Suturing devices and methods for suturing an anatomic structure

Information

  • Patent Grant
  • 10828022
  • Patent Number
    10,828,022
  • Date Filed
    Thursday, June 26, 2014
    10 years ago
  • Date Issued
    Tuesday, November 10, 2020
    4 years ago
Abstract
Suturing devices and systems used to apply sutures and/or to close openings at, within, or into a biological structure. The suturing device can comprise an elongate member having a proximal end, a distal end, one or more distal arms, one or more proximal extensions, and one or more needles. A sheath may be used with the device to maintain or substantially maintain haemostasis while the device is used and while a procedure is performed in the biological structure.
Description
TECHNICAL FIELD

Embodiments of the present invention relate to suturing devices and methods. Some embodiments relate to suturing devices and methods for suturing a patient's vasculature


BACKGROUND

Health practitioners frequently use sutures to close various openings such as natural anatomical openings, cuts, punctures, and incisions in various places in the human body. Generally, sutures are convenient to use and function properly to hold openings in biological tissue closed thereby aiding in blood clotting, healing, and prevention of scarring.


There are some circumstances under which it is not feasible to use conventional sutures and suturing methods to close an opening. Additionally, there are some circumstances under which the use of conventional sutures and suturing methods require invasive procedures that subject a patient to risk of infection, delays in recovery, increases in pain, and other complications.


SUMMARY OF THE DISCLOSURE

Embodiments of suturing devices and methods used to apply sutures and/or to suture closed openings at, within, or into a biological structure while maintaining or substantially maintaining haemostasis are described herein. The suturing devices and methods can be used to place sutures prior to a surgical procedure and to prepare access for the procedure while maintaining or substantially maintaining haemostasis. The placed sutures can then be used to tighten an opening while any devices or tools are withdrawn, closing the opening while the final device or tool leaves the opening such that the opening is never without a device or tool inside it during the course of the procedure.


In the embodiments described herein, the disclosed devices are used to place sutures to close an opening into a patient's vasculature, such as the aorta, although they are not limited to applications within the vasculature. The aorta can be accessed through a sternotomy or limited thoracotomy, or alternatively the device can pass through a trocar or other element into the thoracic cavity and then be led toward an opening in the aorta, typically by following a guide wire.


In some embodiments, a suturing device can include an elongate body having a proximal end and a distal end, and a plurality of arms near the distal end. Each arm can be configured to move between a first position in which the arm is retracted within the elongate body and a second position in which the arm has a free end extending away from the elongate body. Each arm can also include at least one suture mount at the free end. A sheath can be adapted to surround at least a portion of the elongate body. The device can also include a needle carriage that has a plurality of outer lumens and a central lumen adapted to surround at least a portion of the sheath. The device can include a plurality of needles, and each needle can be configured to move between a retracted position in which the needle is within a corresponding outer lumen to a deployed position in which a distal point of the needle extends out of the corresponding outer lumen and into a corresponding suture mount. The device can include a plurality of suture portions, and each suture portion can have a suture end releasably retained within a suture mount of a corresponding arm of the plurality of arms.


In various embodiments a suturing system can comprise a suturing device having an elongate body with a proximal end and a distal end. The device can include a first plurality of arms near the distal end and each arm can be configured to move between a first position wherein the arm is retracted within the elongate body and a second position wherein the arm has a free end extending away from the elongate body. Each arm can have at least one suture mount at the free end. The device can also have a second plurality of arms proximal to the first plurality of arms. Each arm of the second plurality of arms can be configured to move between a first position wherein the arm is retracted within the elongate body, and a second position wherein the arm has a free end extending away from the elongate body. A sheath can be adapted to surround at least a portion of the elongate body. The device can include a plurality of needles, and each needle can be configured to move between a retracted position in which a distal point of the needle is proximal to the second plurality of arms and a deployed position in which the distal point of the needle extends through an arm of the second plurality of arms and a corresponding suture mount. The device can also have a plurality of suture portions, each suture portion having a suture end that is releasably retained within a suture mount of a corresponding arm of the first plurality of arms.


Methods of use are also described. In some embodiments, a suturing system can be delivered through an opening in the wall of a blood vessel and into the blood vessel. The suturing system can include a suturing device with an elongate body having a proximal end and a distal end, a plurality of arms near the distal end, a sheath at least partially surrounding the elongate body, and a plurality of needles positioned at least partially within a needle carriage that surrounds at least a portion of the elongate body. The needle carriage can be further configured to surround at least a portion of the sheath.


The plurality of arms can be extended from the elongate body of the suturing device, each of the arms carrying a suture portion having a suture end releasably retained in a respective arm. The plurality of arms can be positioned against an inside surface of the wall of the blood vessel, and the needle carriage can be advanced into a position aligned with the plurality of arms. The plurality of needles can be advanced from the needle carriage through the wall of the blood vessel, each needle aligned with a respective suture mount located in a respective arm and engaging a respective suture portion positioned in the respective suture mount. The needles can be retracted through the wall of the blood vessel to draw the respective suture ends through the wall of the blood vessel. The needle carriage can be retracted to withdraw the suture ends engaged by the needles to a location outside of the patient. The sheath can be advanced at least partially through the wall of the blood vessel, the plurality of arms can be retracted into the elongate body of the suturing device, and the elongate body can be withdrawn from the blood vessel while leaving the sheath at least partially within the wall of the blood vessel.


In some embodiments, a suturing system can be delivered through an opening in a biological structure. The suturing system can comprise an elongate body having a proximal end and a distal end, a plurality of arms near the distal end, and a sheath at least partially surrounding the elongate body. The plurality of arms can be extended from the elongate body of the suturing device, each of the arms carrying a suture portion having a suture end releasably retained in a respective arm. The arms can be positioned against or near an interior surface of the biological structure and a plurality of needles can be advanced from a position outside of the biological structure and outside of the sheath through tissue of the biological structure to engage the suture ends releasably retained in the respective arms. The plurality of needles can be retracted through the tissue of the biological structure to draw the respective suture ends through the tissue of the biological structure. The needle carriage can be retracted to withdraw the suture ends engaged by the needles to a location outside of the patient. The sheath can be advanced at least partially through the opening in the biological structure. The plurality of arms can be retracted into the elongate body of the suturing device and the elongate body can be withdrawn from the biological structure while leaving the sheath at least partially within the opening of the biological structure.





BRIEF DESCRIPTION OF THE DRAWINGS

The above-mentioned and other features disclosed herein are described below with reference to the drawings of specific embodiments. The illustrated embodiments are intended for illustration, but not limitation. The drawings contain the following figures:



FIG. 1 is a schematic drawings of one embodiment of a suturing system for suturing an anatomic structure.



FIG. 2A is a schematic drawing of a distal assembly of a suturing system having a first and second set of arms in a retracted position.



FIG. 2B is a schematic drawing of the distal assembly of FIG. 2 with the first and second arms in an extended position.



FIGS. 3A through 3D illustrate various embodiments of a needle carriage.



FIGS. 4A through 4D illustrate cross-sectional views of the needle carriages of FIGS. 3A through 3D, respectively.



