Embodiments of the disclosure relate generally to suturing devices and methods of use for suturing biological tissue such as at openings in the heart, blood vessels and other locations.
Health practitioners frequently use sutures to close various openings such as cuts, punctures, and incisions in various places in the human body. Generally, sutures are convenient to use and function properly to hold openings in biological tissue closed thereby aiding in blood clotting, healing, and prevention of scaring. Sutures are also advantageous to use and function properly to hold openings in biological tissue closed thereby aiding in blood clotting, healing, and prevention of scaring.
For example, sutures may be used to close openings made into blood vessels where the openings are utilized to provide access to another location in the body during a transcatheter procedure. Sutures may also be utilized to close openings within the human body, such as natural, abnormal or man-made openings in the heart. Examples of such openings include septal defects, a patent foramen ovale (PFO), heart valves (e.g., the mitral valve, aortic valve, tricuspid valve and pulmonary valve), and openings made in the apex of the heart (transapical openings) used to gain access to the left ventricular of the heart. Examples of devices and methods to perform such procedures can be found in U.S. Pat. No. 9,131,938, filed Feb. 7, 2013, U.S. Pat. No. 8,246,636, filed Mar. 27, 2008, U.S. Pat. No. 8,771,296, filed May 8, 2009, U.S. Pat. No. 6,117,144, filed Jan. 14, 1999, Int'l. Pub. App. No. WO 2012/142338, filed Apr. 12, 2012, Int'l. Pub. App. No. WO 2013/170081, filed May 9, 2013, Int'l. Pub. App. No. WO 2011/094619, filed Jan. 28, 2011, and U.S. Pat. Pub. No. 2014/0303657, filed Jan. 23, 2015, each of which is hereby incorporated by reference in its entirety.
With regards to anatomical valves, including but not limited to the heart valves mentioned above, some heart valves may be weakened or stretched, or may have other structural defects, such as congenital defects, that cause them to close improperly, which can lead to blood flow contrary to the normal flow direction. This condition, referred to as regurgitation, incompetence, or insufficiency, can reduce blood flow in the normal direction. Regurgitation causes the heart to work harder to compensate for backflow of blood through these valves, which can lead to enlargement of the heart that reduces cardiac performance. While the tricuspid valve and the pulmonary valve may present these conditions, the mitral valve and aortic valve more frequently demonstrate these conditions.
With regards to closures of a heart, during development of a fetus in utero, blood is generally oxygenated by the mother's placenta, not the fetus' developing lungs. Most of the fetus' circulation is shunted away from the lungs through specialized vessels or foramens, such as the foramen ovale. The foramen ovale is a flaplike opening between the atrial septa primum and secundum which serves as a physiologic conduit for right to left shunting between the atria. Typically, once the pulmonary circulation is established after birth, left atrial pressure increases, resulting in the fusing of the septum primum and septum secundum and thus the closure of the foramen ovale. Occasionally, however, these foramen fail to close and create hemodynamic problems, which may ultimately prove fatal unless treated. A foramen ovale which does not seal is defined a patent foramen ovale, or PFO.
When sutures are used to close any of the body openings described above or when closing other biological tissue, it can become difficult when the sutures extend outside of a suturing device, for example alongside a handle. It becomes very difficult to keep the sutures organized and to track the particular suture when multiple sutures are used. Further, the sutures can easily be tangled outside of the device.
Certain embodiments of the present disclosure are directed to devices for suturing biological tissue and/or closing openings in the body. Further embodiments are directed to methods of suturing tissue, such as through the use of one or more such devices.
Disclosed herein are embodiments of a device for suturing biological tissue, the device comprising an elongate body having a proximal end and a distal end, at least one arm extendible from the elongate body, the at least one arm configured to move between a retracted position wherein the at least one arm is within the elongate body and a deployed position wherein the at least one arm extends away from the elongate body, the at least one arm configured to hold a first portion of a suture, at least one needle moveable relative to the elongate body between a retracted position and a deployed position, wherein the at least one needle when moving from its retracted position to its deployed position is configured to pass through tissue and capture the suture first portion held by the at least one arm, and is further configured to move from the deployed position to the retracted position to bring the suture first portion through the tissue, a handle located at the proximal end of the elongate body, the handle having one or more actuators configured to cause movement of the at least one arm and the at least one needle, and at least one suture spool mountable in fixed relationship to and located external to the elongate body and the handle, the at least one suture spool configured to retain a second portion of the suture, wherein, when the suture first portion is captured by the at least one needle and the at least one needle brings the suture first portion through the tissue, the at least one suture spool is configured such that the at least one suture unwinds from the at least one suture spool.
In some embodiments, the at least one suture spool can comprise an aperture, wherein the suture unwinds through the aperture. In some embodiments, the at least one suture spool can comprise an inner circumference around which the suture winds.
In some embodiments, the at least one spool can comprise a cylindrical portion having an open proximal end, an aperture located on a distal end, and a conical portion between the cylindrical portion and the aperture. In some embodiments, the at least one suture spool can be mountable between the handle and the at least one arm. In some embodiments, the at least one spool can be mountable around the elongate body such that the at least one spool is offset to one side of a longitudinal axis of the elongate body. In some embodiments, the at least one spool can be attachable to a Y-connector positioned around the elongate body.
In some embodiments, the device can comprise at least two spools mounted around the elongate body, the at least two spools corresponding to two arms extendible from the elongate body and two needles configured to capture sutures held by the two arms. In some embodiments, the device can comprise four spools mounted around the elongate body, the four spools corresponding to four arms extendible from the elongate body and four needles configured to capture sutures held by the four arms.
In some embodiments, the at least one suture spool can be mounted in fixed relationship to and located external to the elongate body and the handle, and the at least one suture spool contains a suture wound thereon that extends to the at least one arm.
In some embodiments, the at least one needle can move distally to proximally when moving from the retracted position to the deployed position. In some embodiments, the at least one needle can move proximally to distally when moving from the retracted position to the deployed position.
In some embodiments, the at least one arm can be located at or near the distal end of the elongate body. In some embodiments, the device can further comprise an outer sheath located over the elongate body, wherein the at least one suture is configured to extend from the at least one suture spool between the outer sheath and the elongate body to the at least one arm. In some embodiments, the outer sheath can comprise a peelable outer sheath.
Also disclosed herein are embodiments of a device for suturing a body opening such as a patent foramen ovale (PFO), the device comprising an elongate body having a proximal end and a distal end, at least one arm extendible from the elongate body, the at least one arm configured to move between a retracted position wherein the at least one arm is within the elongate body and a deployed position wherein the at least one arm extends away from the elongate body, the at least one arm configured to hold a first portion of a suture, at least one needle moveable relative to the elongate body between a retracted position and a deployed position, wherein the at least one needle when moving from its retracted position to its deployed position is configured to pass through tissue and capture the suture first portion held by the at least one arm, and is further configured to move from the deployed position to the retracted position to bring the suture first portion through the tissue, a handle located at the proximal end of the elongate body, the handle having a first actuator configured to cause movement of the at least one arm and a second actuator configured to cause movement of the at least one needle, and at least one suture spool mounted around the elongate body between the handle and the at least one arm, the at least one suture spool configured to retain a second portion of the suture, wherein, when the suture first portion is captured by the at least one needle and the at least one needle brings the suture first portion through the tissue, the at least one suture spool is configured such that the at least one suture unwinds from the at least one suture spool.
In some embodiments, the at least one suture spool can be mounted around the elongate body with a Y-connector mounted on the elongate body. In some embodiments, the device can further comprise a suture wound on the at least one suture spool, the suture extending from the suture spool through an interior of the elongate body to the at least one arm. In some embodiments, the device can comprise a single arm and a single needle. In some embodiments, the arm can be proximal to the needle. In some embodiments, the arm can be distal to the needle.
Also disclosed herein are embodiments of a suturing device for suturing a body opening such as a transapical opening in the heart, the device comprising an elongate body having a proximal end and a distal end, four arms extendible from the elongate body, the four arms configured to move between a retracted position wherein each of the four arms is within the elongate body and a deployed position wherein the each of the four arms extends away from the elongate body, each of the four arms configured to hold a first portion of each of four sutures, four needles moveable relative to the elongate body between a retracted position and a deployed position, wherein each of the four needles when moving from its retracted position to its deployed position is configured to pass through tissue and capture the suture first portion held by each of the four arms, and is further configured to move from the deployed position to the retracted position to bring each of the suture first portions through the tissue, a handle located at the proximal end of the elongate body, the handle having at least a first actuator configured to cause movement of each of the four arms and at least a second actuator configured to cause movement of each of the four needles, and four suture spools mounted around the elongate body between the handle and the four arms, each of the four suture spools configured to retain a second portion of each of the four sutures, and a peel-away sheath at least partially surrounding the elongate body, each of the four sutures configured to extend from the four suture spools through the peel-away sheath to the four arms, wherein, when each of the first portions of the four sutures is captured by each of the four needles and each of the four needles brings each of the suture first portions through the tissue, the four suture spools are configured such that each of the four sutures unwinds from each of the four suture spools.
In some embodiments, the device can further comprise a guide piece located distal to the four suture spools and proximal to the peel-away sheath, the guide piece having four apertures, wherein each of the four sutures extends through one of the four apertures.
Further disclosed herein are embodiments of a method of suturing biological tissue, comprising using a suturing device as described herein to close a body opening. In some embodiments, the suturing device can be used to close a patent foramen ovale. In some embodiments, the method can comprise using two separate suturing devices close the patent foramen ovale. In some embodiments, the suturing device can be used to close an opening in the heart.
Embodiments of suturing devices and methods for suturing biological tissue are disclosed herein. The suturing devices and their methods of use can be useful in a variety of procedures, such as treating (e.g., closing) wounds and naturally or surgically created apertures or passageways. Specifically, embodiments of the disclosed the suturing devices can be used to close or reduce a variety of other tissue openings, lumens, hollow organs or natural or surgically created passageways in the body. In some embodiments, the suturing devices can be used to suture prosthetics, synthetic materials, or implantable devices in the body. For example, the devices can be used to suture a pledget within the body.
