This application does not claim priority to any other patent application.
The suture passers and methods of suturing described herein may related to, and may incorporate any of the features or elements described in the following patent applications, each of which is herein incorporated by reference in its entirety. Specifically: U.S. patent application Ser. No. 11/773,388, filed on Jul. 3, 2007, titled “METHODS AND DEVICES FOR CONTINUOUS SUTURE PASSING,” now Publication No. US-2009-0012538-A1; U.S. patent application Ser. No. 12/972,222, filed on Dec. 17, 2010, titled “METHODS AND DEVICES FOR CONTINUOUS SUTURE PASSING,” now Publication No. US-2011-0087246-A1; U.S. patent application Ser. No. 13/462,760, filed on May 2, 2012, titled “METHODS OF MENISCUS REPAIR,” now Publication No. US-2012-0239062-A1; U.S. patent application Ser. No. 13/006,966, filed on Jan. 14, 2011, titled “METHODS FOR CONTINUOUS SUTURE PASSING,” now Publication No. US-2011-0130773-A1; U.S. patent application Ser. No. 13/090,089, filed on Apr. 19, 2011, titled “METHODS OF MENISCUS REPAIR,” now Publication No. US-2011-0218557-A1; U.S. patent application Ser. No. 12/291,159, filed on Nov. 5, 2008, titled “SUTURE PASSING INSTRUMENT AND METHOD,” now Publication No. US-2010-0331863-A2; U.S. patent application Ser. No. 12/972,168, filed on Dec. 17, 2010, titled “SUTURE PASSING INSTRUMENT AND METHOD,” now Publication No. US-2011-0152892-A1; U.S. patent application Ser. No. 13/062,664, filed on Apr. 19, 2011, titled “KNOTLESS SUTURE ANCHORS,” now Publication No. US-2011-0190815-A1; U.S. patent application Ser. No. 12/620,029, filed on Nov. 17, 2009, titled “METHODS OF SUTURING AND REPAIRING TISSUE USING A CONTINUOUS SUTURE PASSER DEVICE,” now Publication No. US-2010-0130990-A1; U.S. patent application Ser. No. 12/942,803, filed on Nov. 9, 2010, titled “DEVICES, SYSTEMS AND METHODS FOR MENISCUS REPAIR,” now Publication No. US-2011-0112556-A1; U.S. patent application Ser. No. 13/462,728, filed on May 2, 2012, titled “DEVICES, SYSTEMS AND METHODS FOR MENISCUS REPAIR,” now Publication No. US-2012-0265221-A1; U.S. patent application Ser. No. 13/114,983, filed on May 24, 2011, titled “SUTURING AND REPAIRING TISSUE USING IN VIVO SUTURE LOADING,” now Publication No. US-2011-0270280-A1; U.S. patent application Ser. No. 13/347,184, filed on Jan. 10, 2012, titled “IMPLANT AND METHOD FOR REPAIR OF THE ANTERIOR CRUCIATE LIGAMENT,” now Publication No. US-2012-0179254-A1; U.S. patent application Ser. No. 13/247,892, filed on Sep. 28, 2011, titled “MENISCUS REPAIR,” now Publication No. US-2012-0283750-A1; U.S. patent application Ser. No. 13/323,391, filed on Dec. 12, 2011, titled “SUTURE PASSER DEVICES AND METHODS,” now Publication No. US-2012-0283753-A1; and U.S. patent application Ser. No. 13/462,773, filed on May 2, 2012, titled “SUTURE PASSER DEVICES AND METHODS,” now Publication No. US-2012-0283754-A1, each of which is incorporated by reference in its entirety.
All publications and patent applications mentioned in this specification are herein incorporated by reference in their entirety to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.
The present invention relates to suture passers, suturing techniques, devices and methods, for surgical use and methods of repairing tissue. More particularly, described herein are suture passers that may be used for performing arthroscopic (including minimally invasive, e.g., endoscopic) procedures.
Suturing of tissue during surgical procedures is time consuming and can be particularly challenging in difficult to access body regions and regions that have limited clearance, such as regions partially surrounded or covered by bone. For many surgical procedures, it is necessary to make a large opening in the human body to expose the area requiring surgical repair. However, in many cases, accessing the tissue in this manner is undesirable, increasing recovery time, and exposing the patient to greater risk of infection.