FIG. 5 is a schematic drawing of one embodiment of a distal arm.



FIG. 6A is a schematic drawing of one embodiment of a proximal arm.



FIG. 6B is a cross-sectional view taken along the line 6B-6B of the embodiment of FIG. 6A.



FIG. 7 is a schematic cross-sectional view of one embodiment of a section of a suturing system distal assembly.



FIG. 8 is a schematic representation of a suturing system passing through an opening in an aorta wall.



FIG. 9 is a schematic representation as in FIG. 8 showing distal arms in an extended position.



FIG. 10 is a schematic representation as in FIG. 9 showing distal arms in contact with the aorta wall.



FIG. 11 is a schematic representation as in FIG. 10 showing proximal arms in an extended position.



FIG. 12 is a schematic representation as in FIG. 11 showing a needle carriage advanced into a position adjacent the proximal arms.



FIG. 13A is a schematic representation as in FIG. 12 showing suture catch mechanisms engaging suture clasps.



FIG. 13B is a cross-sectional view of the section identified as 13B in FIG. 13A.



FIG. 14 is a schematic representation as in FIG. 13A showing the needle carriage withdrawn and suture ends passing through a trocar inserted into a chest wall.



FIG. 15 is a schematic representation as in FIG. 14 showing a sheath advanced into the hole in the aorta wall.



FIG. 16 is a schematic representation as in FIG. 15 showing the device withdrawn and the sheath remaining in the hole in the aorta wall.



FIG. 17 is a schematic representation as in FIG. 16 showing a suture portion pulled into the aorta.





DETAILED DESCRIPTION OF SPECIFIC EMBODIMENTS

Embodiments of suturing devices and methods used to apply sutures and/or suture closed openings at, within, or into a biological structure while maintaining or substantially maintaining haemostasis are described herein. The suturing devices and methods can be used to place sutures prior to performing a surgical procedure and to prepare access for the procedure while maintaining or substantially maintaining haemostasis. The placed sutures can then be used to tighten an opening while any devices or tools are withdrawn, closing the opening while the final device or tool leaves the opening such that the opening is never without a device or tool inside it during the course of the procedure. Embodiments described herein can be used to provide access to and/or suture an access opening to a biological structure where space outside of the biological structure is limited, such as the aorta.


In the embodiments described herein, the disclosed devices are used to place sutures to close an opening into an aorta, although they are not limited to applications within the aorta or the vasculature generally. The aorta can be accessed through a sternotomy or limited thoracotomy, or alternatively the device can pass through a trocar or other element into the thoracic cavity and then be led toward a puncture in the aorta, typically by following a guide wire.


In some embodiments, the suturing devices can be used to close or reduce a variety of other tissue openings, lumens, hollow organs, or natural or surgically created passageways in the body. In some embodiments, the suturing devices can be used to suture prosthetics, synthetic materials, or implantable devices in the body. For example, the devices can be used to suture a pledget within the body.


Further details of suturing devices and methods that may be used to suture openings in a biological structure can be found in U.S. Patent Publication No. 2011/0190793 A1, published Aug. 4, 2011, which is hereby incorporated by reference in its entirety and a copy of which is enclosed and is included as part of this specification. Features and procedures described in the aforementioned publication can be incorporated into the embodiments described herein.



FIG. 1 illustrates one embodiment of a suturing device 10 that can be used to insert sutures through the wall of a biological structure in anticipation of performing a surgical procedure in or through the biological structure while maintaining hemostasis. In some embodiments the device can be used to insert sutures through the wall of a blood vessel, such as the aorta. The device may comprise one or more elongate bodies and has a proximal and a distal end. At the proximal end, the suturing device can include a handle 20 with various actuation elements 22, such as buttons or levers, that can be used to control various components of the device. Further details regarding handles and associated components, including actuator rods, are provided in U.S. Patent Application Publication No. 2008/0269786, published on Oct. 30, 2008, which is hereby incorporated by reference herein in its entirety.


At the distal end of the suturing device 10, the suturing device can include a distal assembly 30. The distal assembly can include an elongate body 40 that has a distal end and a proximal end. The distal assembly can also include one or more distal suture arms 50 and one or more proximal extensions or arms 60 that are positioned proximal to the distal suture arms. When the device is assembled, it can also include a sheath 32 that surrounds at least a portion of the elongate body, and an outer sleeve or needle carriage 70 that also surrounds at least a portion of the elongate body. As described further below, in some embodiments the needle carriage can include one or more suture catch mechanisms or needles.


In some embodiments, the sheath and/or the needle carriage can move axially relative to the elongate body. In some embodiments, the needle carriage 70 can surround at least a portion of the sheath 32 when the device is assembled. Preferably, the needle carriage can rotate relative to the sheath and/or the elongate body, but in some embodiments the needle carriage can have a fixed orientation relative to the sheath and/or the elongate body. In some embodiments, as described further below, a suturing device can have elements such as mechanical stops and/or detents that provide an indexing or alignment function, allowing an operator of the device to determine when the needle carriage has been moved and/or rotated into a desired position.



FIGS. 2A and 2B illustrate a perspective view of the distal assembly 30. As illustrated, in some embodiments a distal assembly can include a plurality of distal arms 50 and a plurality of proximal extensions 60 that can also be arms. FIG. 2A illustrates the distal and proximal arms in a retracted position, in which the arms are at least partially within the elongate body 40. In FIG. 2B, the distal and proximal arms are illustrated in an extended position, in which the arms extend outward from the elongate body. In some embodiments, as illustrated, the arms can extend from the elongate body at approximately a 90 degree angle, but in other embodiments the arms can extend at an angle less than 90 degrees. In some embodiments, the proximal arms in an extended position may extend from the elongate body at approximately a 90 degree angle, while the distal arms in an extended position may extend from the elongate body at an angle less than 90 degrees. In some embodiments, the distal arms may extend from the elongate body in the extended position at approximately 90 degrees, while the proximal arms extend from the elongate body in the extended position at an angle less than 90 degrees


In various embodiments the distal assembly 30 can have a varying number of arms 50, 60. In some embodiments the distal assembly has four distal arms 50 spaced approximately 90 degrees apart from each other and four proximal arms 60 spaced approximately 90 degrees from each other. In some embodiments the distal assembly can comprise fewer than four distal arms 50, such as two distal arms, or more than four distal arms. In some embodiments, for each distal arm there can be a second distal arm positioned 180 degrees about the elongate body from the first distal arm.


In some embodiments the distal assembly can comprise fewer than four proximal extensions or arms 60, such as two proximal arms, or more than four proximal arms. In some embodiments, for each proximal arm there can be a second proximal arm positioned 180 degrees about the elongate body from the first proximal arm. In some embodiments, the distal assembly has the same number of proximal arms as distal arms, though in some embodiments they differ in number. In some embodiments, each proximal arm can be aligned with a corresponding distal arm along a line parallel to a longitudinal axis of the elongate body 40.