In some embodiments, the disclosed devices can be used to place sutures to close an opening into a heart, although they are not limited to applications within a heart. In some embodiments, the opening is a puncture made at or near the apex of the heart. The puncture can also be made at other areas of the heart. The heart can be accessed through a sternotomy or limited thoracotomy, or alternatively the device can pass through a trocar or other element into the thoracic cavity and then be led toward the puncture in the heart, typically by following a guide wire.
While not limited to particular example embodiments of suturing devices are disclosed herein, embodiments of the disclosure can be incorporated into any number of suturing devices. For example, embodiments of the disclosure can be incorporated into the devices disclosed in U.S. Pat. No. 9,131,938, filed Feb. 7, 2013, U.S. Pat. No. 8,246,636, filed Mar. 27, 2008, U.S. Pat. No. 8,771,296, filed May 8, 2009, U.S. Pat. No. 6,117,144, filed Jan. 14, 1999, Int'l. Pub. No. WO 2012/142338, filed Apr. 12, 2012, Int'l. Pub. No. WO 2013/170081, filed May 9, 2013, Int'l. Pub. No. WO 2011/094619, filed Jan. 28, 2011, and U.S. Pat. Pub. No. 2014/0303657, filed Jan. 23, 2015, each of which is hereby incorporated by reference in its entirety. Features and procedures described in the aforementioned publications can be incorporated into the embodiments described herein.
Dual Device System
As shown, the suturing device 100 can have a handle 102 at the proximal end of the suturing device 100. The handle 102 can include any number of knobs/actuators/switches/buttons 103/105 that can control functionality of the suturing device 100 as discussed in detail below. For example, switch 103 can control the arm of the device 100 and switch 105 can control the movement of the needle, the motion of both discussed in detail below.
The suturing device 100 includes an elongate body 104 (e.g., elongate tubular member, elongate member) having a proximal end that can be connected to the handle 102 and a distal end of which can be used for positioning at the biological tissue to be sutured, such as in the opening of the PFO. The elongate body 104 can include one or more elongate members between the handle 102 and the distal end of the assembly (e.g., attached end to end or an elongate body within the lumen of another elongate body). The axial length and flexibility of the elongated tubular member 104 can be sufficient to percutaneously access the patient's vasculature and advance the elongate body 104 through the venous system to the patient's heart with the proximal end of the device remaining outside the patient's body. The distal end of the elongate body 104 can also include a suture clasp arm 106, which can be used for retaining a suture for closure of a PFO. The suture clasp arm 106 can rotate between a retracted position, wherein the suture clasp arm 106 is located in the elongate body 104 or generally parallel to it, to a deployed position where the suture clasp arm 106 extends away from the elongate body 104.
Suturing device 200 can be similar to suturing device 100, and can contain essentially the same components as shown in
The suture clasp arms 106/206 can comprise one or more suture mounts or clasps 107/207. The suture clasps 107/207 can be adapted to releasably retain a suture portion 114/214. In some embodiments, the suture clasps can releasably retain a suture portion 114/214 while the suture clasp arms 106/206 are in the retracted position and in the extended position. In some embodiments, a suture end may be retained in the suture clasps. In some embodiments, the suture clasps may retain a portion of suture that is not the suture end.
Further details on the suturing devices 100/200 can be found in U.S. Pat. No. 9,131,938, filed Feb. 7, 2013, the entirety of which is hereby incorporated by reference in its entirety.
Methods of Use of Dual Device System
The operation of the system comprising the first suturing device 100 and the second suturing device 200, described above, is illustrated according to one embodiment in
The suturing device 100 can be initially positioned such that the suture clasp arm 106 is near the tip of the septum primum 404, thus suture clasp arm 106 is permitted to extend from the elongate body 104. The suture clasp arm 106 may then deployed and then the device 100 is retracted until the suture clasp arm 106 extends around the tip of the septum primum 404, as shown in
Once the suture clasp arm 106 has been properly positioned around the septum primum 404, needle 112 may be deployed from the suturing device 110 to penetrate the septum primum 404 and engage the suture clasp arm 106. The needle 112 is advanced through a passageway in the suturing device 100 and deflected by needle guide 108 along an angle that intersects the deployed suture clasp arm 106 as it exits the suturing device 100. The needle 112 engages the suture clasp arm 106, as shown in
As shown in
The second suturing device 200 may then be advanced through the venous access into the tunnel 402 of the PFO between the septum primum 404 and the septum secundum 406, as shown in
The suture clasp arm 206 can then be extended and the device 200 can be advanced such that the suture clasp arm 206 extends around the tip of the septum secundum 406, as shown in
Once the suture clasp arm 206 and suture portion 214 have been properly positioned around the septum secundum 406, the needle 212 may be deployed from the distal end of the suturing device 200 to penetrate the septum secundum 406 and engage the suture portion 214. As shown in
After the suture portion 214 has been engaged, the needle 212 and engaged suture portion 214 can then be retracted distally through the tissue of the septum secundum 406 and into the suturing device 200, as illustrated in
As shown in
The suture portions 114/214 can then be pulled to draw the septum secundum 406 and septum primum 404 towards one another to close the PFO, as described above. As the sutures are pulled tight, the sutures preferably cause the septum secundum 406 and septum primum 404 to turns or folds so that the tip of the septum primum 404 extends in the opposite direction compared to the tip of the septum secundum 406, as shown in
An alternative method of operation of the second suturing device 200 is illustrated according to one embodiment in
The second guidewire 410 can be advanced from the opening through the PFO between the septum primum 404 and the septum secundum 406. The suture clasp arm 206 can then be extended and the device 200 can be advanced such that the suture clasp arm 206 extends around the tip of the septum secundum 406, as shown in
Once the suture clasp arm 206 and suture portion 214 have been properly positioned around the septum secundum 206, the needle 212 may be deployed from the distal end of the suturing device 200 to penetrate the septum secundum 406 and engage the suture portion 214. As shown in
As shown in
As shown in
Although the operation of the devices 100 and 200 has been described with reference to two sutures, the devices 100/200 can be used in some embodiments to place a single suture through both the septum primum 404 and the septum secundum 406, or to place multiple sutures through each of the septum primum 404 and the septum secundum 406. In some embodiments, plural devices 100, plural devices 200, or both can be used to place multiple sutures through one or both of the septum primum 404, the septum secundum 406, or other biological tissue, biological structure, prosthetic, or synthetic material or implantable device in the body. For example, plural devices may be used to suture a prosthetic heart valve to the heart or to affix a balloon, umbrella, or other device that is not properly positioned to the surrounding tissue.
Further details on the methodology for using suturing devices 100/200 can be found in U.S. Pat. No. 9,131,938, filed Feb. 7, 2013, the entirety of which is hereby incorporated by reference in its entirety.
Multi-Armed Suturing Device
The device can comprise an elongate body 608 (e.g., elongate tubular member, elongate member) which can include a plurality of suture clasp arms 610. The elongate body 608 can include one or more elongate members between the handle 606 and the distal end of the assembly (e.g., attached end to end or an elongate body within the lumen of another elongate body). The suture clasp arms 610 can move from a retracted position, as illustrated, in which the suture arms are at least partially within the elongate body 608, to an extended position, described and illustrated below in which the suture arms extend outward from the elongate body. The suture arms can also be positioned at varying angles from each other around the circumference of the elongate body. The illustrated embodiment has four suture clasp arms 610 spaced 90 degrees apart. In some embodiments, there may be more suture arms spaced varying degrees apart. In some embodiments, there may be just one suture arm, which can be rotated about an opening in the heart to place multiple sutures around the opening. For purposes of closing the opening, it can be advantageous to have an even number of suture arms, such as 2, 4, 6, or 8, each suture arm part of a pair with another suture arm spaced 180 degrees apart around the circumference of the elongate body. In some embodiments, the device can also have an odd number of suture arms. If just a single suture arm is used to position multiple sutures around the opening, the sutures can be positioned in pairs spaced 180 degrees apart around the opening.
The suture clasp arms 610 can comprise one or more suture mounts or clasps 612 at a distal end. The suture clasps 612 can be adapted to releasably retain a suture portion 614. In some embodiments, the suture clasps can releasably retain a suture portion 614 while the suture clasp arms 610 are in the retracted position and in the extended position. In some embodiments, a suture end may be retained in the suture clasps. In some embodiments, the suture clasps may retain a portion of suture that is not the suture end.
When the device is assembled, it can be pre-loaded with a first sheath 616 (for example an 18 French sheath, though other sizes can be used as well) that surrounds at least a portion of the elongate body and a second sheath 618 surrounding at least a portion of the first sheath 616. In some embodiments, as illustrated, a distal end of the first sheath 616 can extend to a position just proximal to the suture clasp arms 610, thereby allowing the suture clasp arms 610 to move into the extended position or into the retracted position, though the first sheath 616 can be substantially proximal to the suture clasp arms 610 as well. The suture portions 614 can run outside of the first sheath 616 and through the second sheath 618 to a position proximal to at least the second sheath 618. The second sheath can help confine the suture portions such that they do not get tangled or otherwise interfere with a procedure, described below. In some embodiments, the second sheath 618 is shorter than first sheath 616. In some embodiments, the second sheath 618 can be a peel-away (or peelable) sheath that can be removed from around the first sheath 616 and around the suturing device 600. In some embodiments, the device may not include a first sheath 616 and may only include the second sheath 618.
The device 600 can also include suture catch mechanisms (referred to herein as needles), described below, that can retrieve sections of suture from the suture clasps 612. In some embodiments, the device can include one or more needle exit channels 620, from which the needles can exit an interior of the elongate body 608 in order to reach the suture clasps 612. In some embodiments, there can be an equal number of needle exit channels 620 as there are suture clasp arms 610, and the needle exit channels can be configured to align with a corresponding suture clasp arm 610.
