Embodiments of the present invention relate to suturing devices and methods. Some embodiments relate to suturing devices and methods for suturing an anatomic structure, such as a heart.
Health practitioners frequently use sutures to close various openings such as cuts, punctures, and incisions in various places in the human body. Generally, sutures are convenient to use and function properly to hold openings in biological tissue closed thereby aiding in blood clotting, healing, and prevention of scarring.
There are some circumstances under which it is not feasible to use conventional sutures and suturing methods to close an opening. Additionally, there are some circumstances under which the use of conventional sutures and suturing methods require invasive procedures that subject a patient to risk of infection, delays in recovery, increases in pain, and other complications.
Embodiments of suturing devices used to suture closed openings into a biological structure while maintaining or substantially maintaining haemostasis are described herein. The suturing devices and methods can also be used to place sutures prior to a surgical procedure and to prepare access for the procedure while maintaining or substantially maintaining haemostasis. The placed sutures can then be used to tighten an opening while any devices or tools are withdrawn, closing the opening while the final device or tool leaves the opening such that the opening is never without a device or tool inside it during the course of the procedure.
In the embodiments described herein, the disclosed devices are used to place sutures to close an opening into a heart, although they are not limited to applications within a heart. The heart can be accessed through a sternotomy or limited thoracotomy, or alternatively the device can pass through a trocar or other element into the thoracic cavity and then be led toward the opening in the heart, typically by following a guide wire. In some embodiments, the opening is a puncture made at or near the apex of the heart. The puncture can also be made at other areas of the heart. In some embodiments, suturing devices and methods disclosed herein can be used to minimize the collection of fluid between the heart and the pericardial sac that surrounds the heart.
In some embodiments, a suturing system can include a suturing device having an elongate body with a proximal end and a distal end, and a plurality of arms near the distal end. Each arm can be configured to move between a first position in which the arm is retracted within the elongate body and a second position in which the arm has a free end extending away from the elongate body. Each arm can have at least one suture mount at the free end. The device can also have a plurality of needles, each needle configured to move between a retracted position in which the needle is within the elongate body to a deployed position in which the distal point of the needle extends out of the elongate body and into a corresponding suture mount.
The system can also include a first sheath adapted to surround at least a portion of the elongate body, a second sheath adapted to surround at least a portion of the first sheath, and a plurality of suture portions. Each suture portion can have a suture end releasably retained within a suture mount of a corresponding arm, and each suture portion can extend from a corresponding suture end, between the first sheath and the second sheath, to a position proximal to at least the second sheath.
Methods of use are also described. In some embodiments, a suturing system can be delivered through a heart wall, and the suturing system can include a suturing device with an elongate body having a proximal end and a distal end, the suturing device also having a distal section that extends through the heart wall and into the heart once the suturing system is delivered. The suturing device can also have a plurality of arms positioned outside of the heart and a plurality of needles positioned inside the heart once the suturing system is delivered. The suturing system can also include a first sheath positioned over the suturing device, a distal end of the first sheath being proximal to the plurality of arms once the suturing system is delivered, and a second sheath positioned over the first sheath.
The plurality of arms can be extended from the elongate body of the suturing device, each of the arms carrying a suture portion having a suture end releasably retained in a respective arm, each suture portion extending from its respective arm proximally between the first sheath and the second sheath to a location outside of the patient. The plurality of arms can be positioned against the outside surface of the heart, and the plurality of needles can be advanced from the elongate body through the heart wall, each needle aligned with a respective arm and engaging a respective suture end carried by the respective arm. The plurality of needles can be retracted through the heart wall to draw the respective suture ends through the heart wall and the arms can be retracted into the elongate body of the suturing device while maintaining a distal section of the elongate body within the heart. The first sheath positioned around the elongate body can be advanced into the opening in the heart wall and the elongate body can be withdrawn from the heart wall while leaving the first sheath within the heart wall, the withdrawing of the elongate body drawing the suture ends engaged by the needles through a lumen of the first sheath to a location outside of the patient.
In some embodiments, a suturing device for suturing an opening in a heart wall can include an elongate body with a proximal end and a distal end, a first section at the distal end, a second section proximal to the first section, and a distally facing body surface between the first and second sections. The second section can have a larger outer dimension than the first section and the distally facing body surface can be configured to press against an external surface of a heart when the first section is advanced into the opening in the heart. The device can also include a plurality of arms near the distal end in the second section, each arm configured to move between a first position wherein the arm is retracted within the elongate body, and a second position wherein the arm has a free end extending away from the elongate body. Each arm has at least one suture mount at the free end and configured to releasably retain a suture portion. The device can also include a plurality of needles, each needle configured to move between a retracted position in which the needle is within the elongate body to a deployed position in which a distal point of the needle extends out of the elongate body and into a suture mount.
In some embodiments, an elongate device can be delivered through a heart wall such that a distal section of the device is positioned within the heart. Fluid exiting the heart along the distal section of the elongate device and through the heart wall can be removed. The removal can include the step of causing the fluid to flow through at least one opening positioned on the elongate device on an outside of the heart to remove fluid that may accumulate between the outside of the heart and the pericardial sac.
In some embodiments, a suturing device can include an elongate body with a proximal end and a distal end, the distal end of the elongate body configured to be delivered through a heart wall into a heart. The device can also include a plurality of arms near the distal end, each arm configured to move between a first position in which the arm is retracted within the elongate body and a second position in which the arm has a free end extending away from the elongate body. Each arm can have at least one suture mount at the free end and configured to releasably retain a suture portion. Each arm can also have a proximal side configured to engage the pericardial sac as the arm moves from the first position to the second position, and each arm in its second position can be configured to be positioned along an outer surface of the heart. The device can also include a plurality of needles, each needle configured to move between a retracted position in which the needle is within the elongate body to a deployed position in which a distal point of the needle extends out of the elongate body and into a suture mount, passing through the heart wall when the arms are positioned along an outer surface of the heart.
In some embodiments, a suturing device having an elongate body can be delivered through a heart wall such that a distal section of the device is positioned within the heart. The device can have a plurality of arms and a plurality of needles, and each arm can be moved from a first position wherein the arm is retracted within the elongate body to a second position wherein the arm has a free end extending away from the elongate body. The arms can engage the pericardial sac and move it away from an outer surface of the heart as they move to their second positions. Each arm can have at least one suture mount at the free end releasably retaining a suture portion, and the plurality of needles can be moved from a retracted position in which needles are within the elongate body to a deployed position in which distal points of the needles extend out of the elongate body, through the heart wall and into a suture mount of a corresponding arm.
In some embodiments, an opening in a heart can be closed by inserting four sutures through tissue of the heart wall such that each suture has an end that runs through the opening in the heart and an end that runs outside of the heart. The four sutures can include a first pair and a second pair of sutures, and the sutures of the first pair can be positioned opposite each other with respect to the opening in the heart and the sutures of the second pair can be positioned opposite each other with respect to the opening in the heart. A first pledget can be attached to a first end of a first suture and a second pledget can be attached to a first end of a second suture, where the first suture and a third suture make up the first pair, and the second suture and a fourth suture make up the second pair. The ends of the first pair that run through the opening of the heart can be secured together, and the ends of the second pair that run through the opening of the heart can be secured together. At least one of the ends that run outside the heart of each pair can then be pulled.