In some embodiments, the proximal extensions or arms 60 can be one or more extensions that extend circumferentially around a portion of the elongate body 40. In some embodiments, proximal extensions can each extend around a quarter, a third, or a half of the circumference of the elongate body. In some embodiments, proximal extensions 60 can be a single extension. The single extension can wrap around the circumference of the elongate body. As described above, proximal extensions can have a retracted position in which the extensions are within the elongate body and an extended position in which they extend out of the elongate body. Also as described above, the extensions can extend from the elongate body at varying angles when in the extended position, including at 90 degrees.


As further illustrated in FIGS. 2A and 2B, in some embodiments the elongate body 40 can include a tapered distal tip 42. The tapered tip can help when inserting the elongate body into or through biological tissue. The elongate body can also have a central lumen 44 that can be used to receive a guidewire, as discussed further below.


As illustrated in FIG. 2B, the distal arms 50 may be distal suture arms 50 that include one or more suture mounts or clasps 52 at a distal end of the suture arms. The suture clasps 52 can be adapted to releasably retain a suture portion, as described further below. In some embodiments, a suture portion can run from inside the elongate body along the length of an arm 50 to a suture clasp. As illustrated, when the distal suture arms 50 and the proximal extensions or arms 60 rotate from the retracted to the extended position, or from the extended to the retracted position, a free end of the arms will move towards a distal end of the elongate body. In some embodiments, the suture arms 50 and/or the extensions or arms 60 can be configured to rotate from the retracted to the extended position, or from the extended to the retracted position, such that as the arms rotate from the extended to the retracted position their free ends will move towards a proximal end of the suturing device. In some embodiments, the arms can slide or move in other ways from the retracted to the extended position or from the extended to the retracted position.


In some embodiments, the distal suture arms 50 can simultaneously move from a retracted to an extended position or from an extended to a retracted position. In some embodiments, the arms 50 can move independently. Similarly, in some embodiments the proximal extensions or arms 60 can move independently or simultaneously.


In some embodiments, the proximal extensions or arms 60 can be shorter than the distal suture arms 50. In some embodiments, when the proximal extensions or arms 60 are in an extended position, their distal ends can be closer to the elongate body than the distal ends of the distal suture arms 50 are when the distal suture arms are in an extended position. This can help minimize the space that the device requires outside of a biological structure.



FIGS. 3A through 3D illustrate various embodiments of the needle carriage 70. It is understood that various features, components, or other elements discussed with respect to any of these embodiments is not limited to the particular embodiment in which it appears, but can be included in combination with features, components, or elements illustrated or discussed with respect to any other described embodiment. Generally, the outer sleeve or needle carriage 70 includes a central lumen 72 and one or more outer lumens 74. One or more of the outer lumens can be used to house a suture catch mechanism or needle 90, as illustrated and described in more detail below. In some embodiments, the needle carriage 70 can have four outer lumens spaced symmetrically about a central axis of the needle carriage. In some embodiments, the needle carriage can have more than four or fewer than four outer lumens. In some embodiments, the needle carriage can have as many outer lumens as there are distal suture arms 50.


In some embodiments, as illustrated in FIG. 3A, the needle carriage 70 can have one or more sections, such as a first section 76A and a second section 76B. The first and second sections can be separated by one or more weakened areas 77 that allow the first section and second section to be broken apart and separated from each other so that the carriage can be removed from around the elongate body of a suturing device, as described below.


In some embodiments, the weakened area 77 can be a complete dislocation, such that the first section and second section are not integral. In some embodiments, a clasp or ring 78 can be used to maintain the first and second sections together until an operator decides to separate them. In some embodiments, the needle carriage can have a plurality of sections separated by weakened areas or complete disclocations.


In some embodiments, as illustrated in FIG. 3B, the needle carriage 70 can include one or more keys or detents 75 along a distal facing surface. The detents can be used to help align the needle carriage with the proximal extensions or arms 60, as described in more detail below. In some embodiments, as illustrated in FIG. 3C, the needle carriage can include a spreader section 80 at a distal end. The spreader section can be used to help deflect needles exiting the outer lumens 74 such that they exit at a desired angle relative to a central axis of the needle carriage. In some embodiments, the spreader section can be a ring or other attachment connected to the body 71 of the needle carriage. In some embodiments, the spreader section can be integrally formed with and be part of the body 71 of the needle carriage.


In some embodiments, as illustrated in FIG. 3D, a needle carriage 70 can include one or more keys or detents 50 that project into the central lumen 72. In some embodiments, keys or detents that project inward can interact with recesses on the elongate body to act as an index point, as described further below.



FIGS. 4A through 4D illustrate cross-sectional views of the embodiments illustrated in FIGS. 3A through 3D, respectively. FIGS. 4A through 4D illustrate a suture catch mechanism or needle 90 positioned within the outer lumens 74. The needles are illustrated in a retracted position within a corresponding outer lumen. In some embodiments, the needles can move to a deployed position in which a distal tip of the needle extends out of the lumen, as described in more detail below. FIG. 5C illustrates the spreader section 80. The spreader section can include a spreader ramp or angled face 82 that can be used to deflect the needles away from the needle carriage 70 when they move to a deployed position. As illustrated in FIG. 5D, in some embodiments a key or detent 75 extends into the central lumen 72 of the needle carriage 70. In some embodiments, the key 75 can have an angled or beveled surface 73. The angled surface can help the key 75 move out of a corresponding recess on the elongate body, as described further below.



FIG. 5 illustrates one embodiment of a distal suture arm 50. As described above, the suture arm can include a suture mount or clasp 52 that can releasably retain a suture portion (not illustrated). The suture clasp can include an opening that extends through the arm, which allows a suture catch mechanism or needle to pass through the opening when extended and then catch the suture when retracted, drawing the suture with it. As illustrated, in some embodiments a distal suture arm can include a sharp edge 54, or any hook point needle tip knurling or other roughening on a surface that faces towards a proximal end of the elongate body when the suture arm is in the extended position. A sharp edge or other roughening can help retain the suture arm in a position against body tissue, as described below.



FIGS. 6A and 6B illustrate one embodiment of a proximal extension or arm 60. FIG. 6A illustrates a top view of the arm and FIG. 6B illustrates a cross-section of the arm along the line 6B-6B of FIG. 6A. In some embodiments, a proximal arm can include a needle receiving end 62 that has a needle receiving or needle guiding section 64. The needle receiving end can include one or more extensions 68 that at least partially surround the needle guiding section, limiting the lateral motion of a needle passing through the needle guiding section.


In some embodiments, a proximal extension or arm 60 can include a spreader ramp or angled surface 66. This can be used to help deflect a needle through the needle guiding section 64 and toward a suture mount or clasp of a distal arm. Also as illustrated in FIG. 6B, in some embodiments a proximal arm 60 can include a detent mating recess 65, which can be used to mate with a detent 75 of a needle carriage 70, ensuring alignment between the outer lumens 74 and the needle guiding section 64. In some embodiments, the arm can include a protruding detent, and the needle carriage can have one or more corresponding detent mating recesses. In some embodiments, engagement of the protruding and recessed detents can indicate to an operator of the device that the needle carriage is in a desired position relative to the elongate body 40.