As illustrated, the suture clasp arms 610 can rotate about a proximal end of the suture clasp arms 610. In some embodiments, the suture clasp arms 610 can slide or move in other ways from the retracted to the extended position, or from the extended to the retracted position. In the illustrated embodiment, as the suture clasp arms 610 rotate from the extended to the retracted position, the suture clasps 612 will move toward a distal end of the suturing device. In some embodiments, the suture clasp arms 610 can be configured such that the suture clasp moves distally as the suture clasp arms 610 rotate from the retracted to the extended position. In some embodiments, the suture clasp arms 610 can rotate about a distal end of the suture clasp arms 610.
In some embodiments, as illustrated in
In some embodiments, the needles can be located distal to the suture clasp arms 610 and point proximally toward the suture clasp arms 610. In some embodiments, the needles can be located proximal to the suture clasp arms 610 and point distally toward the suture clasp arms 610. The needles 630 can attach to a needle drive tube 632, which can be positioned around the central shaft 624 and which can translate along the central shaft 624. In some embodiments, a collar can be used to lock the needles 630 to the needle drive tube 632.
The needle drive tube 632 can move the needles toward or away from the suture clasp arms 610. As the drive tube moves the needles toward the suture clasp arms 610 the needles will eventually reach the needle exit channels 620 (visible in
Methods of Use of Four Arm Suture Device
With the suture clasp arms 610 in the extended position, the device can be further advanced into the heart until the suture clasp arms 610 press against tissue of the heart, as shown in
Once the needles have fired and drawn sutures through tissue of the heart, the device can be withdrawn slightly from the heart in order to allow the suture clasp arms 610 to return to a retracted position, as shown in
In
In
Suture ends that pass through the first sheath 616 can be secured together with a knot or other device. Further details regarding a device for joining sutures are provided in U.S. Pat. App. Pub. No. 2011/0190793, filed on Jan. 28, 2011, which is hereby incorporated by reference herein in its entirety. In some embodiments, suture ends that pass through the first sheath 616 can be secured together in pairs, each pair having suture ends that had been releasably attached to suture clasp arms 610 spaced 180 degrees about the circumference of the elongate body 608 of the device 600. By then pulling on one or more of the remaining free suture ends, the joined suture 640 can be pulled through the first sheath 616 and into the heart, as illustrated in
In some embodiments, the point where a pair of suture ends has been joined together can be passed through the tissue of the heart and outside of the heart by pulling on one of the remaining free suture ends. In some embodiments, prior to joining the two suture ends that pass through the first sheath, a pledget can be slidably attached to a suture end, such as by threading a suture end through a hole in the pledget. After the two suture ends that pass through the first sheath have been secured together, the joined suture can be pulled through the tissue of the heart by one of the remaining free ends until the pledget contacts an inner surface of the heart wall, where it may remain. In some embodiments, prior to or after joining the two suture ends within the sheath, a pledget can be attached to a free suture end that passes outside of the first sheath 616. With the two suture ends within the first sheath joined, the opposite free suture end can be pulled until the pledget contacts an outer surface of the heart, where it may remain.
Suture Spool
In some embodiments, a spooling suture system (e.g. suture spool or suture reel) can be used with embodiments of the above disclosed suturing devices. An example of such a suture spool 800 is shown in
In some embodiments, the suture spool 800 can be located outside of the handle (e.g., external to the handle) and outside of the elongate body or shaft of the device itself (e.g., external to the elongate body or shaft). By having the suture spool 800 outside of the handle as disclosed herein, this frees up valuable space within the handle to perform other operations or have additional components, or even reduce the size of the handle. In some embodiments, the suture spool 800 can be located distal to the handle, but proximal to the arm(s) as discussed above. However, the particular location of the suture spools 800 is not limiting. In some embodiments, the suture spool 800 can be located on or inside the handle. In some embodiments, the suture spool 800 can be removably attachable to the suturing device, such as those discussed above. In some embodiments, the suture spool 800 may be fixedly coupled or mounted to the suturing device (either through or around the elongate member or the handle). Thus, the suture spool may move along with the suturing device. Thus, in some embodiments, the suture spools may not be able to move independent of the suturing device, at least during use.
The suturing spool 800 may have a proximal end 801 and a distal end 803. The distal end of the suturing spool is the end closer to the distal tip of the suturing device (as illustrated for example in
In some embodiments, the suturing spool 800 can have an aperture 806 distal to the cylindrical container portion 802, with a tapered or conical section 808 therebetween. The suture can extend and wind from the container portion 802 along an inner conical surface of the tapered or conical section 808, through the aperture 806, and proceed towards the distal end of the suturing device.
Thus, the cylindrical container portion 802 and the conical section 808 can help guide the suture into the aperture 806 while preventing the suture from catching or tangling. In some embodiments, the suture can be loaded into the suture spool 800 so that it pulls through the aperture 806 opposite of how the suture was loaded in the container portion 802. For example, a first end of the suture can be attached in the suture spool 800 such as at the proximal end 801 and wrapped around the cylindrical container portion 802, such as along helical grooves, so that that when a second end of the suture is pulled through the aperture 806 the suture unwinds from the spool in a distal-first fashion.
In some embodiments, the suture spool 800 can contain a guide portion 810 distal to the tapered or conical section 808, shown in
On the opposite side of the aperture 806, e.g., on the proximal end 801 of the suture spool 800, the suture spool may be open, e.g., have an opening which may be defined by a rim of the cylindrical container portion 802 The opening of the suture spool 800 may be generally circular, though the particular shape of the opening 812 is not limiting. A suture cover 814 can be used to cover the proximal opening, though in some embodiments the proximal end of the suture spool 800 may instead be closed. The proximal cover 814 can prevent the suture from falling out of the spool 800 when in the container portion 802. In some embodiments, the cover 814 can be clear so that a user can see into a spool 800 and know how much suture is still left in the spool 800. However, in some embodiments the cover 814 may be opaque. In some embodiments, the cover 814 can be removable and replaceable on the container portion 802. In some embodiments, the cover 814 may have a generally circular aperture 812 smaller than the proximal opening of the suture spool to access the inside of the suture spool 800 and to more easily remove the cover.
As mentioned, the suture can unwind from the suture spool 800 through the aperture 806 during operation, such as discussed in detail above. In some embodiments, the suture spool 800, or other portion of the suturing device, can include a stopping mechanism to prevent further unwinding from the suture spool. For example, there can be another actuator on the devices discussed above that can stop the suture from unwinding. In some embodiments, an end of the suture can be attached within the suture spool 800, thus preventing unwinding of the full length of the suture.
As shown in
In some embodiments suture spool 800 can include a connector piece 850 to attach the suture spool 800 to a Y-junction component 852, which can connect to an inner lumen of the suturing device 200, in particular an inner lumen of the elongate body 204 through an aperture near the proximal end of the elongate body 204. The Y-junction component 852 may be integrally formed on the elongate body 204, or may be slid over and/or screwed/bonded to the elongate body 204. However, in some embodiments the connector piece 850 may be part of the Y-junction component 852, and thus may not be part of the suture spool. The connector piece 850 may insert into, or otherwise be attached to the guide portion 810. In some embodiments, the Y-junction component 842 can be built into the elongate body 204, and thus can be integrally formed with the elongate body 104. In some embodiments, the Y-junction component 852 can be added to the elongate body 204 and mounted thereover. In some embodiments, multiple Y-junctions can be included on the device 200, where an additional Y-junction may be used to thread a guide wire or for other purposes.
A close-up view of the suture spool 800 on the suturing device 200 is shown in
Next,
In some embodiments, a guide piece 870 can be used in conjunction with the multiple suture spools 800 to provide the sutures 860 to the distal end of the device 600 while reducing or eliminating tangles and/or knots in the sutures 860. As shown in
The guide piece 870 can include a number of apertures 872 equal to the number of suture spools 800 being used. As shown, the guide piece 870 can have four apertures 872 to align with the four distal apertures 806 of the four suture spools 800. Thus, the suture 860 can begin in the suture spools 800, extend through the distal apertures 806 of the suture spools 800, and extend through a respective aperture 872 in the guide piece 870. This can prevent the sutures 860 from interacting with one another during the procedure, thus reducing entanglements. However, the guide piece 870 may have a different number of apertures 870 than spools 800, e.g., more or less apertures 870 than spools 800. Further, in some embodiments a guide piece 870 may not be used. In some embodiments, the guide portion 810 of the suture spool 800 can be attached to the guide piece 870.
In some embodiments, the suture spools 800 can be fused to the guide piece 870. In some embodiments, the suture spools 800 can be removably attachable to the guide piece 870. In some embodiments, the suture spools 800 are mounted to the guide piece 870, either removably or not removably. In some embodiments, the suture spools 800 and guide piece 870 can be formed of a single component, such as a single molded component.
As the sutures 860 extend distally from the suture spools 800 and the guide piece 870, they can pass through the lumen of the second sheath 618, as discussed in detail above. The second sheath 618 can generally guide the sutures 860 along the elongate body 606 from the suture spools towards the distal end of the elongate body 608. The sutures 860 can then extend from the distal end of the second sheath 618 and be attached to respective suture clasp arms 610, thereby allowing the device 600 to operate in a manner as discussed in detail above. Specifically, the suture 860 will be retained on the suture clasp arm 610 until the needle 630 pulls the suture 860 distally into the elongate body 606, starting the unwinding of the suture 860. The suture 860 will be continued to be unwound out of the suture spool 800 when the suturing device 600 is pulled out of patient, such as discussed above with respect to
A number of different suturing devices and methods are disclosed herein.