The above-mentioned and other features disclosed herein are described below with reference to the drawings of specific embodiments. The illustrated embodiments are intended for illustration, but not limitation. The drawings contain the following figures:
Embodiments of suturing devices used to suture closed openings into a biological structure while maintaining or substantially maintaining haemostasis are described herein. The suturing devices and methods can also be used to place sutures prior to a surgical procedure and to prepare access for the procedure while maintaining or substantially maintaining haemostasis. The placed sutures can then be used to tighten an opening while any devices or tools are withdrawn, closing the opening while the final device or tool leaves the opening such that the opening is never without a device or tool inside it during the course of the procedure.
In the embodiments described herein, the disclosed devices are used to place sutures to close an opening into a heart, although they are not limited to applications within a heart. In some embodiments, the opening is a puncture made at or near the apex of the heart. The puncture can also be made at other areas of the heart. The heart can be accessed through a sternotomy or limited thoracotomy, or alternatively the device can pass through a trocar or other element into the thoracic cavity and then be led toward the puncture in the heart, typically by following a guide wire.
A heart is surrounded by a pericardial sac (or pericardium), and in order to puncture into the heart the pericardium must also be punctured or cut and moved out of the way. Accessing the heart in this manner presents a risk that blood may leak through the opening and collect between the pericardium and the heart wall. This blood can put pressure against the heart and in some cases can cause a cardiac tamponade. In some embodiments described herein, the device can be used to limit the risk of blood collecting between the pericardium and the heart wall. This can be achieved by creating a space outside of the heart where blood can collect without running between the pericardium and the heart, and by creating a flow path from the space and into the device. In some embodiments, a negative pressure can be used to draw blood from the space and into the device.
In some embodiments described herein, the device can be used to limit the risk of blood collecting between the pericardium and the heart wall by suturing the opening closed with sutures that pass through the heart wall but not through the pericardium. The pericardium can thereby remain loose around the heart wall, blood can more easily drain out, and the pericardium can be sutured closed after blood has drained out.
In some embodiments, the suturing devices can be used to close or reduce a variety of other tissue openings, lumens, hollow organs or natural or surgically created passageways in the body. In some embodiments, the suturing devices can be used to suture prosthetics, synthetic materials, or implantable devices in the body. For example, the devices can be used to suture a pledget within the body.
Further details of suturing devices and methods that may be used to suture an opening in a heart can be found in U.S. Patent Publication No. 2011/0190793 A1, published Aug. 4, 2011, which is hereby incorporated by reference in its entirety. Features and procedures described in the aforementioned publication can be incorporated into the embodiments described herein.
The device can comprise an elongate body 3 which can include a plurality of suture arms 20. The suture arms 20 can move from a retracted position, as illustrated, in which the suture arms are at least partially within the elongate body 3, to an extended position, described and illustrated below in which the suture arms extend outward from the elongate body. The suture arms can also be positioned at varying angles from each other around the circumference of the elongate body. The illustrated embodiment has four suture arms 20 spaced 90 degrees apart. In some embodiments, there may be more suture arms spaced varying degrees apart. In some embodiments, there may be just one suture arm, which can be rotated about an opening in the heart to place multiple sutures around the opening. For purposes of closing the opening, it can be desirable to have an even number of suture arms, such as 2, 4, 6, or 8, each suture arm part of a pair with another suture arm spaced 180 degrees apart around the circumference of the elongate body. In some embodiments, the device can also have an odd number of suture arms. If just a single suture arm is used to position multiple sutures around the opening, the sutures can be positioned in pairs spaced 180 degrees apart around the opening.
The suture arms 20 can comprise one or more suture mounts or clasps 22 at a distal end. The suture clasps 22 can be adapted to releasably retain a suture portion 30. In some embodiments, the suture clasps can releasably retain a suture portion 30 while the suture arms 20 are in the retracted position and in the extended position. In some embodiments, as illustrated, the suture clasps may not retain a suture portion until the suture arms move toward the extended position. In some embodiments, a suture end may be retained in the suture clasps. In some embodiments, the suture clasps may retain a portion of suture that is not the suture end.
When the device is assembled, it can be pre-loaded with a first sheath 4 (for example an 18 french sheath) that surrounds at least a portion of the elongate body and a second sheath 5 surrounding at least a portion of the first sheath 4. In some embodiments, as illustrated, a distal end of the first sheath 4 can extend to a position just proximal to the suture arms, thereby allowing the suture arms to move into the extended position or into the retracted position. The suture portions 30 can run outside of the first sheath 4 and through the second sheath 5 to a position proximal to at least the second sheath 5. The second sheath can help confine the suture portions such that they do not get tangled or otherwise interfere with a procedure, described below. In some embodiments, the second sheath 5 is shorter than first sheath 4. In some embodiments, the second sheath 5 can be a peel-away sheath that can be removed from around the first sheath and around the suturing device.
The device can also include suture catch mechanisms (referred to herein as needles), described below, that can retrieve sections of suture from the suture clasps 22. In some embodiments, the device can include one or more needle exit channels 26, from which the needles can exit an interior of the elongate body 3 in order to reach the suture clasps 22. In some embodiments, there can be an equal number of needle exit channels 26 as there are suture arms 20, and the needle exit channels can be configured to align with a corresponding suture arm.
As illustrated, the suture arms 20 can rotate about a proximal end of the suture arm. In some embodiments, the suture arms can slide or move in other ways from the retracted to the extended position, or from the extended to the retracted position. In the illustrated embodiment, as the suture arms 20 rotate from the extended to the retracted position, the suture clasps 22 will move toward a distal end of the suturing device. In some embodiments, the suture arms can be configured such that the suture clasp moves distally as the arms rotate from the retracted to the extended position. In some embodiments, the suture arms can rotate about a distal end of the suture arm.
In some embodiments, as illustrated in
With continued reference to
Returning to
The needle drive tube 82 can move the needles toward or away from the suture arms 20. As the drive tube moves the needles toward the suture arms 20 the needles will eventually reach the needle exit channels 26 (visible in
In some embodiments, the suture arms can each have a longitudinal axis offset from the longitudinal axis of the distal assembly. In some embodiments, the offset for the suture arms can be the same as the offset for the needles, and the plane formed by a needle and corresponding suture arm can be parallel to and offset from the longitudinal axis of the distal assembly. In some embodiments, the needle exit channels can be arranged as in
In some embodiments, the needles 24 can attach to a mounting plate 87 positioned around a central shaft 80 of the distal assembly. The mounting plate can have one or more cutouts 89. In some embodiments, each needle can have a notch, as described above, and the needles can be positioned such that a notch interfaces with a cutout 89. This can at least partially lock the needles in place, allowing relative movement between each needle and the mounting plate only along the length of the cutout in which the needle is positioned. In some embodiments, a retaining ring or collar 84 can be positioned around the plate to lock the needles into position within the cutouts. In some embodiments, cutouts can be sized to substantially prevent any needle movement.