In some embodiments, the elongate body 40 of a suturing device can have one or more key or detent recesses 45 instead of or in addition to proximal extensions or arms. In some embodiments, each of the key recesses can be configured to mate with a corresponding key projection on a needle carriage.



FIG. 7 illustrates a schematic cross-sectional view of a portion of a distal assembly 30 that has a plurality of key recesses instead of proximal extensions to help identify when the needle carriage is in a desired position relative to the elongate body 40. As illustrated, the detents 75 can fit into the recesses 45. In some embodiments, the needle carriage 70 can be biased into the illustrated position but can flex outward. In such embodiments, when moving the needle carriage proximally from the illustrated position, the angled surface 73 on the detent 75 can contact a corner of the recess 45, which pushes the detent outward, allowing the carriage to be retracted. Additionally, when the sheath 32 is moved distally relative to the carriage 70, the sheath can contact the angled surface 73 and flex the needle carriage outward, allowing the sheath to pass the detent 75.


In some embodiments, as further illustrated in FIG. 7, needles 90 can be longitudinally aligned with suture clasps 52. In some embodiments, the needle can be in longitudinal alignment with a position medial to the suture clasps 52, and the needle carriage can include a spreader section, as described above. FIG. 7 also illustrates an embodiment in which suture portions 14 extend outward from the elongate body 40 and loop into position with their distal ends in the suture clasps 52.



FIGS. 8 through 17 illustrate one method of using a suturing device 10 to place sutures through tissue near an opening 3 in a biological structure, such as the aorta 2. The device can further be used to position a sheath through the opening to allow for entry of other devices, while maintaining or nearly maintaining hemostasis. In the illustrated method a suturing device 10 is inserted into the chest cavity through a trocar in the chest wall to access the aorta, though as discussed above the suturing device can be used with a variety of other biological structures. The device 10 can follow a guidewire 12 through a puncture in the aortic wall 2, the tapered distal end 42 widening the opening 3 as the device enters further into the aorta. The device is preferably inserted until the distal suture arms 50 have completely passed through the hole 3 in the wall 2 and are completely within the aorta.


As illustrated in FIG. 9, once the distal arms 50 are completely within the aorta they can be moved into the extended position. An operator of the device can then withdraw the device until the arms contact the aortic wall 2, as illustrated in FIG. 10. In some embodiments, a sharp edge or roughening in the suture arms 50, as described above, can help maintain the distal assembly 30 in position. In FIG. 11, the proximal arms 60 have been moved into an extended position within the chest cavity, and the device now has both sets of arms in the extended position with the distal arms braced against the aortic wall 2. As discussed above, the distal and proximal arms are preferably in alignment.


Once the proximal arms 60 have been extended, the needle carriage 70 can be advanced until it contacts or is adjacent the proximal arms 60, as illustrated in FIG. 12. In some embodiments, the proximal arms 60 can serve as an index point, and an operator of the device can rely upon contact with the proximal arms to indicate that the needle carriage has advanced to a desired position along the length of the elongate body 40. As described above, in some embodiments the needle carriage and proximal arms can have corresponding detents which can help ensure that the needle carriage is properly aligned circumferentially relative to the proximal arms. Where the proximal and distal arms 50 are aligned, aligning the needle carriage with the proximal arms also aligns the needle carriage with the distal arms. In some embodiments, other alignment mechanisms can be used to ensure proper alignment. In some embodiments, the outer lumens of needle carriage can each be aligned with a corresponding proximal arm and a corresponding distal arm.


As illustrated in FIG. 13A, once the needle carriage 70 is positioned against or near the proximal arms 60 and aligned as desired, the needles 90 can be extended from a retracted position in which the needles are within the needle carriage and a distal point of the needles is proximal to the proximal arms, to a deployed position in which a distal point of the needles extends out from the needle carriage and into a corresponding suture mount. As illustrated, the needles in the deployed position must pass through the aortic wall 2 to reach a corresponding suture mount or clasp 52.


As described above, the needle carriage can include a spreader or deflector section that can deflect the needles at an angle outward from a longitudinal axis of the needle carriage and elongate body. In some embodiments, rather than having a spreader section in the needle carriage, the proximal arms 60 can include a spreader ramp or angled surface 66 that can be used to deflect the needles outward, as discussed above. In some embodiments, both the needle carriage 70 and proximal arms 60 can have a spreader ramp or angled surface that can help deflect the needles when the needles move from a retracted to a deployed position.


To provide a clearer illustration of the relationship between various components of the distal assembly 30 in the illustrated embodiment, FIG. 13B illustrates a cross-sectional view of the section identified as 13B in FIG. 13A. As illustrated, the suture catch mechanism or needles 90 are in a deployed position, extending out of the outer lumens 74 of the needle carriage 70. A spreader ramp or angled surface 66 on the proximal arms 60 has deflected the needles away from the elongate body and from the needle carriage. Within the central lumen 72 of the needle carriage 70 is the sheath 32 and walls 46 of the elongate body.


The needles in the deployed position can engage the sutures 14, releasably positioned in the suture clasps 52, such that when the needles retract back into the needle carriage they draw the suture ends with them, as illustrated in FIG. 14. In some embodiments, the needles can move from the retracted to deployed (and from the deployed to the retracted) position simultaneously. In some embodiments, the needles can move sequentially between positions. In some embodiments, the needle carriage may have only a single needle that catches a suture end from a first suture clasp, rotates with the needle carriage into alignment with a second suture clasp, and then catches a suture end from the second suture clasp.


Once the needles have fired and drawn sutures through the aortic wall 2, the needle carriage can be withdrawn from within the chest cavity, drawing the suture ends with it. As illustrated in FIG. 14, the ends of suture captured by the needles will run from within the elongate body 40, through the aortic wall 2, and then out of the body cavity, such as through a trocar 6 through the chest wall 4. Once the needles have been withdrawn, the needle carriage can be moved to a position that is out of the way. In some embodiments, this can include moving the needle carriage proximally out of the body cavity. In some embodiments, the needle carriage can be separated into different sections, as described above, and removed entirely from around the elongate body.


As illustrated in FIG. 15, the proximal arms 60 can be moved back into a retracted position and the sheath 32 can be advanced distally through the hole in the aortic wall 2. Preferably, the sheath is advanced until it contacts the distal suture arms 50, thus providing an operator with confirmation that the sheath is within the hole in the aortic wall. Once the sheath is within the hole, the sheath can be relied upon to maintain hemostasis, the distal arms 50 can be returned to a retracted position, and the suturing device can be removed from within the sheath, as illustrated in FIG. 16. Thus, the suture portions 14 that were within the suturing device will pass through the sheath and out of the body cavity, and the remaining suture will pass as previously illustrated as described.


In some embodiments, suture arms 60 that are positioned approximately 180 degrees apart from each other can be preloaded with a single piece of suture. In such embodiments, when the device is removed from the sheath 32, the suture portions extending through the sheath are joined together and the only ends of suture extend outside of the sheath. The ends extending outside of the sheath can be pulled, and the joined suture portions can be pulled through the sheath and into the vessel as illustrated in FIG. 17.