A device for suturing biological tissue, the device comprising an elongate body having a proximal end and a distal end, at least one arm extendible from the elongate body, the at least one arm configured to move between a retracted position wherein the at least one arm is within the elongate body and a deployed position wherein the at least one arm extends away from the elongate body, the at least one arm configured to hold a first portion of a suture, at least one needle moveable relative to the elongate body between a retracted position and a deployed position, wherein the at least one needle when moving from its retracted position to its deployed position is configured to pass through tissue and capture the suture first portion held by the at least one arm, and is further configured to move from the deployed position to the retracted position to bring the suture first portion through the tissue, a handle located at the proximal end of the elongate body, the handle having one or more actuators configured to cause movement of the at least one arm and the at least one needle, and at least one suture spool mountable in fixed relationship to and located external to the elongate body and the handle, the at least one suture spool configured to retain a second portion of the suture, wherein, when the suture first portion is captured by the at least one needle and the at least one needle brings the suture first portion through the tissue, the at least one suture spool is configured such that the at least one suture unwinds from the at least one suture spool.
The device of Embodiment 1, wherein at least one suture spool can comprise an aperture, wherein the suture unwinds through the aperture.
The device of Embodiment 1 or 2, wherein the at least one suture spool comprises an inner circumference around which the suture winds.
The device of any one of Embodiments 1-3, wherein the at least one spool comprising a cylindrical portion having an open proximal end, an aperture located on a distal end, and a conical portion between the cylindrical portion and the aperture.
The device of any one of Embodiments 1-4, wherein the at least one suture spool is mountable between the handle and the at least one arm.
The device of any one of Embodiments 1-5, wherein the at least one spool is mountable around the elongate body such that the at least one spool is offset to one side of a longitudinal axis of the elongate body.
The device of any one of Embodiments 1-6, wherein the at least one spool is attachable to a Y-connector positioned around the elongate body.
The device of any one of Embodiments 1-7, comprising at least two spools mounted around the elongate body, the at least two spools corresponding to two arms extendible from the elongate body and two needles configured to capture sutures held by the two arms.
The device of any one of Embodiments 1-8, comprising four spools mounted around the elongate body, the four spools corresponding to four arms extendible from the elongate body and four needles configured to capture sutures held by the four arms.
The device of any one of Embodiments 1-9, wherein the at least one suture spool is mounted in fixed relationship to and located external to the elongate body and the handle, and the at least one suture spool contains a suture wound thereon that extends to the at least one arm.
The device of any one of Embodiments 1-10, wherein the at least one needle moves distally to proximally when moving from the retracted position to the deployed position.
The device of any one of Embodiments 1-10, wherein the at least one needle moves proximally to distally when moving from the retracted position to the deployed position.
The device of any one of Embodiments 1-12, wherein the at least one arm is located at or near the distal end of the elongate body.
The device of any one of Embodiments 1-13, further comprising an outer sheath located over the elongate body, wherein the at least one suture is configured to extend from the at least one suture spool between the outer sheath and the elongate body to the at least one arm.
The device of Embodiment 14, wherein the outer sheath comprises a peelable outer sheath.
A device for suturing a body opening such as a patent foramen ovale (PFO), the device comprising an elongate body having a proximal end and a distal end, at least one arm extendible from the elongate body, the at least one arm configured to move between a retracted position wherein the at least one arm is within the elongate body and a deployed position wherein the at least one arm extends away from the elongate body, the at least one arm configured to hold a first portion of a suture, at least one needle moveable relative to the elongate body between a retracted position and a deployed position, wherein the at least one needle when moving from its retracted position to its deployed position is configured to pass through tissue and capture the suture first portion held by the at least one arm, and is further configured to move from the deployed position to the retracted position to bring the suture first portion through the tissue, a handle located at the proximal end of the elongate body, the handle having a first actuator configured to cause movement of the at least one arm and a second actuator configured to cause movement of the at least one needle, and at least one suture spool mounted around the elongate body between the handle and the at least one arm, the at least one suture spool configured to retain a second portion of the suture, wherein, when the suture first portion is captured by the at least one needle and the at least one needle brings the suture first portion through the tissue, the at least one suture spool is configured such that the at least one suture unwinds from the at least one suture spool.
The device of any one of Embodiment 16, wherein the at least one suture spool is mounted around the elongate body with a Y-connector mounted on the elongate body.
The device of any one of Embodiments 16-17, further comprising a suture wound on the at least one suture spool, the suture extending from the suture spool through an interior of the elongate body to the at least one arm.
The device of any one of Embodiments 16-18, comprising a single arm and a single needle.
The device of Embodiment 19, wherein the arm is proximal to the needle.
The device of Embodiment 19, wherein the arm is distal to the needle.
A suturing device for suturing a body opening such as a transapical opening in the heart, the device comprising an elongate body having a proximal end and a distal end, four arms extendible from the elongate body, the four arms configured to move between a retracted position wherein each of the four arms is within the elongate body and a deployed position wherein the each of the four arms extends away from the elongate body, each of the four arms configured to hold a first portion of each of four sutures, four needles moveable relative to the elongate body between a retracted position and a deployed position, wherein each of the four needles when moving from its retracted position to its deployed position is configured to pass through tissue and capture the suture first portion held by each of the four arms, and is further configured to move from the deployed position to the retracted position to bring each of the suture first portions through the tissue, a handle located at the proximal end of the elongate body, the handle having at least a first actuator configured to cause movement of each of the four arms and at least a second actuator configured to cause movement of each of the four needles, and four suture spools mounted around the elongate body between the handle and the four arms, each of the four suture spools configured to retain a second portion of each of the four sutures, and a peel-away sheath at least partially surrounding the elongate body, each of the four sutures configured to extend from the four suture spools through the peel-away sheath to the four arms, wherein, when each of the first portions of the four sutures is captured by each of the four needles and each of the four needles brings each of the suture first portions through the tissue, the four suture spools are configured such that each of the four sutures unwinds from each of the four suture spools.
The device of Embodiment 22, further comprising a guide piece located distal to the four suture spools and proximal to the peel-away sheath, the guide piece having four apertures, wherein each of the four sutures extends through one of the four apertures.
A method of suturing biological tissue, comprising using the suturing device of any one of Embodiments 1-23 to close a body opening.
the method of Embodiment 24, wherein the suturing device is used to close a patent foramen ovale.
The method of Embodiment 25, comprising using two separate suturing devices close the patent foramen ovale.
The method of Embodiment 24, wherein the suturing device is used to close an opening in the heart.
From the foregoing description, it will be appreciated that an inventive suturing devices and methods of use are disclosed. While several components, techniques and aspects have been described with a certain degree of particularity, it is manifest that many changes can be made in the specific designs, constructions and methodology herein above described without departing from the spirit and scope of this disclosure.
Certain features that are described in this disclosure in the context of separate implementations can also be implemented in combination in a single implementation. Conversely, various features that are described in the context of a single implementation can also be implemented in multiple implementations separately or in any suitable subcombination. Moreover, although features may be described above as acting in certain combinations, one or more features from a claimed combination can, in some cases, be excised from the combination, and the combination may be claimed as any subcombination or variation of any subcombination.
Moreover, while methods may be depicted in the drawings or described in the specification in a particular order, such methods need not be performed in the particular order shown or in sequential order, and that all methods need not be performed, to achieve desirable results. Other methods that are not depicted or described can be incorporated in the example methods and processes. For example, one or more additional methods can be performed before, after, simultaneously, or between any of the described methods. Further, the methods may be rearranged or reordered in other implementations. Also, the separation of various system components in the implementations described above should not be understood as requiring such separation in all implementations, and it should be understood that the described components and systems can generally be integrated together in a single product or packaged into multiple products. Additionally, other implementations are within the scope of this disclosure.
Conditional language, such as “can,” “could,” “might,” or “may,” unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include or do not include, certain features, elements, and/or steps. Thus, such conditional language is not generally intended to imply that features, elements, and/or steps are in any way required for one or more embodiments.
Conjunctive language such as the phrase “at least one of X, Y, and Z,” unless specifically stated otherwise, is otherwise understood with the context as used in general to convey that an item, term, etc. may be either X, Y, or Z. Thus, such conjunctive language is not generally intended to imply that certain embodiments require the presence of at least one of X, at least one of Y, and at least one of Z.
Language of degree used herein, such as the terms “approximately,” “about,” “generally,” and “substantially” as used herein represent a value, amount, or characteristic close to the stated value, amount, or characteristic that still performs a desired function or achieves a desired result. For example, the terms “approximately”, “about”, “generally,” and “substantially” may refer to an amount that is within less than or equal to 10% of, within less than or equal to 5% of, within less than or equal to 1% of, within less than or equal to 0.1% of, and within less than or equal to 0.01% of the stated amount. If the stated amount is 0 (e.g., none, having no), the above recited ranges can be specific ranges, and not within a particular % of the value. For example, within less than or equal to 10 wt./vol. % of, within less than or equal to 5 wt./vol. % of, within less than or equal to 1 wt./vol. % of, within less than or equal to 0.1 wt./vol. % of, and within less than or equal to 0.01 wt./vol. % of the stated amount.
Some embodiments have been described in connection with the accompanying drawings. The figures are drawn to scale, but such scale should not be limiting, since dimensions and proportions other than what are shown are contemplated and are within the scope of the disclosed inventions. Distances, angles, etc. are merely illustrative and do not necessarily bear an exact relationship to actual dimensions and layout of the devices illustrated. Components can be added, removed, and/or rearranged. Further, the disclosure herein of any particular feature, aspect, method, property, characteristic, quality, attribute, element, or the like in connection with various embodiments can be used in all other embodiments set forth herein. Additionally, it will be recognized that any methods described herein may be practiced using any device suitable for performing the recited steps.
