filament into a lumen through the puncture, inserting first and second needles into the lumen through holes flanking the puncture, grabbing the filament with each of the first and second needles, retracting the filament through the holes flanking the puncture, and tying the filament across the puncture. The method may also include inserting first and second cannula needles into the lumen to create the flanking holes.
According to some aspects of the invention, the grabbing comprises passing the first needle partially through a first open-loop knot disposed in the filament inside the lumen, passing the second needle partially through a second open-loop knot disposed in the filament inside the lumen, and remotely cinching the first and second open-loop knots around the first and second needles, respectively. The inserting of the filament may comprise passing a shaft through a vascular access sheath, such that the filament traverses the shaft and is pre-tied into first and second open-loop knots at a slotted portion of the shaft.
Another aspect of the invention provides a method of closing a subcutaneous puncture. The method includes inserting a tubular shaft comprising a filament having first and second open-loop knots into a lumen through the puncture, advancing first and second cannula needles flanking and spaced from the tubular shaft into the lumen, passing first and second curved needles through the first and second cannula needles, respectively, cinching the first and second open-loop knots to the first and second curved needles, respectively, retracting the first and second curved needles through the first and second cannula needles, respectively, and tying the filament across the puncture.
Another aspect of the invention provides a method of making a subcutaneous puncture closure device, comprising providing a tubular shaft having a slotted portion, tying first and second knots in a filament, inserting the filament into a tubular shaft, placing first portions of the first and second knots in a first slot of the slotted portion, and placing second portions of the first and second knots in a second slot of the slotted portion.
The accompanying drawings illustrate various embodiments of the present invention and are a part of the specification. The illustrated embodiments are merely examples of the present invention and do not limit the scope of the invention.
Throughout the drawings, identical reference numbers designate similar, but not necessarily identical, elements.
As mentioned above, vascular procedures are conducted throughout the world and require access to an artery through a puncture. Most often, the artery is a femoral artery. To close the puncture following completion of the procedure, many times a closure device is used to sandwich the puncture between an anchor and a sealing plug. However, sometimes the sealing plug is not properly seated against an exterior situs of the arteriotomy. If the plug does not seat against the arteriotomy, there is a potential for elongated bleeding. The present invention describes methods and apparatus to tie a suture across an arteriotomy. While the vascular instruments shown and described below include certain insertion sheaths and puncture sealing devices, the application of principles described herein to are not limited to the specific devices shown. The principles described herein may be used with any vascular closure device. Therefore, while the description below is directed primarily to arterial procedures and certain embodiments of a vascular closure device, the methods and apparatus are only limited by the appended claims.
Referring now to the drawings, and in particular to
The suture 104 is threaded through the anchor 108 and back to a collagen sponge 110. The collagen sponge 110 is slidingly attached to the suture 104 as the suture passes distally through the carrier tube 102, but as the suture traverses the anchor 108 and reenters the carrier tube 102, it is securely slip knotted proximal to the collagen sponge 110 to facilitate cinching of the collagen sponge 110 when the closure device 100 is properly placed and the anchor 108 deployed (see
The carrier tube 102 typically includes a tamping tube 112 disposed therein. The tamping tube 112 is slidingly mounted on the suture 104 and may be used by an operator to tamp the collagen sponge 110 toward the anchor 108 at an appropriate time to plug a percutaneous tissue puncture. Prior to deployment of the anchor 108 within an artery, the eye 109 of the anchor 108 rests outside the distal end 107 of the carrier tube 102. The anchor 108 may be temporarily held in place flush with the carrier tube 102 by a bypass tube 114 disposed over the distal end 107 of the carrier tube 102.
The flush arrangement of the anchor 108 and carrier tube 102 allows the anchor 108 to be inserted into an insertion sheath 116 as shown in
The insertion sheath 116 includes a monofold 124 at a second or distal end 126 thereof. The monofold 124 acts as a one-way valve to the anchor 108. The monofold 124 is a plastic deformation in a portion of the insertion sheath 116 that elastically flexes as the anchor 108 is pushed out through the distal end 126 of the insertion sheath 116. Typically, after the anchor 108 passes through the distal end 126 of the insertion sheath 116 and enters the artery 128, the anchor 108 is no longer constrained to the flush arrangement with respect to the carrier tube 102 and it deploys and rotates to the position shown in
Referring next to
Using the typical tissue puncture closure device 100 described above, however, the tamping of the collagen sponge 110 cannot commence until the sheath 116 has been removed and the tamping tube 112 is exposed for manual grasping. Under certain conditions, removal of the sheath 116 prior to tamping the collagen sponge 110 causes the collagen sponge 110 to retract from the tissue puncture 118, creating a gap 120 between the collagen sponge 110 and the puncture 118. The gap 120 may remain even after tamping as shown in
Therefore, the present specification describes a tissue puncture closure device that enables tying sutures across punctures, rather than sandwiching punctures between internal and external components. As described above, the general structure and function of tissue closure devices used for sealing a tissue puncture in an internal tissue wall accessible through an incision in the skin are well known in the art. Applications of closure devices including those implementing principles described herein include closure of a percutaneous puncture or incision in tissue separating two internal portions of a living body, such as punctures or incisions in blood vessels, ducts or lumens, gall bladders, livers, hearts, etc.