Suturing instruments (“suture passers” or “suturing devices”) have been developed to assist in accessing and treating internal body regions, and to generally assist a physician in repairing tissue. Although many such devices are available for endoscopic and/or percutaneous use, these devices suffer from a variety of problems, including limited ability to navigate and be operated within the tight confines of the body, risk of injury to adjacent structures, problems controlling the position and/or condition of the tissue before, during, and after passing the suture, as well as problems with the reliable functioning of the suture passer.
For example, some surgical instruments used in endoscopic procedures are limited by the manner in which they access the areas of the human body in need of repair. In particular, the instruments may not be able to access tissue or organs located deep within the body or that are in some way obstructed. In addition, many of the instruments are limited by the way they grasp tissue, apply a suture, or recapture the needle and suture. Furthermore, many of the instruments are complicated and expensive to use due to the numerous parts and/or subassemblies required to make them function properly. Suturing remains a delicate and time-consuming aspect of most surgeries, including those performed endoscopically.
For example, some variations of suture passers, such as those described in U.S. Pat. No. 7,377,926 to Taylor, have opposing jaws that open and close over tissue. One, or in some variations, both, jaws open, scissor-like, so that tissue may be inserted between the open jaws. Unfortunately, such devices cannot be adequately positioned for use in hard to navigate body regions such as the joints of the body, including the knee (e.g., meniscus) and the shoulder.
The meniscus is a C-shaped piece of fibrocartilage which is located at the peripheral aspect of the joint (e.g., the knee) between the condyles of the femur and the tibia on the lateral and medial sides of the knee. The central two-thirds of the meniscus has a limited blood supply while the peripheral one third typically has an excellent blood supply. Acute traumatic events commonly cause meniscus tears in younger patients while degenerative tears are more common in older patients as the menisci become increasingly brittle with age. Typically, when the meniscus is damaged, a torn piece of meniscus may move in an abnormal fashion inside the joint, which may lead to pain and loss of function of the joint. Early arthritis can also occur due to these tears as abnormal mechanical movement of torn meniscal tissue and the loss of the shock absorbing properties of the meniscus lead to destruction of the surrounding articular cartilage. Occasionally, it is possible to repair a torn meniscus. While this may be done arthroscopically, surgical repair using a suture has proven difficult to perform because of the hard-to-reach nature of the region and the difficulty in placing sutures in a way that compresses and secures the torn surfaces.
Arthroscopy typically involves inserting a fiberoptic telescope that is about the size of a pencil into the joint through an incision that is approximately ⅛ inch long. Fluid may then be inserted into the joint to distend the joint and to allow for visualization of the structures within that joint. Then, using miniature instruments which may be as small as 1/10 of an inch, the structures are examined and the surgery is performed.
The meniscus of the knee is just one example of a tissue that is difficult to access so that appropriate suturing may be performed.
For example,
Thus, there is a need for methods, devices and systems for suturing tissue, particularly tissue in difficult to access regions of the body including the joints (shoulder, knee, etc.). In particularly, it has proven useful to provide a device that may simply and reliably reach and pass sutures within otherwise inaccessible tissue regions. Such devices should be extremely low profile. Finally, it is useful to provide suturing devices that allow selective and specific penetration of the tissue by both the tissue penetrator (needle element) and a jaw so that complex (including right-angled) suturing patterns may be achieved. The methods, devices and systems described herein may address this need.
The present invention relates to suture passers. In particular, described herein are suture passer devices having a bent or bendable first jaw extending from an elongate body, and a second jaw that is independently axially slideable relative to the elongate body (and/or first jaw) to form a distal-facing opening between the first and second jaws into which target tissue may be held and sutured by extending a tissue-penetrator (e.g., needle) between the first and second jaws.
The first or second jaw may hold the tissue penetrator within an internal passage, and the tissue penetrator may be extended between the distal-facing opening to push and/or pull a suture between the first and second jaws. The tissue penetrator may be any appropriate material, but shape memory materials (e.g., shape memory alloys, plastics, etc.) are of particularly interest. The tissue penetrator may have a sharp (e.g., pointed, beveled, etc.) distal tip for penetrating tissue. The tissue penetrator may be biased (e.g., pre-bent) in a curve or bend. In general the tissue penetrator (e.g., needle) may extend from a side region of the first or second jaw, extend across the distal-facing opening, and connect to an opening on the side region of the opposite (e.g., second or first) jaw from which it extends. This opening may include a suture capture region that holds the suture passed by the tissue penetrator. The suture capture region may be a suture retainer that holds the suture when passed by the tissue penetrator. For example, the suture retainer may be a deflecting or deflectable clamping region, a hook, or the like.