While a number of embodiments and variations thereof have been described in detail, other modifications and methods of using the same will be apparent to those of skill in the art. Accordingly, it should be understood that various applications, modifications, materials, and substitutions can be made of equivalents without departing from the unique and inventive disclosure herein or the scope of the claims.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2016/026965 | 4/11/2016 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2017/180092 | 10/19/2017 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
118683 | Bruce | Sep 1871 | A |
1064307 | Fleming | Jun 1913 | A |
1822330 | Ainslie | Sep 1931 | A |
1989919 | Everitt | Feb 1935 | A |
2348218 | Karle | May 1944 | A |
2473742 | Auzin | Jun 1949 | A |
2548602 | Greenburg | Apr 1951 | A |
2637290 | Sigoda | May 1953 | A |
2738790 | Todt, Sr. et al. | Mar 1956 | A |
2849002 | Oddo | Aug 1958 | A |
2945460 | Kagiyama | Jul 1960 | A |
3241554 | Coanda | Mar 1966 | A |
3292627 | Harautuneian | Dec 1966 | A |
3394705 | Abramson | Jul 1968 | A |
3664345 | Dabbs et al. | May 1972 | A |
3665926 | Flores | May 1972 | A |
3774596 | Cook | Nov 1973 | A |
3828790 | Curtiss et al. | Aug 1974 | A |
3831587 | Boyd | Aug 1974 | A |
3842840 | Schweizer | Oct 1974 | A |
3877434 | Ferguson et al. | Apr 1975 | A |
3882852 | Sinnreich | May 1975 | A |
3882855 | Schulte et al. | May 1975 | A |
3888117 | Lewis | Jun 1975 | A |
3903893 | Scheer | Sep 1975 | A |
3946740 | Bassett | Mar 1976 | A |
3946741 | Adair | Mar 1976 | A |
3952742 | Taylor | Apr 1976 | A |
3976079 | Samuels | Aug 1976 | A |
4052980 | Grams et al. | Oct 1977 | A |
RE29703 | Fatt | Jul 1978 | E |
4107953 | Casillo | Aug 1978 | A |
4119100 | Rickett | Oct 1978 | A |
4164225 | Johnson et al. | Aug 1979 | A |
4230119 | Blum | Oct 1980 | A |
4291698 | Fuchs et al. | Sep 1981 | A |
4299237 | Foti | Nov 1981 | A |
4307722 | Evans | Dec 1981 | A |
4345601 | Fukuda | Aug 1982 | A |
4351342 | Wiita et al. | Sep 1982 | A |
4417532 | Yasukata | Nov 1983 | A |
4423725 | Baran et al. | Jan 1984 | A |
4447227 | Kotsanis | May 1984 | A |
4457300 | Budde | Jul 1984 | A |
4484580 | Nomoto et al. | Nov 1984 | A |
4512338 | Balko et al. | Apr 1985 | A |
4546759 | Solar | Oct 1985 | A |
4553543 | Amarasinghe | Nov 1985 | A |
4573966 | Weikl et al. | Mar 1986 | A |
4589868 | Dretler | May 1986 | A |
4610662 | Weikl et al. | Sep 1986 | A |
4617738 | Kopacz | Oct 1986 | A |
4662068 | Polonsky | May 1987 | A |
4664114 | Ghodsian | May 1987 | A |
4734094 | Jacob et al. | Mar 1988 | A |
4744364 | Kensey | May 1988 | A |
4750492 | Jacobs | Jun 1988 | A |
4771776 | Powell et al. | Sep 1988 | A |
4774091 | Yamahira et al. | Sep 1988 | A |
4794928 | Kletschka | Jan 1989 | A |
4795427 | Helzel | Jan 1989 | A |
4796629 | Grayzel | Jan 1989 | A |
4824436 | Wolinsky | Apr 1989 | A |
4827931 | Longmore | May 1989 | A |
4841888 | Mills et al. | Jun 1989 | A |
4861330 | Voss | Aug 1989 | A |
4898168 | Yule | Feb 1990 | A |
4923461 | Caspari et al. | May 1990 | A |
4926860 | Stice et al. | May 1990 | A |
4932956 | Reddy et al. | Jun 1990 | A |
4935027 | Yoon | Jun 1990 | A |
4954126 | Wallsten | Sep 1990 | A |
4957498 | Caspari et al. | Sep 1990 | A |
4972845 | Iversen et al. | Nov 1990 | A |
4981149 | Yoon et al. | Jan 1991 | A |
4983116 | Koga | Jan 1991 | A |
4984564 | Yuen | Jan 1991 | A |
4994070 | Waters | Feb 1991 | A |
5002531 | Bonzel | Mar 1991 | A |
5021059 | Kensey et al. | Jun 1991 | A |
5037433 | Wilk et al. | Aug 1991 | A |
5057114 | Wittich et al. | Oct 1991 | A |
5059201 | Asnis | Oct 1991 | A |
5065772 | Cox, Jr. | Nov 1991 | A |
5074871 | Groshong | Dec 1991 | A |
5078743 | Mikalov et al. | Jan 1992 | A |
5090958 | Sahota | Feb 1992 | A |
5100418 | Yoon et al. | Mar 1992 | A |
5104394 | Knoepfler | Apr 1992 | A |
5106363 | Nobuyoshi | Apr 1992 | A |
5108416 | Ryan et al. | Apr 1992 | A |
5108419 | Reger et al. | Apr 1992 | A |
5116305 | Milder et al. | May 1992 | A |
5122122 | Allgood | Jun 1992 | A |
5129883 | Black | Jul 1992 | A |
5133724 | Wilson et al. | Jul 1992 | A |
5135484 | Wright | Aug 1992 | A |
5160339 | Chen et al. | Nov 1992 | A |
5163906 | Ahmadi | Nov 1992 | A |
5167223 | Koros et al. | Dec 1992 | A |
5171251 | Bregen et al. | Dec 1992 | A |
5176691 | Pierce | Jan 1993 | A |
5192301 | Kamiya et al. | Mar 1993 | A |
5222508 | Contarini | Jun 1993 | A |
5222941 | Don Michael | Jun 1993 | A |
5222974 | Kensey et al. | Jun 1993 | A |
5224948 | Abe et al. | Jul 1993 | A |
5236443 | Sontag | Aug 1993 | A |
5242459 | Buelna | Sep 1993 | A |
5281234 | Wilk et al. | Jan 1994 | A |
5281237 | Gimpelson | Jan 1994 | A |
5282827 | Kensey et al. | Feb 1994 | A |
5286259 | Ganguly et al. | Feb 1994 | A |
5290249 | Foster et al. | Mar 1994 | A |
5291639 | Baum et al. | Mar 1994 | A |
5300106 | Dahl | Apr 1994 | A |
5304184 | Hathaway et al. | Apr 1994 | A |
5308323 | Sogawa et al. | May 1994 | A |
5312344 | Grinfeld | May 1994 | A |
5314409 | Sarosiek et al. | May 1994 | A |
5320604 | Walker et al. | Jun 1994 | A |
5320632 | Heidmueller | Jun 1994 | A |
5330446 | Weldon et al. | Jul 1994 | A |
5330497 | Freitas et al. | Jul 1994 | A |
5331975 | Bonutti | Jul 1994 | A |
5336229 | Noda | Aug 1994 | A |
5336231 | Adair | Aug 1994 | A |
5337736 | Reddy | Aug 1994 | A |
5339801 | Poloyko | Aug 1994 | A |
5342306 | Don Michael | Aug 1994 | A |
5342385 | Norelli et al. | Aug 1994 | A |
5342393 | Stack | Aug 1994 | A |
5350399 | Erlebacher et al. | Sep 1994 | A |
5356382 | Picha et al. | Oct 1994 | A |
5364407 | Poll | Nov 1994 | A |
5364408 | Gordon | Nov 1994 | A |
5368601 | Sauer et al. | Nov 1994 | A |
5370618 | Leonhardt | Dec 1994 | A |
5370685 | Stevens | Dec 1994 | A |
5374275 | Bradley et al. | Dec 1994 | A |
5380284 | Don Michael | Jan 1995 | A |
5382261 | Palmaz | Jan 1995 | A |
5383854 | Safar et al. | Jan 1995 | A |
5383896 | Gershony et al. | Jan 1995 | A |
5383897 | Wholey | Jan 1995 | A |
5383905 | Golds et al. | Jan 1995 | A |
5389103 | Melzer et al. | Feb 1995 | A |
5391147 | Imran et al. | Feb 1995 | A |
5391174 | Weston | Feb 1995 | A |
5395383 | Adams et al. | Mar 1995 | A |
5397325 | Badia et al. | Mar 1995 | A |
5403329 | Hinchcliffe | Apr 1995 | A |
5403331 | Chesterfield et al. | Apr 1995 | A |
5403341 | Solar | Apr 1995 | A |
5405322 | Lennox et al. | Apr 1995 | A |
5405354 | Sarrett | Apr 1995 | A |
5417699 | Klein et al. | May 1995 | A |
5417700 | Egan | May 1995 | A |
5423777 | Tajiri et al. | Jun 1995 | A |
5423837 | Mericle et al. | Jun 1995 | A |
5425708 | Nasu | Jun 1995 | A |
5425737 | Burbank et al. | Jun 1995 | A |
5425744 | Fagan et al. | Jun 1995 | A |
5429118 | Cole et al. | Jul 1995 | A |
5431666 | Sauer et al. | Jul 1995 | A |
5439470 | Li | Aug 1995 | A |
5445167 | Yoon et al. | Aug 1995 | A |
5447515 | Robicsek | Sep 1995 | A |
5452513 | Zinnbauer et al. | Sep 1995 | A |