In some embodiments, needles 24 can have different configurations that can help prevent prolapse or buckling. For example, as illustrated in
Methods of Use
The suturing device can have a guide wire lumen, not illustrated, that can allow the suturing device to follow a guide wire 6 into a position within the heart. In a typical procedure, a hollow needle (delivered, for example, through a trocar into the thoracic cavity) can be used to puncture an opening at or near the apex of the heart and to feed a guide wire through the opening and into the heart. The suturing device can then follow the guide wire into the opening and into the heart. The suturing device can have a tapered end at the distal end of the elongate body 3, as illustrated in
With the suture arms in the extended position, the device can be further advanced into the heart until the suture arms press against tissue of the heart, as illustrated in
Once the needles have fired and drawn sutures through tissue of the heart, the device can be withdrawn slightly from the heart in order to allow the suture arms to return to a retracted position, as illustrated in
In
In
Suture ends that pass through the first sheath 4 can be secured together with a knot or other device. Further details regarding a device for joining sutures are provided in U.S. Patent Application Publication No. 2011/0190793, published on Aug. 4, 2011, which is hereby incorporated by reference herein in its entirety. In some embodiments, suture ends that pass through the first sheath 4 can be secured together in pairs, each pair having suture ends that had been releasably attached to arms 20 spaced 180 degrees about the circumference of the elongate body 3 of the device 1. By then pulling on one or more of the remaining free suture ends, the joined suture 30 can be pulled through the first sheath 4 and into the heart, as illustrated in
In some embodiments, the point where a pair of suture ends has been joined together can be passed through the tissue of the heart and outside of the heart by pulling on one of the remaining free suture ends. In some embodiments, prior to joining the two suture ends that pass through the first sheath, a pledget can be slidably attached to a suture end, such as by threading a suture end through a hole in the pledget. After the two suture ends that pass through the first sheath have been secured together, the joined suture can be pulled through the tissue of the heart by one of the remaining free ends until the pledget contacts an inner surface of the heart wall, where it may remain. In some embodiments, prior to or after joining the two suture ends within the sheath, a pledget can be attached to a free suture end that passes outside of the first sheath 4. With the two suture ends within the first sheath joined, the opposite free suture end can be pulled until the pledget contacts an outer surface of the heart, where it may remain.
In some embodiments, it can be useful to use a threader 60 to attach a pledget to a suture.
In some embodiments, a threader 60 can have a first collapsible loop 64 and a second collapsible loop 66, as illustrated in
Once the sutures have been fed through the pledgets, opposing suture sections that pass through the first sheath can be secured together and pulled into the heart, as discussed with respect to
In some embodiments, one or more pledgets (external pledgets) can be placed on the second suture ends 32″, 34″, 36″, 38″, which run outside of the sheath 4. The same placement techniques described above can be used. For example, suture ends that are located across from each other can be fed through opposite ends of a single pledget. In such embodiments, where four or more separate suture strands are used the pledgets can cross each other. Similarly, where adjacent suture ends are fed through opposite ends of a single pledget, the pledgets can be adjacent to each other.
The external pledgets are preferably placed on the sutures after the internal pledgets are placed on the first suture ends 32′, 34′, 36′, 38′. In some embodiments, however, the external pledgets can be placed before the internal pledgets are placed. In some embodiments, the external pledgets can be placed even if no internal pledgets are placed. Once external pledgets are placed on the lengths of suture, they can be moved to a position adjacent heart tissue through a variety of methods. In some embodiments, external pledgets can be moved adjacent heart tissue by pulling a respective first suture end 32′, 34′, 36′, 38′ before first suture ends are secured together. In some embodiments, external pledgets can be moved adjacent heart tissue by sliding a sheath, catheter, or other cannulated instrument over the one or more suture ends passing through a pledget and pushing the pledget until it is at a desired location adjacent the heart. In some embodiments, a knot placement device, discussed below, can be used to push an external pledget or pledgets adjacent the heart.
In some embodiments the device can have more than four suture arms. In some embodiments, there can be more or fewer than four separate sutures with more or fewer than four suture end portions that pass through the first sheath 4 and more or fewer than four suture end portions that remain outside of the first sheath 4. It can be desirable to secure together suture end portions that were previously attached to suture arms that were approximately 180 degrees apart around the circumference of the elongate body, or suture end portions that are spaced approximately 180 degrees apart around an opening in a heart, as discussed above. When more than two pairs of suture end portions that pass through the first sheath are thus joined and pulled into the heart as illustrated in
Determining which of the sutures running within the sheath are approximately 180 degrees apart can be done by pulling on the sutures to mechanically see which sutures runs through which point. In some embodiments, different colored sutures can be used to more easily determine which suture ends are approximately 180 degrees apart. For example, in an embodiment with four suture arms, the suture end attached to a first suture arm can be a first color and the suture end attached to a second suture arm 180 degrees about the circumference of the elongate body from the first suture arm can also be of the first color. A third suture end attached to a third arm can be of a second color, and a fourth suture end attached to a fourth arm 180 degrees about the circumference of the elongate body from the third arm can be of the second color, as well. Then, when the four suture ends run through the first sheath, the two ends of the first color can be secured together and the two ends of the second color can be secured together.
Once the suture ends that pass through the first sheath 4 have been appropriately secured and pulled into the heart, as illustrated in
Once the desired procedure has been performed, the sheath can be withdrawn while tightening the sutures to close the opening around the sheath as the sheath is withdrawn. In some embodiments, a tapered sheath can be inserted prior to closing the opening, which can make it easier to close the opening tightly around the sheath as the sheath is withdrawn from the heart. In some embodiments, a knot delivery device, such as the device mentioned above and described in U.S. Patent Application Publication No. 2011/0190793 and incorporated by reference herein, can be pre-loaded with the two or more of the end portions of sutures 30 and delivered into the thoracic cavity alongside the sheath, making it easier to maintain a tightening pressure as the sheath is withdrawn. The opening in the heart can then be closed by applying or tying a knot to the suture ends or by other known methods.
Further Device Embodiments
The distal end 102 of the device can have a first section 140 and a second section 142, as illustrated in
The first and second sections are separated by a distally facing surface 144, which can be formed from a step, notch, chamfer, bevel, or other geometry between the first and second sections whereby the second section has a larger outer dimension than the first section. In some embodiments, the second section 142 has a cross sectional area immediately adjacent the surface 144 that is greater than a cross sectional area of the first section 140 immediately adjacent the surface 144. As illustrated, the surface 144 is formed from a step between the first and second sections. The surface 144 can be at varying angles relative to the first and second sections such that in some embodiments the surface 144 is only partially distally facing, but the surface is configured such that when the first section 140 of the device enters an opening in the outer wall of a heart that is smaller than the second section 142, the surface 144 will press against the outer surface of the heart to block further entry of the device rather than expanding the opening to allow the second section 142 to enter the opening.
This mechanism can be seen in
As illustrated, the arms 120 of the device are extended and pressing against the pericardium 12 and wall of the heart 10. The arms extend from the device at less than a 90 degree angle, but in some embodiments the arms can extend from the device at 90 degrees. As described above, the arms can releasably retain suture portions (not shown), and the device can comprise needles that can fire through the heart wall 10 and the pericardium 12 to capture the suture portions, and then drawn them back through the tissue and into the device.
In some embodiments, it may be desired to have the sutures pass only through tissue of the heart wall, but not through the pericardium 12. The pericardium can then be left open as a drain, it can be separately sutured shut, or a drainage device can be installed near or within an opening in the pericardium and it can be sutured later.
As illustrated in
Once the arms are in position they can rotate to the extended position, catching the pericardium and drawing it outward, as illustrated in
Although the foregoing description of the preferred embodiments has shown, described and pointed out the fundamental novel features of the invention, it will be understood that various omissions, substitutions, and changes in the form of the detail of the apparatus as illustrated as well as the uses thereof, may be made by those skilled in the art, without departing from the spirit of the invention.
Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, structure or characteristic described in connection with the embodiment is included in at least one embodiment. Thus, appearances of the phrases “in one embodiment” or “in an embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures or characteristics of any embodiment described above may be combined in any suitable manner, as would be apparent to one of ordinary skill in the art from this disclosure, in one or more embodiments.