In some embodiments, if a single piece of suture is not used and the suture portions passing through the sheath need to be secured together, they can be secured together with a knot or other device prior to pulling on the ends of suture passing outside of the sheath. Further details regarding a device for joining sutures are provided in U.S. Patent Application Publication No. 2011/0190793, published on Aug. 4, 2011, which is hereby incorporated by reference herein in its entirety and a copy of which is enclosed and is included as part of this specification.


In some embodiments, suture ends that pass through the sheath can be secured together in pairs, each pair having suture ends that had been releasably attached to arms 50 spaced about 180 degrees apart around the circumference of the elongate body 40. By then pulling on one or more of the remaining free suture ends, the joined suture 14 can be pulled through the sheath and into the blood vessel, as illustrated in FIG. 17. FIG. 17 only shows one suture, but other sutures can pass in planes other than the illustrated plane. In some embodiments, a second suture can pass through the aorta in a plane substantially perpendicular to the illustrated cross-section.


Further details regarding procedures for tying sutures and methods for closing openings can be found in PCT Application No. PCT/US2013/040418, filed on May 9, 2013, which is hereby incorporated by reference herein in its entirety and a copy of which is enclosed and is included as part of this specification.


Once the suture 14 has been pulled into the aorta as illustrated in FIG. 17, a suturing or other surgical device can be inserted through the sheath 32 and into the aorta. In some embodiments, prior to inserting a device into the aorta, it may be desirable to replace the sheath with a different sheath. This can be done by standard procedures known in the art, and can also be done while maintaining a sheath within the opening to thereby maintain hemostasis. For example, an obturator may be slid over the sheath 32. The sheath 32 can then be removed, and a larger sheath may be delivered over the obturator.


Once the desired procedure or procedures have been performed, the sheath can be withdrawn while tightening the sutures to close the opening around the sheath as the sheath is withdrawn. In some embodiments, a tapered sheath can be inserted prior to closing the opening, which can make it easier to close the opening tightly around the sheath as the sheath is withdrawn from the aorta. In some embodiments, a knot delivery device, such as the device mentioned above and described in U.S. Patent Application Publication No. 2011/0190793 and incorporated by reference herein, can be preloaded with two or more of the end portions of sutures 14 and delivered into the body cavity alongside the sheath, making it easier to maintain a tightening pressure as the sheath is withdrawn. The opening in the aorta wall can then be closed by applying or tying a knot to the suture ends or by other known methods.


Although the foregoing description of the preferred embodiments has shown, described and pointed out the fundamental novel features of the invention, it will be understood that various omissions, substitutions, and changes in the form of the detail of the apparatus as illustrated as well as the uses thereof, may be made by those skilled in the art, without departing from the spirit of the invention.


Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, structure or characteristic described in connection with the embodiment is included in at least one embodiment. Thus, appearances of the phrases “in one embodiment” or “in an embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures or characteristics of any embodiment described above may be combined in any suitable manner, as would be apparent to one of ordinary skill in the art from this disclosure, in one or more embodiments.


Similarly, it should be appreciated that in the above description of embodiments, various features of the inventions are sometimes grouped together in a single embodiment, figure, or description thereof for the purpose of streamlining the disclosure and aiding in the understanding of one or more of the various inventive aspects. This method of disclosure, however, is not to be interpreted as reflecting an intention that any claim require more features than are expressly recited in that claim. Rather, as the following claims reflect, inventive aspects lie in a combination of fewer than all features of any single foregoing disclosed embodiment. Thus, the claims following the Detailed Description are hereby expressly incorporated into this Detailed Description, with each claim standing on its own as a separate embodiment.