5454823 | Richardson et al. | Oct 1995 | A |
5458574 | Machold et al. | Oct 1995 | A |
5458609 | Gordon et al. | Oct 1995 | A |
5462560 | Stevens | Oct 1995 | A |
5462561 | Voda | Oct 1995 | A |
5470338 | Whitefield et al. | Nov 1995 | A |
5474572 | Hayburst | Dec 1995 | A |
5476469 | Hathaway et al. | Dec 1995 | A |
5476470 | Fitzgibbons, Jr. | Dec 1995 | A |
5496332 | Sierra et al. | Mar 1996 | A |
5499991 | Garman et al. | Mar 1996 | A |
5501691 | Goldrath | Mar 1996 | A |
5507754 | Green et al. | Apr 1996 | A |
5507755 | Gresl et al. | Apr 1996 | A |
5514159 | Matula et al. | May 1996 | A |
5520609 | Moll et al. | May 1996 | A |
5520702 | Sauer et al. | May 1996 | A |
5522961 | Leonhardt | Jun 1996 | A |
5527321 | Hinchliffe | Jun 1996 | A |
5527322 | Klein et al. | Jun 1996 | A |
5527338 | Purdy | Jun 1996 | A |
5540658 | Evans et al. | Jul 1996 | A |
5540704 | Gordon et al. | Jul 1996 | A |
5545170 | Hart | Aug 1996 | A |
5549633 | Evans et al. | Aug 1996 | A |
5558642 | Schweich et al. | Sep 1996 | A |
5558644 | Boyd et al. | Sep 1996 | A |
RE35352 | Peters | Oct 1996 | E |
5562686 | Sauer et al. | Oct 1996 | A |
5562688 | Riza | Oct 1996 | A |
5565122 | Zinnbauer et al. | Oct 1996 | A |
5571090 | Sherts | Nov 1996 | A |
5573540 | Yoon | Nov 1996 | A |
5584835 | Greenfield | Dec 1996 | A |
5584861 | Swain et al. | Dec 1996 | A |
5591195 | Taheri et al. | Jan 1997 | A |
5593422 | Muijs Van de Moer et al. | Jan 1997 | A |
5599307 | Bacher et al. | Feb 1997 | A |
5603718 | Xu | Feb 1997 | A |
5613974 | Andreas et al. | Mar 1997 | A |
5613975 | Christy | Mar 1997 | A |
5626590 | Wilk | May 1997 | A |
5630833 | Katsaros et al. | May 1997 | A |
5632751 | Piraka | May 1997 | A |
5632752 | Buelna | May 1997 | A |
5634936 | Linden et al. | Jun 1997 | A |
5637097 | Yoon | Jun 1997 | A |
5643289 | Sauer et al. | Jul 1997 | A |
5645553 | Kolesa et al. | Jul 1997 | A |
5662663 | Shallman | Sep 1997 | A |
5669917 | Sauer et al. | Sep 1997 | A |
5669971 | Bok et al. | Sep 1997 | A |
5674198 | Leone | Oct 1997 | A |
5681296 | Ishida | Oct 1997 | A |
5681351 | Jamiolkowski et al. | Oct 1997 | A |
5688245 | Runge | Nov 1997 | A |
5690674 | Diaz | Nov 1997 | A |
5695468 | Lafontaine et al. | Dec 1997 | A |
5695504 | Gifford, III et al. | Dec 1997 | A |
5697905 | D'Ambrosio | Dec 1997 | A |
5700273 | Buelna et al. | Dec 1997 | A |
5700277 | Nash et al. | Dec 1997 | A |
5707379 | Fleenor et al. | Jan 1998 | A |
5709693 | Taylor | Jan 1998 | A |
5716329 | Dieter | Feb 1998 | A |
5720757 | Hathaway et al. | Feb 1998 | A |
5722983 | Van Der Weegen | Mar 1998 | A |
5728109 | Schulze et al. | Mar 1998 | A |
5738629 | Moll et al. | Apr 1998 | A |
5743852 | Johnson | Apr 1998 | A |
5746753 | Sullivan et al. | May 1998 | A |
5749883 | Halpern | May 1998 | A |
5759188 | Yoon | Jun 1998 | A |
5766183 | Sauer | Jun 1998 | A |
5766220 | Moenning | Jun 1998 | A |
5769870 | Salahieh et al. | Jun 1998 | A |
5779719 | Klein et al. | Jul 1998 | A |
5792152 | Klein et al. | Aug 1998 | A |
5792153 | Swain et al. | Aug 1998 | A |
5795289 | Wyttenbach | Aug 1998 | A |
5795325 | Valley et al. | Aug 1998 | A |
5797948 | Dunham | Aug 1998 | A |
5797960 | Stevens et al. | Aug 1998 | A |
5810757 | Sweezer et al. | Sep 1998 | A |
5810849 | Kontos | Sep 1998 | A |
5810850 | Hathaway et al. | Sep 1998 | A |
5817108 | Poncet | Oct 1998 | A |
5817110 | Kronner | Oct 1998 | A |
5820631 | Nobles | Oct 1998 | A |
5836955 | Buelna et al. | Nov 1998 | A |
5843100 | Meade | Dec 1998 | A |
5846251 | Hart | Dec 1998 | A |
5846253 | Buelna et al. | Dec 1998 | A |
5853399 | Sasaki | Dec 1998 | A |
5853422 | Huebsch et al. | Dec 1998 | A |
5855585 | Kontos | Jan 1999 | A |
5860990 | Nobles et al. | Jan 1999 | A |
5860991 | Klein et al. | Jan 1999 | A |
5860992 | Daniel et al. | Jan 1999 | A |
5860997 | Bonutti | Jan 1999 | A |
5861003 | Latson et al. | Jan 1999 | A |
5865729 | Meehan et al. | Feb 1999 | A |
5868708 | Hart et al. | Feb 1999 | A |
5868762 | Cragg et al. | Feb 1999 | A |
5871320 | Kovac | Feb 1999 | A |
5871537 | Holman et al. | Feb 1999 | A |
5876411 | Kontos | Mar 1999 | A |
5899921 | Caspari et al. | May 1999 | A |
5902311 | Andreas et al. | May 1999 | A |
5902321 | Caspari et al. | May 1999 | A |
5906577 | Beane et al. | May 1999 | A |
5908428 | Scirica et al. | Jun 1999 | A |
5919200 | Stambaugh et al. | Jul 1999 | A |
5919208 | Valenti | Jul 1999 | A |
5928192 | Maahs | Jul 1999 | A |
5931844 | Thompson et al. | Aug 1999 | A |
5935098 | Blaisdell et al. | Aug 1999 | A |
5935149 | Ek | Aug 1999 | A |
5944730 | Nobles et al. | Aug 1999 | A |
5951588 | Moenning | Sep 1999 | A |
5951590 | Goldfarb | Sep 1999 | A |
5954732 | Hart et al. | Sep 1999 | A |
5967970 | Cowan et al. | Oct 1999 | A |
5971983 | Lesh | Oct 1999 | A |
5972005 | Stalker et al. | Oct 1999 | A |
5980539 | Kontos | Nov 1999 | A |
5993466 | Yoon | Nov 1999 | A |
5997555 | Kontos | Dec 1999 | A |
6001109 | Kontos | Dec 1999 | A |
6004337 | Kieturakis et al. | Dec 1999 | A |
6010530 | Goicoechea | Jan 2000 | A |
6015428 | Pagedas | Jan 2000 | A |
6024747 | Kontos | Feb 2000 | A |
6033430 | Bonutti | Mar 2000 | A |
6036699 | Andreas et al. | Mar 2000 | A |
6059800 | Hart et al. | May 2000 | A |
6066160 | Colvin et al. | May 2000 | A |
6068648 | Cole et al. | May 2000 | A |
6071271 | Baker et al. | Jun 2000 | A |
6077277 | Mollenauer et al. | Jun 2000 | A |
6086608 | Ek et al. | Jul 2000 | A |
6099553 | Hart et al. | Aug 2000 | A |
6110185 | Barra et al. | Aug 2000 | A |
6113580 | Dolisi | Sep 2000 | A |
6117144 | Nobles et al. | Sep 2000 | A |
6126677 | Ganaja et al. | Oct 2000 | A |
6136010 | Modesitt et al. | Oct 2000 | A |
6143015 | Nobles | Nov 2000 | A |
6159234 | Bonutti et al. | Dec 2000 | A |
6171319 | Nobles et al. | Jan 2001 | B1 |
6174324 | Egan et al. | Jan 2001 | B1 |
6187026 | Devlin et al. | Feb 2001 | B1 |
6190396 | Whitin et al. | Feb 2001 | B1 |
6200329 | Fung et al. | Mar 2001 | B1 |
6203565 | Bonutti et al. | Mar 2001 | B1 |
6210429 | Vardi et al. | Apr 2001 | B1 |
6217591 | Egan et al. | Apr 2001 | B1 |
6241699 | Suresh et al. | Jun 2001 | B1 |
6245079 | Nobles et al. | Jun 2001 | B1 |
6245080 | Levinson | Jun 2001 | B1 |
6248121 | Nobles | Jun 2001 | B1 |
6280460 | Bolduc et al. | Aug 2001 | B1 |
6290674 | Roue et al. | Sep 2001 | B1 |
6332889 | Sancoff et al. | Dec 2001 | B1 |
6348059 | Hathaway et al. | Feb 2002 | B1 |
6352543 | Cole et al. | Mar 2002 | B1 |
6383208 | Sancoff et al. | May 2002 | B1 |
6395015 | Borst et al. | May 2002 | B1 |
6409739 | Nobles et al. | Jun 2002 | B1 |
6432115 | Mollenauer et al. | Aug 2002 | B1 |
6468293 | Bonutti et al. | Oct 2002 | B2 |
6508777 | Macoviak et al. | Jan 2003 | B1 |
6527785 | Sancoff et al. | Mar 2003 | B2 |
6533795 | Tran et al. | Mar 2003 | B1 |
6537299 | Hogendijk et al. | Mar 2003 | B1 |
6547725 | Paolitto et al. | Apr 2003 | B1 |
6547760 | Samson et al. | Apr 2003 | B1 |
6551331 | Nobles et al. | Apr 2003 | B2 |