Similarly, it should be appreciated that in the above description of embodiments, various features of the inventions are sometimes grouped together in a single embodiment, figure, or description thereof for the purpose of streamlining the disclosure and aiding in the understanding of one or more of the various inventive aspects. This method of disclosure, however, is not to be interpreted as reflecting an intention that any claim require more features than are expressly recited in that claim. Rather, as the following claims reflect, inventive aspects lie in a combination of fewer than all features of any single foregoing disclosed embodiment. Thus, the claims following the Detailed Description are hereby expressly incorporated into this Detailed Description, with each claim standing on its own as a separate embodiment.
This application claims priority to U.S. Provisional Application No. 61/779,901, filed Mar. 13, 2013; U.S. Provisional Application No. 61/715,123, filed Oct. 17, 2012; and U.S. Provisional Application No. 61/646,188, filed May 11, 2012, the contents of all of which are hereby incorporated by reference herein.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2013/040418 | 5/9/2013 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2013/170081 | 11/14/2013 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
118683 | Bruce | Sep 1871 | A |
1064307 | Fleming | Jun 1913 | A |
1989919 | Everitt | Feb 1935 | A |
2473742 | Auzin | Jun 1949 | A |
2548602 | Greenburg | Apr 1951 | A |
2637290 | Sigoda | May 1953 | A |
2738790 | Todt, Sr. et al. | Mar 1956 | A |
2849002 | Oddo | Aug 1958 | A |
2945460 | Kagiyama | Jul 1960 | A |
3241554 | Coanda | Mar 1966 | A |
3292627 | Harautuneian | Dec 1966 | A |
3394705 | Abramson | Jul 1968 | A |
3664345 | Dabbs et al. | May 1972 | A |
3665926 | Flores | May 1972 | A |
3774596 | Cook | Nov 1973 | A |
3828790 | Curtiss et al. | Aug 1974 | A |
3831587 | Boyd | Aug 1974 | A |
3842840 | Schweizer | Oct 1974 | A |
3877434 | Ferguson et al. | Apr 1975 | A |
3882852 | Sinnreich | May 1975 | A |
3882855 | Schulte et al. | May 1975 | A |
3888117 | Lewis | Jun 1975 | A |
3903893 | Scheer | Sep 1975 | A |
3946740 | Bassett | Mar 1976 | A |
3946741 | Adair | Mar 1976 | A |
3952742 | Taylor | Apr 1976 | A |
3976079 | Samuels | Aug 1976 | A |
4052980 | Grams et al. | Oct 1977 | A |
RE29703 | Fatt | Jul 1978 | E |
4107953 | Casillo | Aug 1978 | A |
4119100 | Rickett | Oct 1978 | A |
4164225 | Johnson et al. | Aug 1979 | A |
4230119 | Blum | Oct 1980 | A |
4291698 | Fuchs et al. | Sep 1981 | A |
4299237 | Foti | Nov 1981 | A |
4307722 | Evans | Dec 1981 | A |
4351342 | Wiita et al. | Sep 1982 | A |
4417532 | Yasukata | Nov 1983 | A |
4423725 | Baran et al. | Jan 1984 | A |
4447227 | Kotsanis | May 1984 | A |
4457300 | Budde | Jul 1984 | A |
4484580 | Nomoto et al. | Nov 1984 | A |
4512338 | Balko et al. | Apr 1985 | A |
4546759 | Solar | Oct 1985 | A |
4553543 | Amarasinghe | Nov 1985 | A |
4573966 | Weikl et al. | Mar 1986 | A |
4589868 | Dretler | May 1986 | A |
4610662 | Weikl et al. | Sep 1986 | A |
4617738 | Kopacz | Oct 1986 | A |
4662068 | Polonsky | May 1987 | A |
4664114 | Ghodsian | May 1987 | A |
4734094 | Jacob et al. | Mar 1988 | A |
4744364 | Kensey | May 1988 | A |
4750492 | Jacobs | Jun 1988 | A |
4771776 | Powell et al. | Sep 1988 | A |
4774091 | Yamahira et al. | Sep 1988 | A |
4794928 | Kletschka | Jan 1989 | A |
4795427 | Helzel | Jan 1989 | A |
4796629 | Grayzel | Jan 1989 | A |
4824436 | Wolinsky | Apr 1989 | A |
4827931 | Longmore | May 1989 | A |
4841888 | Mills et al. | Jun 1989 | A |
4861330 | Voss | Aug 1989 | A |
4898168 | Yule | Feb 1990 | A |
4923461 | Caspari et al. | May 1990 | A |
4926860 | Stice et al. | May 1990 | A |
4932956 | Reddy et al. | Jun 1990 | A |
4935027 | Yoon | Jun 1990 | A |
4954126 | Wallsten | Sep 1990 | A |
4957498 | Caspari et al. | Sep 1990 | A |
4972845 | Iversen et al. | Nov 1990 | A |
4981149 | Yoon et al. | Jan 1991 | A |
4983116 | Koga | Jan 1991 | A |
4984564 | Yuen | Jan 1991 | A |
4994070 | Waters | Feb 1991 | A |
5002531 | Bonzel | Mar 1991 | A |
5021059 | Kensey et al. | Jun 1991 | A |
5037433 | Wilk et al. | Aug 1991 | A |
5057114 | Wittich et al. | Oct 1991 | A |
5059201 | Asnis | Oct 1991 | A |
5065772 | Cox, Jr. | Nov 1991 | A |
5074871 | Groshong | Dec 1991 | A |
5078743 | Mikalov et al. | Jan 1992 | A |
5090958 | Sahota | Feb 1992 | A |
5100418 | Yoon et al. | Mar 1992 | A |
5104394 | Knoepfler | Apr 1992 | A |
5106363 | Nobuyoshi | Apr 1992 | A |
5108416 | Ryan et al. | Apr 1992 | A |
5108419 | Reger et al. | Apr 1992 | A |
5116305 | Milder et al. | May 1992 | A |
5122122 | Allgood | Jun 1992 | A |
5129883 | Black | Jul 1992 | A |
5133724 | Wilson et al. | Jul 1992 | A |
5135484 | Wright | Aug 1992 | A |
5160339 | Chen et al. | Nov 1992 | A |
5163906 | Ahmadi | Nov 1992 | A |
5167223 | Koros et al. | Dec 1992 | A |
5171251 | Bregen et al. | Dec 1992 | A |
5176691 | Pierce | Jan 1993 | A |
5192301 | Kamiya et al. | Mar 1993 | A |
5222508 | Contarini | Jun 1993 | A |
5222941 | Don Michael | Jun 1993 | A |
5222974 | Kensey et al. | Jun 1993 | A |
5224948 | Abe et al. | Jul 1993 | A |
5242459 | Buelna | Sep 1993 | A |
5281234 | Wilk et al. | Jan 1994 | A |