Claims
  • 1. A suturing system, comprising: a suturing device comprising an elongate body having a proximal end and a distal end;a first plurality of arms near the distal end, wherein each arm of the first plurality of arms comprises a fixed end and a free end, and is configured to rotatably move between a first position wherein the arm is retracted within the elongate body and the fixed end is located proximal to the free end, and a second position wherein the free end extends away from the elongate body, the fixed end coupled to the elongate body opposite the free end when in the first position and in the second position, and each arm comprising at least one suture mount at the free end;a second plurality of arms proximal to the first plurality of arms, wherein each arm of the second plurality of arms is configured to move between a first position wherein the arm is retracted within the elongate body, and a second position wherein the arm has a free end extending away from the elongate body, each of the second plurality of arms having a length extending from an end coupled to the elongate body to the free end, and a width that is transverse to the length;a sheath adapted to surround at least a portion of the elongate body;a plurality of needles, each needle configured to move between a retracted position in which a distal point of the needle is proximal to the second plurality of arms and a deployed position in which the distal point of the needle extends through an arm of the second plurality of arms and into a corresponding suture mount of the first plurality of arms, wherein each of the second plurality of arms comprises a needle guide path that extends across the width of each of the second plurality of arms; anda plurality of suture portions, wherein each suture portion has a suture end releasably retained within the suture mount of a corresponding arm of the first plurality of arms.
  • 2. The suturing system of claim 1, wherein the first plurality of arms comprises four arms near the distal end.
  • 3. The suturing system of claim 2, wherein the suturing device comprises four needles, each needle associated with a corresponding arm of the first plurality of arms.
  • 4. The suturing system of claim 2, wherein the second plurality of arms comprises four arms, each of the second plurality of arms aligned with a corresponding arm of the first plurality of arms.
  • 5. The suturing system of claim 1, wherein the needles are configured to simultaneously move to the deployed position.
  • 6. The suturing system of claim 1, wherein the free ends of the each of the first plurality of arms move proximally when the arms move from the first position to the second position.
  • 7. The suturing system of claim 1, further comprising a needle carriage configured to at least partially surround the elongate body.
  • 8. The suturing system of claim 7, wherein the needle carriage is configured to at least partially surround at least a portion of the sheath.
  • 9. The suturing system of claim 7, wherein the needle carriage comprises at least two separable pieces.
  • 10. The suturing system of claim 7, wherein the needle carriage comprises a plurality of lumens.
  • 11. The suturing system of claim 10, wherein each of the plurality of needles is positioned within a lumen of the plurality of lumens.
  • 12. The suturing system of claim 7, wherein the needle carriage comprises at least one detent at a distal end configured to mate with a detent on a proximal surface of an arm of the second plurality of arms.
  • 13. The suturing system of claim 12, wherein the needle carriage detent is a protrusion and the arm detent is a recess.
  • 14. The suturing system of claim 1, wherein each of the second plurality of arms are shorter than each of the first plurality of arms so that when in the second position, the free end of each of the first plurality of arms is further away from the elongate body than the free end of each of the second plurality of arms.
  • 15. The suturing system of claim 1, wherein the first plurality of arms are substantially parallel to the second plurality of arms in the second position.
  • 16. The suturing system of claim 1, wherein the second plurality of arms in the second position are at 90 degrees to the elongate body.
  • 17. The suturing system of claim 1, wherein the needle guide path comprises a ramp or angled surface.
  • 18. The suturing system of claim 1, wherein the needle guide path is located at or near the free end of an arm of the second plurality of arms.
  • 19. A suturing system, comprising: a suturing device comprising an elongate body having a proximal end and a distal end;a first plurality of arms near the distal end, wherein each arm of the first plurality of arms comprises a fixed end and a free end, and is configured to move between a first position wherein the arm is retracted within the elongate body and the fixed end is located proximal to the free end in the first position, and a second position wherein the free end extends away from the elongate body, the fixed end coupled to the elongate body opposite the free end when in the first position and in the second position, the free end rotating away from the elongate body when the arm moves from the first position to the second position, each arm comprising at least one suture mount at the free end;a second plurality of arms proximal to the first plurality of arms, wherein each arm of the second plurality of arms is configured to move between a first position wherein the arm is retracted within the elongate body, and a second position wherein the arm has a free end extending away from the elongate body;a sheath adapted to surround at least a portion of the elongate body;a plurality of needles, each needle configured to move between a retracted position in which a distal point of the needle is proximal to the second plurality of arms and a deployed position in which the distal point of the needle extends through an arm of the second plurality of arms and into a corresponding suture mount;a plurality of suture portions, wherein each suture portion has a suture end releasably retained within a suture mount of a corresponding arm of the first plurality of arms; anda needle carriage configured to at least partially surround the elongate body, wherein the needle carriage comprises at least one detent at a distal end configured to mate with a detent on a proximal surface of an arm of the second plurality of arms.
  • 20. The suturing system of claim 13, wherein the at least one detent on the needle carriage is a protrusion and the detent on the arm of the second plurality of arms is a recess.