6562052 | Nobles et al. | May 2003 | B2 |
6585689 | Macoviak et al. | Jul 2003 | B1 |
6663643 | Field et al. | Dec 2003 | B2 |
6679895 | Sancoff et al. | Jan 2004 | B1 |
6682540 | Sancoff et al. | Jan 2004 | B1 |
6716243 | Colvin et al. | Apr 2004 | B1 |
6726651 | Robinson et al. | Apr 2004 | B1 |
6733509 | Nobles et al. | May 2004 | B2 |
6767352 | Field et al. | Jul 2004 | B2 |
6770076 | Foerster | Aug 2004 | B2 |
6770084 | Bain et al. | Aug 2004 | B1 |
6786913 | Sancoff | Sep 2004 | B1 |
6978176 | Lattouf | Jan 2005 | B2 |
6855157 | Foerster et al. | Feb 2005 | B2 |
6893448 | O'Quinn et al. | May 2005 | B2 |
6911034 | Nobles et al. | Jun 2005 | B2 |
6913600 | Valley et al. | Jul 2005 | B2 |
6936057 | Nobles | Aug 2005 | B1 |
7004952 | Nobles et al. | Feb 2006 | B2 |
7083630 | DeVries et al. | Aug 2006 | B2 |
7083638 | Foerster | Aug 2006 | B2 |
7090686 | Nobles et al. | Aug 2006 | B2 |
7090690 | Foerster et al. | Aug 2006 | B2 |
7118583 | O'Quinn et al. | Oct 2006 | B2 |
7160309 | Voss | Jan 2007 | B2 |
7172595 | Goble | Feb 2007 | B1 |
7220266 | Gambale | May 2007 | B2 |
7232446 | Farris | Jun 2007 | B1 |
7235086 | Sauer et al. | Jun 2007 | B2 |
7326221 | Sakamoto et al. | Feb 2008 | B2 |
7329272 | Burkhart et al. | Feb 2008 | B2 |
7338502 | Rosenblatt | Mar 2008 | B2 |
7381210 | Zarbatany et al. | Jun 2008 | B2 |
7399304 | Gambale et al. | Jul 2008 | B2 |
7435251 | Green | Oct 2008 | B2 |
7449024 | Stafford | Nov 2008 | B2 |
7491217 | Hendren | Feb 2009 | B1 |
7601161 | Nobles et al. | Oct 2009 | B1 |
7628797 | Tieu et al. | Dec 2009 | B2 |
7635386 | Gammie | Dec 2009 | B1 |
7637926 | Foerster et al. | Dec 2009 | B2 |
7722629 | Chambers | May 2010 | B2 |
7803167 | Nobles et al. | Sep 2010 | B2 |
7842051 | Dana et al. | Nov 2010 | B2 |
7846181 | Schwartz et al. | Dec 2010 | B2 |
7879072 | Bonutti et al. | Feb 2011 | B2 |
7905892 | Nobles et al. | Mar 2011 | B2 |
7918867 | Dana et al. | Apr 2011 | B2 |
7931641 | Chang et al. | Apr 2011 | B2 |
7993368 | Gambale et al. | Aug 2011 | B2 |
8075573 | Gambale et al. | Dec 2011 | B2 |
8083754 | Pantages et al. | Dec 2011 | B2 |
8105355 | Page et al. | Jan 2012 | B2 |
8197497 | Nobles et al. | Jun 2012 | B2 |
8202281 | Voss | Jun 2012 | B2 |
8246636 | Nobles et al. | Aug 2012 | B2 |
8252005 | Findlay, III et al. | Aug 2012 | B2 |
8282659 | Oren et al. | Oct 2012 | B2 |
8287556 | Gilkey et al. | Oct 2012 | B2 |
8298291 | Ewers et al. | Oct 2012 | B2 |
8303622 | Alkhatib | Nov 2012 | B2 |
8348962 | Nobles et al. | Jan 2013 | B2 |
8372089 | Nobles et al. | Feb 2013 | B2 |
8398676 | Roorda et al. | Mar 2013 | B2 |
8430893 | Ma | Apr 2013 | B2 |
8469975 | Nobles et al. | Jun 2013 | B2 |
8496676 | Nobles et al. | Jul 2013 | B2 |
8500776 | Ebner | Aug 2013 | B2 |
8540736 | Gaynor | Sep 2013 | B2 |
8568427 | Nobles et al. | Oct 2013 | B2 |
8623036 | Harrison et al. | Jan 2014 | B2 |
8728105 | Aguirre | May 2014 | B2 |
8758370 | Shikhman et al. | Jun 2014 | B2 |
8771296 | Nobles et al. | Jul 2014 | B2 |
9131938 | Nobles | Sep 2015 | B2 |
9326764 | Nobles et al. | May 2016 | B2 |
9332976 | Yribarren | May 2016 | B2 |
9364238 | Bakos et al. | Jun 2016 | B2 |
9398907 | Nobles et al. | Jul 2016 | B2 |
9402605 | Viola | Aug 2016 | B2 |
9649106 | Nobles et al. | May 2017 | B2 |
9706988 | Nobles et al. | Jul 2017 | B2 |
10285687 | Nobles et al. | May 2019 | B2 |
10420545 | Nobles et al. | Sep 2019 | B2 |
10512458 | Nobles | Dec 2019 | B2 |
20010031973 | Nobles et al. | Oct 2001 | A1 |
20020013601 | Nobles et al. | Jan 2002 | A1 |
20020045908 | Nobles et al. | Apr 2002 | A1 |
20020049453 | Nobles et al. | Apr 2002 | A1 |
20020096183 | Stevens et al. | Jul 2002 | A1 |
20020128598 | Nobles | Sep 2002 | A1 |
20020169475 | Gainor et al. | Nov 2002 | A1 |
20020183787 | Wahr et al. | Dec 2002 | A1 |
20030078601 | Skikhman et al. | Apr 2003 | A1 |
20030114863 | Field et al. | Jun 2003 | A1 |
20030144673 | Onuki et al. | Jul 2003 | A1 |
20030204205 | Sauer et al. | Oct 2003 | A1 |
20030208209 | Gambale et al. | Nov 2003 | A1 |
20030220667 | van der Burg et al. | Nov 2003 | A1 |
20040015177 | Chu | Jan 2004 | A1 |
20040044365 | Bachman | Mar 2004 | A1 |
20040059351 | Eigler et al. | Mar 2004 | A1 |
20040102797 | Golden et al. | May 2004 | A1 |
20040153116 | Nobles | Aug 2004 | A1 |
20040236356 | Rioux et al. | Nov 2004 | A1 |
20040260298 | Kaiseer et al. | Dec 2004 | A1 |
20050033361 | Galdonik et al. | Feb 2005 | A1 |
20050070923 | McIntosh | Mar 2005 | A1 |
20050149066 | Stafford | Jul 2005 | A1 |
20050187575 | Hallbeck et al. | Aug 2005 | A1 |
20050203564 | Nobles | Sep 2005 | A1 |
20050228407 | Nobles et al. | Oct 2005 | A1 |
20050261708 | Pasricha et al. | Nov 2005 | A1 |
20050261710 | Sakamoto et al. | Nov 2005 | A1 |
20050277986 | Foerster et al. | Dec 2005 | A1 |
20060052813 | Nobles | Mar 2006 | A1 |
20060064113 | Nakao | Mar 2006 | A1 |
20060064115 | Allen et al. | Mar 2006 | A1 |
20060069397 | Nobles et al. | Mar 2006 | A1 |
20060074484 | Huber | Apr 2006 | A1 |
20060095052 | Chambers | May 2006 | A1 |
20060195120 | Nobles et al. | Aug 2006 | A1 |
20060248691 | Rosemann | Nov 2006 | A1 |
20060265010 | Paraschac et al. | Nov 2006 | A1 |
20060282088 | Ryan | Dec 2006 | A1 |
20060282094 | Stokes et al. | Dec 2006 | A1 |
20060282102 | Nobles et al. | Dec 2006 | A1 |
20060287657 | Bachman | Dec 2006 | A1 |
20070005079 | Zarbatany et al. | Jan 2007 | A1 |
20070010829 | Nobles et al. | Jan 2007 | A1 |
20070043385 | Nobles et al. | Feb 2007 | A1 |
20070060930 | Hamilton et al. | Mar 2007 | A1 |
20070106310 | Goldin et al. | May 2007 | A1 |
20070118151 | Davidson | May 2007 | A1 |
20070142846 | Catanese, III et al. | Jun 2007 | A1 |
20070213757 | Boraiah | Sep 2007 | A1 |
20070219630 | Chu | Sep 2007 | A1 |
20070276413 | Nobles | Nov 2007 | A1 |
20070276414 | Nobles | Nov 2007 | A1 |
20080033459 | Shafi et al. | Feb 2008 | A1 |
20080065145 | Carpenter | Mar 2008 | A1 |
20080077162 | Domingo | Mar 2008 | A1 |
20080114384 | Chang et al. | May 2008 | A1 |
20080188873 | Speziali | Aug 2008 | A1 |
20080228201 | Zarbatany | Sep 2008 | A1 |
20080269786 | Nobles et al. | Oct 2008 | A1 |
20080269788 | Phillips | Oct 2008 | A1 |
20090036906 | Stafford | Feb 2009 | A1 |
20090048615 | McIntosh | Feb 2009 | A1 |
20090099410 | De Marchena | Apr 2009 | A1 |
20090105729 | Zentgraf | Apr 2009 | A1 |
20090105751 | Zentgraf | Apr 2009 | A1 |
20090118726 | Auth et al. | May 2009 | A1 |
20090125042 | Mouw | May 2009 | A1 |
20090287183 | Bishop et al. | Nov 2009 | A1 |
20090299409 | Coe et al. | Dec 2009 | A1 |
20090312772 | Chu | Dec 2009 | A1 |
20090312783 | Whayne et al. | Dec 2009 | A1 |
20090312789 | Kassab et al. | Dec 2009 | A1 |
20100016870 | Campbell | Jan 2010 | A1 |
20100030242 | Nobles et al. | Feb 2010 | A1 |
20100042147 | Janovsky et al. | Feb 2010 | A1 |
20100063586 | Hasenkam et al. | Mar 2010 | A1 |
20100087838 | Nobles et al. | Apr 2010 | A1 |
20100094314 | Hernlund et al. | Apr 2010 | A1 |