5281237 | Gimpelson | Jan 1994 | A |
5282827 | Kensey et al. | Feb 1994 | A |
5286259 | Ganguly et al. | Feb 1994 | A |
5290249 | Foster et al. | Mar 1994 | A |
5300106 | Dahl et al. | Apr 1994 | A |
5304184 | Hathaway et al. | Apr 1994 | A |
5308323 | Sogawa et al. | May 1994 | A |
5312344 | Grinfeld | May 1994 | A |
5314409 | Sarosiek et al. | May 1994 | A |
5320604 | Walker et al. | Jun 1994 | A |
5320632 | Heidmueller | Jun 1994 | A |
5330446 | Weldon et al. | Jul 1994 | A |
5330497 | Freitas et al. | Jul 1994 | A |
5331975 | Bonutti | Jul 1994 | A |
5336229 | Noda | Aug 1994 | A |
5336231 | Adair | Aug 1994 | A |
5337736 | Reddy | Aug 1994 | A |
5339801 | Poloyko | Aug 1994 | A |
5342306 | Don Michael | Aug 1994 | A |
5342385 | Norelli et al. | Aug 1994 | A |
5342393 | Stack | Aug 1994 | A |
5350399 | Erlebacher et al. | Sep 1994 | A |
5356382 | Picha et al. | Oct 1994 | A |
5364407 | Poll | Nov 1994 | A |
5364408 | Gordon | Nov 1994 | A |
5368601 | Sauer et al. | Nov 1994 | A |
5370618 | Leonhardt | Dec 1994 | A |
5370685 | Stevens | Dec 1994 | A |
5374275 | Bradley et al. | Dec 1994 | A |
5380284 | Don Michael | Jan 1995 | A |
5382261 | Palmaz | Jan 1995 | A |
5383854 | Safar et al. | Jan 1995 | A |
5383896 | Gershony et al. | Jan 1995 | A |
5383897 | Wholey | Jan 1995 | A |
5383905 | Golds et al. | Jan 1995 | A |
5389103 | Melzer et al. | Feb 1995 | A |
5391147 | Imran et al. | Feb 1995 | A |
5391174 | Weston | Feb 1995 | A |
5395383 | Adams et al. | Mar 1995 | A |
5397325 | Badia et al. | Mar 1995 | A |
5403329 | Hinchcliffe | Apr 1995 | A |
5403331 | Chesterfield et al. | Apr 1995 | A |
5403341 | Solar | Apr 1995 | A |
5405322 | Lennox et al. | Apr 1995 | A |
5405354 | Sarrett | Apr 1995 | A |
5417699 | Klein et al. | May 1995 | A |
5417700 | Egan | May 1995 | A |
5423777 | Tajiri et al. | Jun 1995 | A |
5423837 | Mericle et al. | Jun 1995 | A |
5425708 | Nasu | Jun 1995 | A |
5425737 | Burbank et al. | Jun 1995 | A |
5425744 | Fagan et al. | Jun 1995 | A |
5429118 | Cole et al. | Jul 1995 | A |
5431666 | Sauer et al. | Jul 1995 | A |
5439470 | Li | Aug 1995 | A |
5445167 | Yoon et al. | Aug 1995 | A |
5447515 | Robicsek | Sep 1995 | A |
5452513 | Zinnbauer et al. | Sep 1995 | A |
5454823 | Richardson et al. | Oct 1995 | A |
5458574 | Machold et al. | Oct 1995 | A |
5458609 | Gordon et al. | Oct 1995 | A |
5462560 | Stevens | Oct 1995 | A |
5462561 | Voda | Oct 1995 | A |
5470338 | Whitfield et al. | Nov 1995 | A |
5474572 | Hayhurst | Dec 1995 | A |
5476469 | Hathaway et al. | Dec 1995 | A |
5476470 | Fitzgibbons, Jr. | Dec 1995 | A |
5496332 | Sierra et al. | Mar 1996 | A |
5499991 | Garman et al. | Mar 1996 | A |
5501691 | Goldrath | Mar 1996 | A |
5507754 | Green et al. | Apr 1996 | A |
5507755 | Gresl et al. | Apr 1996 | A |
5514159 | Matula et al. | May 1996 | A |
5520609 | Moll et al. | May 1996 | A |
5520702 | Sauer et al. | May 1996 | A |
5522961 | Leonhardt | Jun 1996 | A |
5527321 | Hinchliffe | Jun 1996 | A |
5527322 | Klein et al. | Jun 1996 | A |
5527338 | Purdy | Jun 1996 | A |
5540658 | Evans et al. | Jul 1996 | A |
5540704 | Gordon et al. | Jul 1996 | A |
5545170 | Hart | Aug 1996 | A |
5549633 | Evans et al. | Aug 1996 | A |
5558642 | Schweich et al. | Sep 1996 | A |
5558644 | Boyd et al. | Sep 1996 | A |
RE35352 | Peters | Oct 1996 | E |
5562686 | Sauer et al. | Oct 1996 | A |
5562688 | Riza | Oct 1996 | A |
5565122 | Zinnbauer et al. | Oct 1996 | A |
5571090 | Sherts | Nov 1996 | A |
5573540 | Yoon | Nov 1996 | A |
5584835 | Greenfield | Dec 1996 | A |
5584861 | Swain et al. | Dec 1996 | A |
5591195 | Taheri et al. | Jan 1997 | A |
5593422 | Muijs Van de Moer et al. | Jan 1997 | A |
5599307 | Bacher et al. | Feb 1997 | A |
5603718 | Xu | Feb 1997 | A |
5613974 | Andreas et al. | Mar 1997 | A |
5613975 | Christy | Mar 1997 | A |
5626590 | Wilk | May 1997 | A |
5630833 | Katsaros et al. | May 1997 | A |
5632751 | Piraka | May 1997 | A |
5632752 | Buelna | May 1997 | A |
5634936 | Linden et al. | Jun 1997 | A |
5637097 | Yoon | Jun 1997 | A |
5643289 | Sauer et al. | Jul 1997 | A |
5645553 | Kolesa et al. | Jul 1997 | A |
5662663 | Shallman | Sep 1997 | A |
5669917 | Sauer et al. | Sep 1997 | A |
5669971 | Bok et al. | Sep 1997 | A |
5674198 | Leone | Oct 1997 | A |
5681296 | Ishida | Oct 1997 | A |
5681351 | Jamiolkowski et al. | Oct 1997 | A |
5688245 | Runge | Nov 1997 | A |
5690674 | Diaz | Nov 1997 | A |
5695468 | Lafontaine et al. | Dec 1997 | A |
5695504 | Gifford, III et al. | Dec 1997 | A |
5697905 | D'Amnbrosio | Dec 1997 | A |
5700273 | Buelna et al. | Dec 1997 | A |
5700277 | Nash et al. | Dec 1997 | A |
5707379 | Fleenor et al. | Jan 1998 | A |
5709693 | Taylor | Jan 1998 | A |
5716329 | Dieter | Feb 1998 | A |
5720757 | Hathaway et al. | Feb 1998 | A |
5722983 | Van Der Weegen | Mar 1998 | A |
5728109 | Schulze et al. | Mar 1998 | A |
5738629 | Moll et al. | Apr 1998 | A |
5743852 | Johnson | Apr 1998 | A |
5746753 | Sullivan et al. | May 1998 | A |
5749883 | Halpern | May 1998 | A |
5759188 | Yoon | Jun 1998 | A |
5766183 | Sauer | Jun 1998 | A |
5766220 | Moenning | Jun 1998 | A |
5769870 | Salahieh et al. | Jun 1998 | A |
5779719 | Klein et al. | Jul 1998 | A |
5792152 | Klein et al. | Aug 1998 | A |