Referring now to
The vascular closure system 200 includes a central shaft or open-loop knot carrying device. According to the embodiment of
A filament such as a suture 222 extends from the first portion 202 to the second portion 204, and, as shown in
The insertion sheath 205 also includes first and second side ports, for example first and second slots 242, 244, arranged substantially opposite of one another and may be oval-shaped as shown in
Referring next to
The first and second cannula needles 246, 248 allow passage of associated first and second curved needles 250, 252 therethrough as shown in
Each of the first and second curved needles 250, 252 includes a step or shoulder 254, 256 at a distal end thereof. The curved shape of the first curved needle 250 facilitates extending the first curved needle 250 into the first elongated slot 214 of the slotted portion 212, and at least partially through the first open loop knot 230. The first curved needle 250 is inserted such that at least the shoulder 254 extends through the first open loop knot 230. Likewise, the curved shape of the second curved needle 252 facilitates extending the second curved needle 252 into the second elongated slot 216 of the slotted portion 212, and at least partially through the second open loop knot 232. As with the first curved needle 250, the second curved needle 252 is inserted such that at least the shoulder 256 extends through the second open loop knot 232.
With the first and second curved needles 250, 252 inserted into the first and second open loop knots 230, 232, respectively, the suture 222 may be placed in tension to tighten the knots around the needles as shown in
Once the first and second knots 230, 232 are tightened around the needles, the first and second curved needles 250, 252 may be retracted at least partially toward the first and second cannula needles 246, 248 as shown in
Following retraction of the first and second curved needles 250, 252, the first and second cannula needles 246, 248 may be simultaneously retracted with the first and second curved needles 250, 252 into the first and second slots 242, 244 in the insertion sheath 205 as shown in
The preceding description has been presented only to illustrate and describe exemplary embodiments of invention. It is not intended to be exhaustive or to limit the invention to any precise form disclosed. Many modifications and variations are possible in light of the above teaching. It is intended that the scope of the invention be defined by the following claims. As used throughout the claims and specification, the words “including” and “having,” have the same meaning as the word “comprising.”
This is a division of U.S. patent application Ser. No. 11/130,916 filed on 17 May 2005, the disclosure of which is incorporated in its entirety by this reference, now issued as U.S. Pat. No. 8,038,687 on 18 Oct. 2011.
Number | Name | Date | Kind |
---|---|---|---|
4602635 | Mulhollan et al. | Jul 1986 | A |
5304184 | Hathaway et al. | Apr 1994 | A |
5376096 | Foster | Dec 1994 | A |
5403329 | Hinchcliffe | Apr 1995 | A |
5411520 | Nash et al. | May 1995 | A |
5417699 | Klein | May 1995 | A |
5431666 | Sauer et al. | Jul 1995 | A |
5454820 | Kammerer et al. | Oct 1995 | A |
5462561 | Voda | Oct 1995 | A |
5476469 | Hathaway et al. | Dec 1995 | A |
5496332 | Sierra et al. | Mar 1996 | A |
5507757 | Sauer et al. | Apr 1996 | A |
5527322 | Klein | Jun 1996 | A |
5549633 | Evans et al. | Aug 1996 | A |
5613974 | Andreas et al. | Mar 1997 | A |
5626588 | Sauer et al. | May 1997 | A |
5662681 | Nash et al. | Sep 1997 | A |
5700273 | Buelna et al. | Dec 1997 | A |
5720757 | Hathaway et al. | Feb 1998 | A |
5746755 | Wood et al. | May 1998 | A |
5755727 | Kontos | May 1998 | A |
5766183 | Sauer | Jun 1998 | A |
5779719 | Klein et al. | Jul 1998 | A |
5782861 | Cragg et al. | Jul 1998 | A |
5797928 | Kogasaka | Aug 1998 | A |
5797929 | Andreas et al. | Aug 1998 | A |
5855585 | Kontos | Jan 1999 | A |
5860990 | Nobles et al. | Jan 1999 | A |
5868762 | Cragg et al. | Feb 1999 | A |
5876411 | Kontos | Mar 1999 | A |
5902311 | Andreas et al. | May 1999 | A |
5919207 | Taheri | Jul 1999 | A |
5980539 | Kontos | Nov 1999 | A |
5984950 | Cragg et al. | Nov 1999 | A |
6042601 | Smith | Mar 2000 | A |
6045569 | Kensey et al. | Apr 2000 | A |
6090130 | Nash et al. | Jul 2000 | A |
6117144 | Nobles et al. | Sep 2000 | A |
6132439 | Kontos | Oct 2000 | A |
6143004 | Davis et al. | Nov 2000 | A |
6171317 | Jackson et al. | Jan 2001 | B1 |
6179863 | Kensey et al. | Jan 2001 | B1 |
6231561 | Frazier et al. | May 2001 | B1 |
6425887 | McGuckin et al. | Jul 2002 | B1 |
7621924 | Manzo | Nov 2009 | B2 |
20020045908 | Nobles et al. | Apr 2002 | A1 |
20030093093 | Modesitt et al. | May 2003 | A1 |
Number | Date | Country | |
---|---|---|---|
20120004671 A1 | Jan 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11130916 | May 2005 | US |
Child | 13236125 | US |