  • 21. A suturing system, comprising: a suturing device comprising an elongate body having a proximal end and a distal end;a first plurality of arms near the distal end, wherein each arm of the first plurality of arms comprises a fixed end and a free end, and is configured to move between a first position wherein the arm is retracted within the elongate body and the fixed end is located proximal to the free end in the first position, and a second position wherein the free end extends away from the elongate body, the free end rotating away from the elongate body when the arm moves from the first position to the second position, each arm comprising at least one suture mount at the free end;a second plurality of arms proximal to the first plurality of arms, wherein each arm of the second plurality of arms is configured to move between a first position wherein the arm is retracted within the elongate body, and a second position wherein the arm has a free end extending away from the elongate body, each of the second plurality of arms having a length extending from an end coupled to the elongate body to the free end, and a width that is transverse to the length;a sheath adapted to surround at least a portion of the elongate body;a plurality of needles, each needle configured to move between a retracted position in which a distal point of the needle is proximal to the second plurality of arms and a deployed position in which the distal point of the needle extends through an arm of the second plurality of arms and into a corresponding suture mount of the first plurality of arms, wherein each of the second plurality of arms comprises a needle guide path that extends across the width of each of the second plurality of arms; anda plurality of suture portions, wherein each suture portion has a suture end releasably retained within the suture mount of a corresponding arm of the first plurality of arms.
  • 22. The suturing system of claim 21, wherein the first plurality of arms comprises four arms near the distal end.
  • 23. The suturing system of claim 22, wherein the suturing device comprises four needles, each needle associated with a corresponding arm of the first plurality of arms.
  • 24. The suturing system of claim 22, wherein the second plurality of arms comprises four arms, each of the second plurality of arms aligned with a corresponding arm of the first plurality of arms.
  • 25. The suturing system of claim 21, wherein the needles are configured to simultaneously move to the deployed position.
  • 26. The suturing system of claim 21, wherein the free ends of the each of the first plurality of arms move proximally when the arms move from the first position to the second position.
PCT Information
Filing Document Filing Date Country Kind
PCT/US2014/044429 6/26/2014 WO 00
Publishing Document Publishing Date Country Kind
WO2015/002815 1/8/2015 WO A
US Referenced Citations (543)
Number Name Date Kind
118683 Bruce Sep 1871 A
1064307 Fleming Jun 1913 A
1822330 Ainslie Sep 1931 A
1989919 Everitt Feb 1935 A
2348218 Karle May 1944 A
2473742 Auzin Jun 1949 A
2548602 Greenburg Apr 1951 A
2637290 Sigoda May 1953 A
2849002 Oddo Aug 1958 A
2945460 Kagiyama Jul 1960 A
3241554 Coanda Mar 1966 A
3292627 Harautuneian Dec 1966 A
3394705 Abramson Jul 1968 A
3664345 Dabbs et al. May 1972 A
3665926 Flores May 1972 A
3774596 Cook Nov 1973 A
3828790 Curtiss et al. Aug 1974 A
3831587 Boyd Aug 1974 A
3842840 Schweizer Oct 1974 A
3877434 Samuels Apr 1975 A
3882852 Sinnreich May 1975 A
3882855 Schulte et al. May 1975 A
3888117 Lewis Jun 1975 A
3903893 Scheer Sep 1975 A
3946740 Bassett Mar 1976 A
3946741 Adair Mar 1976 A
3952742 Taylor Apr 1976 A
3976079 Samuels Aug 1976 A
4052980 Grams et al. Oct 1977 A
RE29703 Fatt Jul 1978 E
4107953 Casillo Aug 1978 A
4119100 Rickett Oct 1978 A
4164225 Johnson et al. Aug 1979 A
4230119 Blum Oct 1980 A
4291698 Fuchs et al. Sep 1981 A
4299237 Foti Nov 1981 A
4307722 Evans Dec 1981 A
4345601 Fukuda Aug 1982 A
4351342 Wiita et al. Sep 1982 A
4417532 Yasukata Nov 1983 A
4423725 Baran et al. Jan 1984 A
4447227 Kotsanis May 1984 A
4457300 Budde Jul 1984 A
4484580 Nomoto et al. Nov 1984 A
4512338 Balko et al. Apr 1985 A
4546759 Solar Oct 1985 A
4553543 Amarasinghe Nov 1985 A
4573966 Weikl et al. Mar 1986 A
4589868 Dretler May 1986 A
4610662 Weikl et al. Sep 1986 A
4617738 Kopacz Oct 1986 A
4662068 Polonsky May 1987 A
4664114 Ghodsian May 1987 A
4734094 Jacob et al. Mar 1988 A
4744364 Kensey May 1988 A
4750492 Jacobs Jun 1988 A
4771776 Powell et al. Sep 1988 A
4774091 Yamahira et al. Sep 1988 A
4794928 Kletschka Jan 1989 A
4795427 Helzel Jan 1989 A
4796629 Grayzel Jan 1989 A
4824436 Wolinsky Apr 1989 A
4827931 Longmore May 1989 A
4841888 Mills et al. Jun 1989 A
4861330 Voss Aug 1989 A
4898168 Yule Feb 1990 A
4923461 Caspari et al. May 1990 A
4926860 Stice et al. May 1990 A
4932956 Reddy et al. Jun 1990 A
4935027 Yoon Jun 1990 A
4954126 Wallsten Sep 1990 A
4957498 Caspari et al. Sep 1990 A
4972845 Iversen et al. Nov 1990 A
4981149 Yoon et al. Jan 1991 A
4983116 Koga Jan 1991 A
4984564 Yuen Jan 1991 A
4994070 Waters Feb 1991 A
5002531 Bonzel Mar 1991 A
5021059 Kensey et al. Jun 1991 A
5037433 Wilk et al. Aug 1991 A
5057114 Wittich et al. Oct 1991 A
5059201 Asnis Oct 1991 A
5065772 Cox, Jr. Nov 1991 A
5074871 Groshong Dec 1991 A
5078743 Mikalov et al. Jan 1992 A
5090958 Sahota Feb 1992 A
5100418 Yoon et al. Mar 1992 A
5104394 Knoepfler Apr 1992 A
5106363 Nobuyoshi Apr 1992 A
5108416 Ryan et al. Apr 1992 A
5108419 Reger et al. Apr 1992 A
5116305 Milder et al. May 1992 A
5122122 Allgood Jun 1992 A
5129883 Black Jul 1992 A
5133724 Wilson et al. Jul 1992 A
5135484 Wright Aug 1992 A
5160339 Chen et al. Nov 1992 A
5163906 Ahmadi Nov 1992 A
5167223 Koros et al. Dec 1992 A
5171251 Bregen et al. Dec 1992 A
5176691 Pierce Jan 1993 A
5192301 Kamiya et al. Mar 1993 A
5222508 Contarini Jun 1993 A
5222941 Don Michael Jun 1993 A
5222974 Kensey et al. Jun 1993 A
5224948 Abe et al. Jul 1993 A
5236443 Sontag Aug 1993 A
5242459 Buelna Sep 1993 A
5281234 Wilk et al. Jan 1994 A
5281237 Gimpelson Jan 1994 A
5282827 Kensey et al. Feb 1994 A
5286259 Ganguly et al. Feb 1994 A
5290249 Foster et al. Mar 1994 A
5300106 Dahl et al. Apr 1994 A
5304184 Hathaway et al. Apr 1994 A
5308323 Sogawa et al. May 1994 A
5312344 Grinfeld May 1994 A
5314409 Sarosiek et al. May 1994 A
5320604 Walker et al. Jun 1994 A
5320632 Heidmueller Jun 1994 A
5330446 Weldon et al. Jul 1994 A
5330497 Freitas et al. Jul 1994 A
5331975 Bonutti Jul 1994 A
5336229 Noda Aug 1994 A
5336231 Adair Aug 1994 A
5337736 Reddy Aug 1994 A
5339801 Poloyko Aug 1994 A
5342306 Don Michael Aug 1994 A
5342385 Norelli et al. Aug 1994 A
5342393 Stack Aug 1994 A
5350399 Erlebacher et al. Sep 1994 A
5356382 Picha et al. Oct 1994 A
5364407 Poll Nov 1994 A
5364408 Gordon Nov 1994 A
5368601 Sauer et al. Nov 1994 A
5370618 Leonhardt Dec 1994 A
5370685 Stevens Dec 1994 A
5374275 Bradley et al. Dec 1994 A
5380284 Don Michael Jan 1995 A
5382261 Palmaz Jan 1995 A
5383854 Safar et al. Jan 1995 A
5383896 Gershony et al. Jan 1995 A
5383897 Wholey Jan 1995 A
5383905 Golds et al. Jan 1995 A
5389103 Melzer et al. Feb 1995 A
5391147 Imran et al. Feb 1995 A
5391174 Weston Feb 1995 A
2738790 Todt, Sr. et al. Mar 1995 A