5792153 | Swain et al. | Aug 1998 | A |
5795289 | Wyttenbach | Aug 1998 | A |
5795325 | Valley et al. | Aug 1998 | A |
5797948 | Dunham | Aug 1998 | A |
5797960 | Stevens et al. | Aug 1998 | A |
5810757 | Sweezer et al. | Sep 1998 | A |
5810849 | Kontos | Sep 1998 | A |
5810850 | Hathaway et al. | Sep 1998 | A |
5817110 | Kronner | Oct 1998 | A |
5820631 | Nobles | Oct 1998 | A |
5836955 | Buelna et al. | Nov 1998 | A |
5843100 | Meade | Dec 1998 | A |
5846251 | Hart | Dec 1998 | A |
5846253 | Buelna et al. | Dec 1998 | A |
5853399 | Sasaki | Dec 1998 | A |
5853422 | Huebsch et al. | Dec 1998 | A |
5855585 | Kontos | Jan 1999 | A |
5860990 | Nobles et al. | Jan 1999 | A |
5860991 | Klein et al. | Jan 1999 | A |
5860992 | Daniel et al. | Jan 1999 | A |
5860997 | Bonutti | Jan 1999 | A |
5861003 | Latson et al. | Jan 1999 | A |
5865729 | Meehan et al. | Feb 1999 | A |
5868708 | Hart et al. | Feb 1999 | A |
5868762 | Cragg et al. | Feb 1999 | A |
5871537 | Holman et al. | Feb 1999 | A |
5876411 | Kontos | Mar 1999 | A |
5899921 | Caspari et al. | May 1999 | A |
5902311 | Andreas et al. | May 1999 | A |
5902321 | Caspari et al. | May 1999 | A |
5906577 | Beane et al. | May 1999 | A |
5908428 | Scirica et al. | Jun 1999 | A |
5919200 | Stambaugh et al. | Jul 1999 | A |
5919208 | Valenti | Jul 1999 | A |
5928192 | Maahs | Jul 1999 | A |
5931844 | Thompson et al. | Aug 1999 | A |
5935098 | Blaisdell et al. | Aug 1999 | A |
5935149 | Ek | Aug 1999 | A |
5944730 | Nobles et al. | Aug 1999 | A |
5951588 | Moenning | Sep 1999 | A |
5951590 | Goldfarb | Sep 1999 | A |
5954732 | Hart et al. | Sep 1999 | A |
5967970 | Cowan et al. | Oct 1999 | A |
5971983 | Lesh | Oct 1999 | A |
5972005 | Stalker et al. | Oct 1999 | A |
5980539 | Kontos | Nov 1999 | A |
5993466 | Yoon | Nov 1999 | A |
5997555 | Kontos | Dec 1999 | A |
6001109 | Kontos | Dec 1999 | A |
6004337 | Kieturakis et al. | Dec 1999 | A |
6010530 | Goicoechea | Jan 2000 | A |
6015428 | Pagedas | Jan 2000 | A |
6024747 | Kontos | Feb 2000 | A |
6033430 | Bonutti | Mar 2000 | A |
6036699 | Andreas et al. | Mar 2000 | A |
6059800 | Hart et al. | May 2000 | A |
6066160 | Colvin et al. | May 2000 | A |
6068648 | Cole et al. | May 2000 | A |
6071271 | Baker et al. | Jun 2000 | A |
6077277 | Mollenauer et al. | Jun 2000 | A |
6086608 | Ek et al. | Jul 2000 | A |
6099553 | Hart et al. | Aug 2000 | A |
6110185 | Barra et al. | Aug 2000 | A |
6113580 | Dolisi | Sep 2000 | A |
6117144 | Nobles et al. | Sep 2000 | A |
6126677 | Ganaja et al. | Oct 2000 | A |
6136010 | Modesitt et al. | Oct 2000 | A |
6143015 | Nobles | Nov 2000 | A |
6159234 | Bonutti et al. | Dec 2000 | A |
6171319 | Nobles et al. | Jan 2001 | B1 |
6174324 | Egan et al. | Jan 2001 | B1 |
6187026 | Devlin et al. | Feb 2001 | B1 |
6190396 | Whitin et al. | Feb 2001 | B1 |
6200329 | Fung et al. | Mar 2001 | B1 |
6203565 | Bonutti et al. | Mar 2001 | B1 |
6210429 | Vardi et al. | Apr 2001 | B1 |
6217591 | Egan et al. | Apr 2001 | B1 |
6241699 | Suresh et al. | Jun 2001 | B1 |
6245079 | Nobles et al. | Jun 2001 | B1 |
6245080 | Levinson | Jun 2001 | B1 |
6248121 | Nobles | Jun 2001 | B1 |
6280460 | Bolduc et al. | Aug 2001 | B1 |
6290674 | Roue et al. | Sep 2001 | B1 |
6332889 | Sancoff et al. | Dec 2001 | B1 |
6348059 | Hathaway et al. | Feb 2002 | B1 |
6383208 | Sancoff et al. | May 2002 | B1 |
6409739 | Nobles et al. | Jun 2002 | B1 |
6432115 | Mollenauer et al. | Aug 2002 | B1 |
6468293 | Bonutti et al. | Oct 2002 | B2 |
6508777 | Macoviak et al. | Jan 2003 | B1 |
6527785 | Sancoff et al. | Mar 2003 | B2 |
6533795 | Tran et al. | Mar 2003 | B1 |
6537299 | Hogendijk et al. | Mar 2003 | B1 |
6547725 | Paolitto et al. | Apr 2003 | B1 |
6547760 | Samson et al. | Apr 2003 | B1 |
6551331 | Nobles et al. | Apr 2003 | B2 |
6562052 | Nobles et al. | May 2003 | B2 |
6585689 | Macoviak et al. | Jul 2003 | B1 |
6663643 | Field et al. | Dec 2003 | B2 |
6679895 | Sancoff et al. | Jan 2004 | B1 |
6682540 | Sancoff et al. | Jan 2004 | B1 |
6716243 | Colvin et al. | Apr 2004 | B1 |
6726651 | Robinson et al. | Apr 2004 | B1 |
6733509 | Nobles et al. | May 2004 | B2 |
6767352 | Field et al. | Jul 2004 | B2 |
6770076 | Foerster | Aug 2004 | B2 |
6786913 | Sancoff | Sep 2004 | B1 |
6855157 | Foerster et al. | Feb 2005 | B2 |
6893448 | O'Quinn et al. | May 2005 | B2 |
6911034 | Nobles et al. | Jun 2005 | B2 |
6913600 | Valley et al. | Jul 2005 | B2 |
6936057 | Nobles | Aug 2005 | B1 |
6978176 | Lattouf | Dec 2005 | B2 |
7004952 | Nobles et al. | Feb 2006 | B2 |
7083630 | DeVries et al. | Aug 2006 | B2 |
7083638 | Foerster | Aug 2006 | B2 |
7090686 | Nobles et al. | Aug 2006 | B2 |
7090690 | Foerster et al. | Aug 2006 | B2 |
7118583 | O'Quinn et al. | Oct 2006 | B2 |
7160309 | Voss | Jan 2007 | B2 |
7172595 | Goble | Feb 2007 | B1 |
7220266 | Gambale | May 2007 | B2 |
7232446 | Farris | Jun 2007 | B1 |
7235086 | Sauer et al. | Jun 2007 | B2 |
7326221 | Sakamoto et al. | Feb 2008 | B2 |
7329272 | Burkhart et al. | Feb 2008 | B2 |
7381210 | Zarbatany et al. | Jun 2008 | B2 |
7399304 | Gambale et al. | Jul 2008 | B2 |
7435251 | Green | Oct 2008 | B2 |
7449024 | Stafford | Nov 2008 | B2 |
7491217 | Hendren | Feb 2009 | B1 |
7601161 | Nobles et al. | Oct 2009 | B1 |
7628797 | Tieu et al. | Dec 2009 | B2 |