20100100167 | Bortlein et al. | Apr 2010 | A1 |
20100179585 | Carpenter et al. | Jul 2010 | A1 |
20100210899 | Schankereli | Aug 2010 | A1 |
20110190793 | Nobles et al. | Aug 2011 | A1 |
20110202077 | Chin et al. | Aug 2011 | A1 |
20110224720 | Kassab et al. | Sep 2011 | A1 |
20110251627 | Hamilton et al. | Oct 2011 | A1 |
20120016384 | Wilke et al. | Jan 2012 | A1 |
20120035628 | Aguirre et al. | Feb 2012 | A1 |
20120059398 | Pate et al. | Mar 2012 | A1 |
20120143222 | Dravis et al. | Jun 2012 | A1 |
20120165838 | Kobylewski et al. | Jun 2012 | A1 |
20120296373 | Roorda et al. | Nov 2012 | A1 |
20130103056 | Chu | Apr 2013 | A1 |
20130261645 | Nobles et al. | Oct 2013 | A1 |
20130324800 | Cahill | Dec 2013 | A1 |
20140309670 | Bakos et al. | Oct 2014 | A1 |
20140379006 | Sutherland et al. | Dec 2014 | A1 |
20150374351 | Nobles et al. | Sep 2015 | A1 |
20150359531 | Sauer | Dec 2015 | A1 |
20160007998 | Nobles et al. | Jan 2016 | A1 |
20160151064 | Nobles | Jun 2016 | A1 |
20160302787 | Nobles | Oct 2016 | A1 |
20170035425 | Fegelman et al. | Feb 2017 | A1 |
20170042534 | Nobles | Feb 2017 | A1 |
20170049451 | Hausen | Feb 2017 | A1 |
20170296168 | Nobles et al. | Apr 2017 | A1 |
20170128059 | Coe et al. | May 2017 | A1 |
20170245853 | Nobles | Aug 2017 | A1 |
20170303915 | Nobles | Oct 2017 | A1 |
20190239880 | Nobles | Aug 2019 | A1 |
Number | Date | Country |
---|---|---|
195341 | Feb 2005 | CN |
101495049 | Dec 2010 | CN |
101257852 | Aug 2011 | CN |
29 01 701 | Jul 1980 | DE |
0 241 038 | Oct 1987 | EP |
0 544 485 | Jun 1993 | EP |
0839 550 | May 1998 | EP |
0 894 475 | Feb 1999 | EP |
0 983 027 | Dec 2005 | EP |
1 852 071 | Nov 2007 | EP |
1 987 779 | Nov 2008 | EP |
2 572 649 | Mar 2013 | EP |
2 701 401 | Aug 1994 | FR |
A 9507398 | Jul 1997 | JP |
09-266910 | Oct 1997 | JP |
H10-43192 | Feb 1998 | JP |
2001-524864 | Dec 2001 | JP |
2003-139113 | May 2003 | JP |
2003-225241 | Aug 2003 | JP |
2007-503870 | Mar 2007 | JP |
2008-514305 | May 2008 | JP |
2008-541857 | Nov 2008 | JP |
2008-546454 | Dec 2008 | JP |
2010-522625 | Jul 2010 | JP |
2011-067251 | Apr 2011 | JP |
2010 125954 | Jan 2012 | RU |
1560129 | Apr 1990 | SU |
WO 9205828 | Apr 1992 | WO |
WO 9301750 | Feb 1993 | WO |
WO 9307800 | Apr 1993 | WO |
WO 9512429 | May 1995 | WO |
WO 9517127 | Jun 1995 | WO |
WO 9525468 | Sep 1995 | WO |
WO 9525470 | Sep 1995 | WO |
WO 9603083 | Feb 1996 | WO |
WO 9629012 | Sep 1996 | WO |
WO 9640347 | Dec 1996 | WO |
WO 9703613 | Feb 1997 | WO |
WO 9747261 | Feb 1997 | WO |
WO 9707745 | Mar 1997 | WO |
WO 9712540 | Apr 1997 | WO |
WO 9720505 | Jun 1997 | WO |
WO 9724975 | Jul 1997 | WO |
WO 9727807 | Aug 1997 | WO |
WO 9740738 | Nov 1997 | WO |
WO 9812970 | Apr 1998 | WO |
WO 9852476 | Nov 1998 | WO |
WO 9940851 | Aug 1999 | WO |
WO 9942160 | Aug 1999 | WO |
WO 9945848 | Sep 1999 | WO |
WO 00002489 | Jan 2000 | WO |
WO 01001868 | Jan 2001 | WO |
WO 0195809 | Dec 2001 | WO |
WO 02024078 | Mar 2002 | WO |
WO 04012789 | Feb 2004 | WO |
WO 04096013 | Nov 2004 | WO |
WO 06127636 | Nov 2006 | WO |
WO 07001936 | Jan 2007 | WO |
WO 07016261 | Feb 2007 | WO |
WO 09081396 | Jul 2009 | WO |
WO 11137224 | Nov 2011 | WO |
WO 2011156782 | Dec 2011 | WO |
WO 2012012336 | Jan 2012 | WO |
WO 13027209 | Feb 2013 | WO |
WO 2013142487 | Sep 2013 | WO |
WO 17180092 | Oct 2017 | WO |
WO 2019035095 | Feb 2019 | WO |
WO 2019051379 | Mar 2019 | WO |
WO 2019055433 | Mar 2019 | WO |
Entry |
---|
Extended Search Report from corresponding European Patent Application No. 16898790.7, dated Sep. 6, 2019, in 5 pages. |
Advances in Vascular Surgery, by John S. Najarian, M.D. and John P. Delaney, M.D., copyright 1983 by Year Book Publishers, Inc. at pp. 94,95,96, and 224. |
Cardio Medical Solutions, Inc. brochure titled: “Baladi Inverter for Clamp less Surgery”—Undated. |
Clinical Evaluation of Arteriovenous Fistulas as an Adjunct to Lower Extremity Arterial Reconstructions, by Herbert Dardick, M.D., in Current Critical Problems in Vascular Surgery, copyright 1989 by Quality Medical Publishing Inc., at p. 383. |
Current Therapy in Vascular Surgery, 2nd edition, by Calvin B. Ernst, M.D. and James C. Stanley, M.D., copyright 1991 by B.C. Decker, Inc., at pp. A and 140. |
Eskuri, A., The Design of a Minimally Invasive Vascular Suturing Device, Thesis submitted to Rose-Hulman Institute of Technology, Nov. 1999. |
Manual of Vascular Surgery, vol. 2, Edwin J. Wylie, Ronald J. Stoney, William K. Ehrenfeld and David J. Effeney (Richard H. Egdahl ed.), copyright 1986 by Springer-Verlag New York Inc., at p. 41. |
Nursing the Open-Heart Surgery Patient, By Mary Jo Aspinall, R.N., M.N., copyright 1973 by McGraw Hill, Inc., at pp. 216 and 231. |
Operative Arterial Surgery, by P.R. Bell, M.D., and W Barrie, M.D., copyright 1981 by Bell, Barrie, and Leicester Royal Infirmary, printed byJohn Wright &Sons, pp. 16, 17, 104, 105, 112, and 113. |
Sinus Venous Type of Atrial Septal Defect with Partial Anomalous Pulmonary Venous Return, by Francis Robicsek, MD., et ai, in Journal of Thoracic and Cardiovascular Surgery, Oct. 1979, vol. 78, No. 4, at pp. 559-562. |
Sutura, Inc. v. Abbott Laboratories, et al. Civil Action No. 2:06CV-536 (TJW), Sworn Declaration of Dr. John R. Crew, M.D., Dated Sep. 4, 2001. |
Techniques in Vascular Surgery, by Denton A. Cooley, MD. and Don C. Wukasch, MD., copyright 1979 by WB. Saunders Co., at pp. 38,57,86,134,156, and 184. |
The problem: Closing wounds in deep areas during laparoscopic operations The solution: REMA Medizintechnik GmbH (no date). |
Vascular Access, Principles and Practice, 3rd edition, by Samuel Eric Wilson, MD., copyright 1996, 1988, 1980 by Mosby-Year Book, Inc., pp. 89 and 159. |
Vascular and Endovascular Surgery, by Jonathan D. Beard and Peter Gainers, copyright 1998 by W.B. Saunders Co., Ltd, p. 414. |
Vascular Surgery, 3rd edition, vol. 1, by Robert B. Rutherford, MD., copyright 1989, 1984, 1976 by W.B.SaundersCo., at pp. 347, 348, 354, 594, 607, 622, 675, 677, 680, 698, 700, 721, 727, 735, and 829. |
Vascular Surgery, 4th edition by Robert B. Rutherford, MD., copyright 1995, 1989, 1976, by W.B. Saunders Co., vol. 1, at pp. 400-404, 661, and A. |
Vascular Surgery, 4th edition, by Robert B. Rutherford, M.D., copyright 1995, 1989, 1984, 1976 by W.B. Saunders Co., vol. 2, at pp. 1318, 1363, 1426, 1564, and 1580. |
Vascular Surgery, by Robert B. Rutherford, M.D. copyright1977 by WB. Saunders Co., at pp. 334 and 817. |
International Preliminary Report on Patentability, dated Oct. 16, 2018 for International Application No. PCT/US2016/026965, in 9 pages. |
International Search Report and Written Opinion in corresponding International Patent Application No. PCT/US2016/026965, dated Jul. 7, 2016, in 11 pages. |
U.S. Appl. No. 16/576,253, filed Sep. 19, 2019, Nobles et al. |
European Extended Search Report for European Applicaton No. 16898790.7, dated Sep. 6, 2019. |
Number | Date | Country | |
---|---|---|---|
20190029672 A1 | Jan 2019 | US |