In general, the tissue penetrator may be configured to bend as it extends from the jaw and across the distal-facing opening. For example, the tissue penetrator may be pre-biased to assume a bent or curved configuration as it extends from within a jaw. Thus, the tissue penetrator may extend approximately perpendicular to the side of the jaw housing it. In some variations the jaw includes a tissue penetrator deflection (e.g., ramped) region that helps deflect the jaw. In some variations the jaw housing the tissue penetrator does not include a deflector.
In some variations described herein, one or the other jaws, and particularly the axially slideable jaw, has a tissue penetrating distal tip region. The tissue penetrating distal tip region may be sharp, including pointed, beveled, wedge-shaped, or otherwise configured to cut into and/or through the tissue as it is extended distally. For example, the diameter of the tissue penetrating distal tip region may be small, allowing it to cut into the tissue. In some variations the tissue-penetrating distal tip region may be knife-like and/or needle-like. In some variations the tissue-penetrating distal tip region may be configured to apply energy to cut or pierce the tissue. For example, the distal tip region may be configured to apply RF energy and/or thermal energy, and/or ultrasound energy, and/or the like to cut and/or ablate the tissue allowing the second jaw to penetrate into the tissue. In some variations the jaw may also be configured to reduce bleeding (e.g., by cauterizing the tissue as it is cut).
For example, described herein are suture passer devices for passing a suture comprising: an elongate body extending distally and proximally along a long axis; a first jaw extending from a distal end region of the elongate body wherein the first jaw is bent or bendable at an angle relative to the long axis; a second jaw having a sharp, tissue penetrating distal tip, wherein the second jaw is configured to slide axially along the long axis distally and proximally relative to the elongate body, further wherein the first jaw and the second jaw form a distal-facing opening when the second jaw is extended distally and wherein the second jaw is retractable proximally so that it does not form the distal-facing opening with the first jaw; and a tissue penetrator configured to extend across the distal-facing opening between the first jaw and the second jaw to pass a suture there between.
As mentioned, the tissue penetrating distal tip of the second jaw may include a sharp distal tip. For example, the tissue penetrating distal tip of the second jaw may comprise a sharp point at the distal tip, a sharp edge, etc. In some variations only one of the jaws has a sharp tip, while the other jaw has a non-tissue penetrating (e.g., atraumatic) tip. For example, the first jaw may comprise an atraumatic distal tip region.
In some variations the first jaw is bendable. For example, the first jaw may be hinged to the distal end region of the elongate body. In some variations, the first jaw is bent or bendable at a predetermined angle relative to the long axis of the elongate body (e.g., approximately 10°, 15°, 20°, 25°, 30°, 35°, 40°, 45°, 50°, 55°, 60°, 65°, 70°, 75°, 80°, 85°, 90°, 95°, etc.). In some variations the first jaw has a fixed bend relative to the long axis of the elongate body.
The second jaw may be configured to retract into the elongate body. In some variations, the second jaw does slides axially relative to the elongate body, but does not retract into/out of the elongate body. For example, the second jaw may slide along an outer surface of the elongate body and/or into a housing region adjacent to the elongate body. The second jaw may be configured to be retracted partially or completely relative to the distal end of the elongate body. For example, in some variations, the distal tip of the second jaw may be retracted completely into the distal tip region of the elongate body.
Any of the variations of the devices described herein may include a handle. For example, a device may include a handle at a proximal end region of the elongate body. The handle may include one or more controls for actuating the first jaw, second jaw, and tissue penetrator.
In general, any appropriate tissue penetrator may be used. As mentioned above, the tissue penetrator may be configured as a needle, a ribbon, or the like. For example, the tissue penetrator may be configured as a strip of shape-memory material. The tissue penetrator may include a suture holding (retaining) region. For example, the tissue penetrator may include a hook, eyelet, cavity, or the like the hold a suture as it is passed between the first and second jaws. As mentioned, a tissue penetrator may be housed in the second jaw and configured to extend from an opening on the side of the second jaw.
Also described herein are methods of suturing tissue using a suture passer that has a sharp and tissue penetrating jaw. The devices described above may be used to pass a suture in an L-shaped configuration (or other angled configuration) within a tissue. For example, any of the devices described herein with a tissue-penetrating jaw may be used to pass a suture in multiple directions within the tissue.