7635386 | Gammie | Dec 2009 | B1 |
7637926 | Foerster et al. | Dec 2009 | B2 |
7722629 | Chambers | May 2010 | B2 |
7803167 | Nobles et al. | Sep 2010 | B2 |
7842051 | Dana et al. | Nov 2010 | B2 |
7846181 | Schwartz et al. | Dec 2010 | B2 |
7879072 | Bonutti et al. | Feb 2011 | B2 |
7905892 | Nobles et al. | Mar 2011 | B2 |
7918867 | Dana et al. | Apr 2011 | B2 |
7993368 | Gambale et al. | Aug 2011 | B2 |
8075573 | Gambale et al. | Dec 2011 | B2 |
8083754 | Pantages et al. | Dec 2011 | B2 |
8105355 | Page et al. | Jan 2012 | B2 |
8197497 | Nobles et al. | Jun 2012 | B2 |
8246636 | Nobles et al. | Aug 2012 | B2 |
8252005 | Findlay, III et al. | Aug 2012 | B2 |
8282659 | Oren et al. | Oct 2012 | B2 |
8287556 | Gilkey et al. | Oct 2012 | B2 |
8298291 | Ewers et al. | Oct 2012 | B2 |
8303622 | Alkhatib | Nov 2012 | B2 |
8348962 | Nobles et al. | Jan 2013 | B2 |
8372089 | Nobles et al. | Feb 2013 | B2 |
8469975 | Nobles et al. | Jun 2013 | B2 |
8496676 | Nobles et al. | Jul 2013 | B2 |
8540736 | Gaynor et al. | Sep 2013 | B2 |
8568427 | Nobles et al. | Oct 2013 | B2 |
8758370 | Shikhman et al. | Jun 2014 | B2 |
8771296 | Nobles et al. | Jul 2014 | B2 |
9131938 | Nobles et al. | Sep 2015 | B2 |
9326764 | Nobles et al. | May 2016 | B2 |
9398907 | Nobles et al. | Jul 2016 | B2 |
20010031973 | Nobles et al. | Oct 2001 | A1 |
20020013601 | Nobles et al. | Jan 2002 | A1 |
20020045908 | Nobles et al. | Apr 2002 | A1 |
20020049453 | Nobles et al. | Apr 2002 | A1 |
20020087178 | Nobles et al. | Jul 2002 | A1 |
20020096183 | Stevens et al. | Jul 2002 | A1 |
20020111653 | Foerster | Aug 2002 | A1 |
20020128598 | Nobles | Sep 2002 | A1 |
20020128684 | Foerster | Sep 2002 | A1 |
20030078601 | Shikhman et al. | Apr 2003 | A1 |
20030144673 | Onuki et al. | Jul 2003 | A1 |
20030149448 | Foerster et al. | Aug 2003 | A1 |
20030167062 | Gambale et al. | Sep 2003 | A1 |
20030171760 | Gambale | Sep 2003 | A1 |
20030181926 | Dana et al. | Sep 2003 | A1 |
20030208209 | Gambale et al. | Nov 2003 | A1 |
20040044365 | Bachman | Mar 2004 | A1 |
20040059351 | Eigler et al. | Mar 2004 | A1 |
20040093031 | Burkhart et al. | May 2004 | A1 |
20040097968 | Sikikhman et al. | May 2004 | A1 |
20040098050 | Foerster et al. | May 2004 | A1 |
20040153116 | Nobles | Aug 2004 | A1 |
20040210238 | Nobles et al. | Oct 2004 | A1 |
20040236356 | Rioux et al. | Nov 2004 | A1 |
20040260298 | Kaiser et al. | Dec 2004 | A1 |
20050033319 | Gambale et al. | Feb 2005 | A1 |
20050070923 | McIntosh | Mar 2005 | A1 |
20050149066 | Stafford | Jul 2005 | A1 |
20050187575 | Hallbeck et al. | Aug 2005 | A1 |
20050203564 | Nobles | Sep 2005 | A1 |
20050240226 | Foerster et al. | Oct 2005 | A1 |
20050261708 | Pasricha et al. | Nov 2005 | A1 |
20050261710 | Sakamoto et al. | Nov 2005 | A1 |
20050277986 | Foerster et al. | Dec 2005 | A1 |
20050288688 | Sakamoto et al. | Dec 2005 | A1 |
20060047314 | Green | Mar 2006 | A1 |
20060052813 | Nobles | Mar 2006 | A1 |
20060064115 | Allen et al. | Mar 2006 | A1 |
20060069397 | Nobles et al. | Mar 2006 | A1 |
20060074484 | Huber | Apr 2006 | A1 |
20060095052 | Chambers | May 2006 | A1 |
20060195120 | Nobles et al. | Aug 2006 | A1 |
20060265010 | Paraschac et al. | Nov 2006 | A1 |
20060271074 | Ewers et al. | Nov 2006 | A1 |
20060282088 | Ryan | Dec 2006 | A1 |
20060282102 | Nobles et al. | Dec 2006 | A1 |
20060287657 | Bachman | Dec 2006 | A1 |
20070005081 | Findlay, III et al. | Jan 2007 | A1 |
20070010829 | Nobles et al. | Jan 2007 | A1 |
20070032798 | Pantages et al. | Feb 2007 | A1 |
20070043385 | Nobles et al. | Feb 2007 | A1 |
20070118151 | Davidson | May 2007 | A1 |
20070213757 | Boraiah | Sep 2007 | A1 |
20070219630 | Chu | Sep 2007 | A1 |
20070276413 | Nobles | Nov 2007 | A1 |
20070276414 | Nobles | Nov 2007 | A1 |
20080033459 | Shafi | Feb 2008 | A1 |
20080077162 | Domingo | Mar 2008 | A1 |
20080188873 | Speziali | Aug 2008 | A1 |
20080228201 | Zarbatany | Sep 2008 | A1 |
20080234729 | Page et al. | Sep 2008 | A1 |
20080269786 | Nobles et al. | Oct 2008 | A1 |
20090036906 | Stafford | Feb 2009 | A1 |
20090048615 | McIntosh | Feb 2009 | A1 |
20090105729 | Zentgraf | Apr 2009 | A1 |
20090105751 | Zentgraf | Apr 2009 | A1 |
20090118726 | Auth et al. | May 2009 | A1 |
20090287183 | Bishop et al. | Nov 2009 | A1 |
20100016870 | Campbell | Jan 2010 | A1 |
20100030242 | Nobles et al. | Feb 2010 | A1 |
20100042147 | Janovsky et al. | Feb 2010 | A1 |
20100087838 | Nobles et al. | Apr 2010 | A1 |
20110190793 | Nobles et al. | Aug 2011 | A1 |
20110251627 | Hamilton et al. | Oct 2011 | A1 |
20120016384 | Wilke et al. | Jan 2012 | A1 |
20120165838 | Kobylewski et al. | Jun 2012 | A1 |
20130238001 | Nobles et al. | Sep 2013 | A1 |
20130261645 | Nobles et al. | Oct 2013 | A1 |
20140148825 | Nobles et al. | May 2014 | A1 |
20140163585 | Nobles et al. | Jun 2014 | A1 |
20140303654 | Nobles et al. | Oct 2014 | A1 |
20160007998 | Nobles et al. | Jan 2016 | A1 |
20160151064 | Nobles | Jun 2016 | A1 |
Number | Date | Country |
---|---|---|
2003212025 | Aug 2003 | AU |
2006251579 | Nov 2006 | AU |
2006262498 | Jan 2007 | AU |
2323084 | Dec 2006 | CA |
195341 | Feb 2005 | CN |
1654016 | Aug 2005 | CN |
101027001 | Aug 2007 | CN |
101242785 | Aug 2008 | CN |
101495049 | Dec 2010 | CN |
101257852 | Aug 2011 | CN |
102892359 | Jan 2013 | CN |
103889345 | Jun 2014 | CN |
29 01 701 | Jul 1980 | DE |
0 241 038 | Oct 1987 | EP |
0 544 485 | Jun 1993 | EP |
0839 550 | May 1998 | EP |
0 894 475 | Feb 1999 | EP |
0 983 026 | Mar 2002 | EP |
1 196 093 | Apr 2002 | EP |
0 941 698 | May 2005 | EP |
0 983 027 | Dec 2005 | EP |
1 804 677 | Jul 2007 | EP |
1 570 790 | Nov 2008 | EP |
2 011 441 | Jan 2009 | EP |
2 701 401 | Aug 1994 | FR |
1036395 | May 2005 | HK |
A 9507398 | Jul 1997 | JP |
H10-43192 | Feb 1998 | JP |
2001-524864 | Dec 2001 | JP |
2002-500531 | Jan 2002 | JP |
2007-503870 | Mar 2007 | JP |
2008-514305 | May 2008 | JP |
2008-541857 | Nov 2008 | JP |
2008-546454 | Dec 2008 | JP |
2011-508705 | May 2009 | JP |
4399035 | Oct 2009 | JP |
2009-261960 | Nov 2009 | JP |
2010-522625 | Jul 2010 | JP |
1560129 | Apr 1990 | SU |
WO 9205828 | Apr 1992 | WO |
WO 9301750 | Feb 1993 | WO |
WO 9307800 | Apr 1993 | WO |
WO 9512429 | May 1995 | WO |
WO 9517127 | Jun 1995 | WO |
WO 9525468 | Sep 1995 | WO |
WO 9525470 | Sep 1995 | WO |
WO 9603083 | Feb 1996 | WO |
WO 9629012 | Sep 1996 | WO |
WO 9640347 | Dec 1996 | WO |
WO 9703613 | Feb 1997 | WO |
WO 9747261 | Feb 1997 | WO |
WO 9707745 | Mar 1997 | WO |
WO 9712540 | Apr 1997 | WO |
WO 9720505 | Jun 1997 | WO |
WO 9724975 | Jul 1997 | WO |
WO 9727807 | Aug 1997 | WO |
WO 9740738 | Nov 1997 | WO |
WO 9812970 | Apr 1998 | WO |
WO 9852476 | Nov 1998 | WO |
WO 9940851 | Aug 1999 | WO |
WO 9942160 | Aug 1999 | WO |
WO 9945848 | Sep 1999 | WO |
WO 0002489 | Jan 2000 | WO |
WO 0101868 | Jan 2001 | WO |
WO 0195809 | Dec 2001 | WO |
WO 0224078 | Mar 2002 | WO |
WO 2004012789 | Feb 2004 | WO |
WO 2006127636 | Nov 2006 | WO |
WO 2007001936 | Jan 2007 | WO |
WO 2008121738 | Oct 2008 | WO |
WO 2009081396 | Jul 2009 | WO |
WO 2009137766 | Nov 2009 | WO |
WO 2011094619 | Aug 2011 | WO |
WO 2012142338 | Oct 2012 | WO |
WO 2013170081 | Nov 2013 | WO |
WO 2015002815 | Jan 2015 | WO |
WO 2015085145 | Jun 2015 | WO |
Entry |
---|
U.S. Appl. No. 13/736,032, filed Jan. 7, 2013, Nobles et al. |
U.S. Appl. No. 14/311,518, filed Jun. 23, 2014, Nobles et al. |
Advances in Vascular Surgery, by John S. Najarian, M.D. and John P. Delaney, M.D., copyright 1983 by Year Book Publishers, Inc. at pp. 94,95,96, and 224. |
Clinical Evaluation of Arteriovenous Fistulas as an Adjunct to Lower Extremity Arterial Reconstructions, by Herbert Dardick, M.D., in Current Critical Problems in Vascular Surgery, copyright 1989 by Quality Medical Publishing Inc., at p. 383. |
Current Therapy in Vascular Surgery, 2nd edition, by Calvin B. Ernst, M.D. and James C. Stanley, M.D., copyright 1991 by B.C. Decker, Inc., at pp. A and 140. |
Eskuri, A., The Design of a Minimally Invasive Vascular Suturing Device, Thesis submitted to Rose-Hulman Institute of Technology, Nov. 1999. |
International Preliminary Report on Patentability re PCT/US2013/040418, issued Nov. 11, 2014. |
International Search Report and Written Opinion of PCT/US2013/040418, Jul. 26,2013. |
Manual of Vascular Surgery, vol. 2, Edwin J. Wylie, Ronald J. Stoney, William K. Ehrenfeld and David J. Effeney (Richard H. Egdahl ed.), copyright 1986 by Springer-Verlag New York Inc., at p. 41. |
Nursing the Open-Heart Surgery Patient, by Mary Jo Aspinall, R.N., M.N., copyright 1973 by McGraw Hill, Inc., at pp. 216 and 231. |
Operative Arterial Surgery, by P.R. Bell, M.D., and W Barrie, M.D., copyright 1981 by Bell, Barrie, and Leicester Royal Infirmary, printed byJohn Wright &Sons, pp. 16, 17, 104, 105, 112, and 113. |
Sinus Venous Type of Atrial Septal Defect with Partial Anomalous Pulmonary Venous Return, by Francis Robicsek, MD., et ai, in Journal of Thoracic and Cardiovascular Surgery, Oct. 1979, vol. 78, No. 4, at pp. 559-562. |
Techniques in Vascular Surgery, by Denton A. Cooley, MD. and Don C. Wukasch, MD., copyright 1979 by WB. Saunders Co., at pp. 38,57,86,134,156, and 184. |
Vascular Access, Principles and Practice, 3rd edition, by Samuel Eric Wilson, MD., copyright 1996, 1988,1980 by Mosby-Year Book, Inc., pp. 89 and 159. |
Vascular and Endovascular Surgery, by Jonathan D. Beard and Peter Gainers, copyright 1998 by W. B. Saunders Co., Ltd, p. 414. |
Vascular Surgery, 3rd edition, vol. 1, by Robert B. Rutherford, MD., copyright 1989, 1984, 1976 by W. B.SaundersCo., at pp. 347, 348, 354, 594, 607, 622, 675, 677, 680, 698, 700, 721, 727, 735, and 829. |
Vascular Surgery, 4th edition by Robert B. Rutherford, MD., copyright 1995,1989,1976, by W.B. Saunders Co., vol. 1, at pp. 400-404, 661, and A. |
Vascular Surgery, by Robert B. Rutherford, M.D. copyright1977 by WB. Saunders Co., at pp. 334 and 817. |
Cardio Medical Solutions, Inc. brochure titled: “Baladi Inverter for Clamp less Surgery”—Undated. |
The problem: Closing wounds in deep areas during laparoscopic operations The solution: REMA Medizintechnik GmbH (no date). |
Vascular Surgery, 4th edition, by Robert B. Rutherford, M.D., copyright 1995, 1989, 1984, 1976 by W. B. Saunders Co., vol. 2, at pp. 1318, 1363, 1426, 1564, and 1580. |
Number | Date | Country | |
---|---|---|---|
20150126815 A1 | May 2015 | US |
Number | Date | Country | |
---|---|---|---|
61646188 | May 2012 | US | |
61715123 | Oct 2012 | US | |
61779901 | Mar 2013 | US |