For example, a suture passer as described herein may be used in a method of suturing tissue. In some variations a method of suturing tissue using a suture passer having an elongate body, a first jaw bent or bendable relative to the elongate body, and a sharp, tissue penetrating axially slideable second jaw, may include some or all of the steps of: positioning the first jaw of the suture passer adjacent a tissue with the second jaw retracted proximally relative to the elongate body; axially sliding the second jaw distally to penetrate the tissue by extending the second jaw distally by relative to the elongate body; extending a tissue penetrator through the tissue between the first and second jaws to pass a suture between the first and second jaws; retracting the tissue penetrator from between the first and second jaws; and sliding the second jaw proximally out of the tissue while leaving the suture in the tissue.
In general, methods of suturing the tissue may include placing an atraumatic jaw adjacent the tissue, then penetrating the tissue with the sharp (tissue penetrating) jaw and then extending a tissue penetrator (e.g., needle) between the two jaws to pass a suture between the jaws. Retracting the suture passer may leave the suture passed through the tissue in the path taken by the tissue penetrator and tissue-penetrating jaw.
In some variations, positioning the first jaw may comprise bending the first jaw relative to a long axis of the elongate body. Positioning the first jaw may comprises positioning the first jaw of the suture passer with a sharp tissue penetrating distal tip of the second jaw retracted into the elongate body.
Axially sliding the second jaw may comprise extending a sharp, tissue penetrating distal tip region of the second jaw into the tissue. The step of extending the tissue penetrator through the tissue may comprise extending a tissue penetrator from a side of the second jaw to a side of the first jaw. In some variations, extending the tissue penetrator comprises extending the tissue penetrator in a curve between the first and second jaws. In general, extending the tissue penetrator comprises pushing a suture between the first and second jaws. The suture may be retained in the opposite (E.g., first jaw).
In some variations, retracting the tissue penetrator comprises retracting the tissue penetrator into the second jaw.
Any of the methods described herein may be performed minimally invasively, including arthroscopically. For example, the first jaw may be positioned arthroscopically, and each of the steps thereafter may be performed arthroscopically thereafter.
Described herein are sutures passers. These suture passers may be used arthroscopically, and may be used to pass one or more length of suture. In general, the suture passers described herein include an elongate body and a first jaw member (e.g., first jaw) extending from the distal end of the elongate body, wherein the first jaw is bent or bendable relative to the distal to proximal axis of the elongate body. In some variations the first jaw is hinged near the distal end region of the elongate body. Some variations of the suture passers described herein include a second jaw member (e.g., second jaw) that is configured to slide axially (proximally and distally) relative to the elongate body and/or first jaw. The first and second jaws may be configured to form a distal-facing opening into which tissue may be held. The suture passers described herein may also include a flexible, bendable, or pre-bent tissue penetrator for passing a suture through the tissue. The suture passer may also include a handle at the proximal end with one or more controls for actuating the first and/or second jaws and the tissue penetrator.
In some variations the suture passers described herein include an axially slideable second jaw that is configured to penetrate tissue. This configuration may allow the device to pass the suture in an angled pathway through the tissue, including “L-shaped” pathways within the tissue.
In some variations, described herein are suture passer having very narrow second jaws; the tissue penetrator may exit the second jaw from the side of the second jaw and extend across a distal-facing opening to engage an opening in the opposite jaw (e.g., the first jaw), where a suture may be secured and/or released. For example, the suture passers described herein may have a second jaw having a maximum diameter (e.g., maximum height) along the length of the second jaw of less than about 0.11 inches, 0.10 inches, 0.09 inches, 0.08 inches, 0.07 inches, 0.06 inches, 0.05 inches, 0.04 inches, 0.03 inches, 0.2 inches, 0.01 inches, etc. The second jaw may be any appropriate width. For example, the width may be approximately 0.15 inches.
In some variations, described herein are suture passers that do not include a second (e.g., lower) jaw, but that are instead configured so that a tissue penetrator (e.g., needle, ribbon, etc.) extend from the distal end region of the elongate member to engage a side region of the first jaw to pass a suture through the tissue. An elongate member may be any elongate structure extending from the proximal to distal end region of the device (e.g., cannula, tube, cylinder, arm, shaft, etc.).
As used herein in the specification and claims, including as used in the examples and unless otherwise expressly specified, all numbers may be read as if prefaced by the word “about” or “approximately,” even if the term does not expressly appear. The phrase “about” or “approximately” may be used when describing magnitude and/or position to indicate that the value and/or position described is within a reasonable expected range of values and/or positions. For example, a numeric value may have a value that is +/−0.1% of the stated value (or range of values), +/−1% of the stated value (or range of values), +/−2% of the stated value (or range of values), +/−5% of the stated value (or range of values), +/−10% of the stated value (or range of values), etc. Any numerical range recited herein is intended to include all sub-ranges subsumed therein.
A distal control 3913 is also configured as a lever or trigger, and may be squeezed or otherwise actuated to extend and/or retract the second jaw to form a distal-facing mouth with the first jaw, as shown in
In
The devices and methods described herein may be used to pass a loop of suture and specifically, may be used to form a vertical or horizontal stitch to repair tissue. When repairing the meniscus, a vertical stitch typically provides the strongest repair with the least amount of displacement relative to horizontal stitches or other “all-inside” approaches. The devices and methods described herein may also be referred to as “all-inside” devices and meniscal repair techniques allow the meniscus to be sutured directly. The suture passers described herein may place a fully-circumferential, vertical stitch around meniscal tears. This stitch may provide uniform compression along the entire height of the meniscus and maintain coaptation of the tear at both the inferior and superior meniscal surfaces. Further, because of the jaw and needle configuration, the distal extending tissue penetrator does not penetrate the capsule wall, reducing or eliminating risk to posterior neurovascular structures. These features may allow a greater healing response due to complete tissue coaptation along the entire substance of the tear, improved clinical outcomes due to the greater healing response and to the anatomic reduction and fixation of the meniscus tear, may avoid scalloping or puckering of the meniscus, and may result in less extrusion or peripheralization of the meniscus caused by over-tensioning of suture or hybrid tensioners to the capsule. These devices can also be used to treat radial, horizontal, flap, and other complex tears in addition to longitudinal tears.
In some variations, the suture passer devices described herein can be fired blindly where arthroscopy camera access is poor, as knee structures are protected from the needle path.
Returning now to
In some variations a knot of suture may be passed through tissue using a suture passer as describe above in which a pre-tide knot is used to help secure the length of suture being passed to the device. For example, in some variations an end region of one or both (in variations in which two lengths of suture are being passed) lengths of suture are knotted, and this pre-tied knot may be passed through the tissue by the tissue penetrator. The pre-tied knot may or may not include a leader snare. For example, in some variations two lengths of suture (from the same elongate suture) may be passed through a tissue; both lengths may be pre-knotted, however only one of the pre-tied knots may include a leader snare and be configured to allow another length of suture to be pulled through using the leader snare.
In some variations, the suture passers described herein may include a second (e.g., lower) jaw that is thin (e.g., <0.11 inches in diameter at the widest point). In general, thinner second jaws may be inserted into narrower and difficult to access body regions. In some variations, in which the second jaw houses the tissue penetrator and the tissue penetrator extends across the distal-facing opening formed between the first and second jaw, the second jaw may include a deflection ramp or deflection structure to help deflect the tissue penetrator out of the jaw and across the distal-facing opening. The deflection ram or deflection structure in some variations may form a widened region of the second jaw. Although it was initially believed that this enlarged deflection region was necessary to provide sufficient deflection and control of the motion of the tissue penetration, recent information suggest that this may not be necessary, particularly when using a pre-bent or pre-biased shape memory material to form the tissue penetrator. Thus, as shown in
Although a protruding deflection region may be helpful for steering the tissue penetrator/needle as it leaves the jaw, surprisingly, in some variations a protruding deflection member is not necessary, allowing the diameter of the jaw to be thinner. For example, in
Any of the jaws illustrated in
In
Sliding the second jaw distally may drive the tissue-penetrating distal tip of the second jaw into a tissue, as illustrated below (e.g.
Another example passing a suture using a suture passer having a jaw with a tissue-penetrating distal tip is shown in
In some variations a suture passer may pass a suture substantially as illustrated and described above, but without the use of a second jaw. In such variations the tissue penetrator may be extended between the first jaw and the distal end region of the elongate body of the suture passer.
In
As shown in
As shown in
Although the description above is broken into parts and includes specific examples of variations of suture passers, any of the features or elements described in any particular example or section may be incorporated into any of the other embodiments. Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it is readily apparent to those of ordinary skill in the art in light of the teachings of this invention that certain changes and modifications may be made thereto without departing from the spirit or scope of the appended claims.