5395383 Adams et al. Mar 1995 A
5397325 Badia et al. Mar 1995 A
5403329 Hinchcliffe Apr 1995 A
5403331 Chesterfield et al. Apr 1995 A
5403341 Solar Apr 1995 A
5405322 Lennox et al. Apr 1995 A
5405354 Sarrett Apr 1995 A
5417699 Klein et al. May 1995 A
5417700 Egan May 1995 A
5423777 Tajiri et al. Jun 1995 A
5423837 Mericle et al. Jun 1995 A
5425708 Nasu Jun 1995 A
5425737 Burbank et al. Jun 1995 A
5425744 Fagan et al. Jun 1995 A
5429118 Cole et al. Jul 1995 A
5431666 Sauer et al. Jul 1995 A
5439470 Li Aug 1995 A
5445167 Yoon et al. Aug 1995 A
5447515 Robicsek Sep 1995 A
5452513 Zinnbauer et al. Sep 1995 A
5454823 Richardson et al. Oct 1995 A
5458574 Machold et al. Oct 1995 A
5458609 Gordon et al. Oct 1995 A
5462560 Stevens Oct 1995 A
5462561 Voda Oct 1995 A
5470338 Whitefield et al. Nov 1995 A
5474572 Hayburst Dec 1995 A
5476469 Hathaway et al. Dec 1995 A
5476470 Fitzgibbons, Jr. Dec 1995 A
5496332 Sierra et al. Mar 1996 A
5499991 Garman et al. Mar 1996 A
5501691 Goldrath Mar 1996 A
5507754 Green et al. Apr 1996 A
5507755 Gresl et al. Apr 1996 A
5514159 Matula et al. May 1996 A
5520609 Moll et al. May 1996 A
5520702 Sauer et al. May 1996 A
5522961 Leonhardt Jun 1996 A
5527321 Hinchliffe Jun 1996 A
5527322 Klein et al. Jun 1996 A
5527338 Purdy Jun 1996 A
5540658 Evans et al. Jul 1996 A
5540704 Gordon et al. Jul 1996 A
5545170 Hart Aug 1996 A
5549633 Evans et al. Aug 1996 A
5558642 Schweich et al. Sep 1996 A
5558644 Boyd et al. Sep 1996 A
RE35352 Peters Oct 1996 E
5562686 Sauer et al. Oct 1996 A
5562688 Riza Oct 1996 A
5565122 Zinnbauer et al. Oct 1996 A
5571090 Sherts Nov 1996 A
5573540 Yoon Nov 1996 A
5584835 Greenfield Dec 1996 A
5584861 Swain et al. Dec 1996 A
5591195 Taheri et al. Jan 1997 A
5593422 Muijs Van de Moer et al. Jan 1997 A
5599307 Bacher et al. Feb 1997 A
5603718 Xu Feb 1997 A
5613974 Andreas et al. Mar 1997 A
5613975 Christy Mar 1997 A
5626590 Wilk May 1997 A
5630833 Katsaros et al. May 1997 A
5632751 Piraka May 1997 A
5632752 Buelna May 1997 A
5634936 Linden et al. Jun 1997 A
5637097 Yoon Jun 1997 A
5643289 Sauer et al. Jul 1997 A
5645553 Kolesa et al. Jul 1997 A
5662663 Shallman Sep 1997 A
5669917 Sauer et al. Sep 1997 A
5669971 Bok et al. Sep 1997 A
5674198 Leone Oct 1997 A
5681296 Ishida Oct 1997 A
5681351 Jamiolkowski et al. Oct 1997 A
5688245 Runge Nov 1997 A
5690674 Diaz Nov 1997 A
5695468 Lafontaine et al. Dec 1997 A
5695504 Gifford, III et al. Dec 1997 A
5697905 D'Amnbrosio Dec 1997 A
5700273 Buelna Dec 1997 A
5700277 Nash et al. Dec 1997 A
5707379 Fleenor et al. Jan 1998 A
5709693 Taylor Jan 1998 A
5716329 Dieter Feb 1998 A
5720757 Hathaway et al. Feb 1998 A
5722983 Van Der Weegen Mar 1998 A
5728109 Schulze et al. Mar 1998 A
5738629 Moll et al. Apr 1998 A
5743852 Johnson Apr 1998 A
5746753 Sullivan et al. May 1998 A
5749883 Halpern May 1998 A
5759188 Yoon Jun 1998 A
5766183 Sauer Jun 1998 A
5766220 Moenning Jun 1998 A
5769870 Salahieh et al. Jun 1998 A
5779719 Klein et al. Jul 1998 A
5792152 Klein et al. Aug 1998 A
5792153 Swain et al. Aug 1998 A
5795289 Wyttenbach Aug 1998 A
5795325 Valley et al. Aug 1998 A
5797948 Dunham Aug 1998 A
5797960 Stevens et al. Aug 1998 A
5810757 Sweezer et al. Sep 1998 A
5810849 Kontos Sep 1998 A
5810850 Hathaway et al. Sep 1998 A
5817108 Poncet Oct 1998 A
5817110 Kronner Oct 1998 A
5820631 Nobles Oct 1998 A
5836955 Buelna et al. Nov 1998 A
5843100 Meade Dec 1998 A
5846251 Hart Dec 1998 A
5846253 Buelna et al. Dec 1998 A
5853399 Sasaki Dec 1998 A
5853422 Huebsch et al. Dec 1998 A
5855585 Kontos Jan 1999 A
5860990 Nobles et al. Jan 1999 A
5860991 Klein et al. Jan 1999 A
5860992 Daniel et al. Jan 1999 A
5860997 Bonutti Jan 1999 A
5861003 Latson et al. Jan 1999 A
5865729 Holman et al. Feb 1999 A
5868708 Hart et al. Feb 1999 A
5868762 Cragg et al. Feb 1999 A
5871537 Holman et al. Feb 1999 A
5876411 Kontos Mar 1999 A
5899921 Caspari et al. May 1999 A
5902311 Andreas et al. May 1999 A
5902321 Caspari et al. May 1999 A
5906577 Beane et al. May 1999 A
5908428 Scirica et al. Jun 1999 A
5919200 Stambaugh et al. Jul 1999 A
5919208 Valenti Jul 1999 A
5928192 Maahs Jul 1999 A
5931844 Thompson et al. Aug 1999 A
5935098 Blaisdell et al. Aug 1999 A
5935149 Ek Aug 1999 A
5944730 Nobles et al. Aug 1999 A
5951588 Moenning Sep 1999 A
5951590 Goldfarb Sep 1999 A
5954732 Hart et al. Sep 1999 A
5967970 Cowan et al. Oct 1999 A
5971983 Lesh Oct 1999 A
5972005 Stalker et al. Oct 1999 A
5980539 Kontos Nov 1999 A
5993466 Yoon Nov 1999 A
5997555 Kontos Dec 1999 A
6001109 Kontos Dec 1999 A
6004337 Kieturakis et al. Dec 1999 A
6010530 Goicoechea Jan 2000 A
6015428 Pagedas Jan 2000 A
6024747 Kontos Feb 2000 A
6033430 Bonutti Mar 2000 A
6036699 Andreas et al. Mar 2000 A
6059800 Hart et al. May 2000 A
6066160 Colvin et al. May 2000 A
6068648 Cole et al. May 2000 A
6071271 Baker et al. Jun 2000 A
6077277 Mollenauer et al. Jun 2000 A
6086608 Ek et al. Jul 2000 A
6099553 Hart et al. Aug 2000 A
6110185 Barra et al. Aug 2000 A
6113580 Dolisi Sep 2000 A
6117144 Nobles et al. Sep 2000 A
6126677 Ganaja et al. Oct 2000 A
6136010 Modesitt et al. Oct 2000 A
6143015 Nobles Nov 2000 A
6159234 Bonutti et al. Dec 2000 A
6171319 Nobles et al. Jan 2001 B1
6174324 Egan et al. Jan 2001 B1
6187026 Devlin et al. Feb 2001 B1
6190396 Whitin et al. Feb 2001 B1
6200329 Fung et al. Mar 2001 B1
6203565 Bonutti et al. Mar 2001 B1
6210429 Vardi et al. Apr 2001 B1
6217591 Egan et al. Apr 2001 B1
6241699 Suresh et al. Jun 2001 B1
6245079 Nobles et al. Jun 2001 B1
6245080 Levinson Jun 2001 B1
6248121 Nobles Jun 2001 B1
6280460 Bolduc et al. Aug 2001 B1
6290674 Roue et al. Sep 2001 B1
6332889 Sancoff et al. Dec 2001 B1
6348059 Hathaway et al. Feb 2002 B1
6352543 Cole Mar 2002 B1
6383208 Sancoff et al. May 2002 B1
6409739 Nobles et al. Jun 2002 B1
6432115 Mollenauer et al. Aug 2002 B1
6468293 Bonutti et al. Oct 2002 B2
6508777 Macoviak et al. Jan 2003 B1
6527785 Sancoff et al. Mar 2003 B2
6533795 Tran et al. Mar 2003 B1
6537299 Hogendijk et al. Mar 2003 B1
6547725 Paolitto et al. Apr 2003 B1
6547760 Samson et al. Apr 2003 B1
6551331 Nobles et al. Apr 2003 B2
6562052 Nobles et al. May 2003 B2
6585689 Macoviak et al. Jul 2003 B1
6663643 Field et al. Dec 2003 B2
6679895 Sancoff et al. Jan 2004 B1
6682540 Sancoff et al. Jan 2004 B1
6716243 Colvin et al. Apr 2004 B1
6726651 Robinson et al. Apr 2004 B1
6733509 Nobles et al. May 2004 B2
6767352 Field et al. Jul 2004 B2
6770076 Foerster Aug 2004 B2
6770084 Bain et al. Aug 2004 B1
6786913 Sancoff Sep 2004 B1
6978176 Lattouf Jan 2005 B2
6855157 Foerster et al. Feb 2005 B2
6893448 O'Quinn et al. May 2005 B2
6911034 Nobles et al. Jun 2005 B2
6913600 Valley et al. Jul 2005 B2
6936057 Nobles Aug 2005 B1
7004952 Nobles et al. Feb 2006 B2
7083630 DeVries et al. Aug 2006 B2
7083638 Foerster Aug 2006 B2
7090686 Nobles et al. Aug 2006 B2
7090690 Foerster et al. Aug 2006 B2
7118583 O'Quinn et al. Oct 2006 B2
7160309 Voss Jan 2007 B2
7172595 Goble Feb 2007 B1
7220266 Gambale May 2007 B2
7232446 Farris Jun 2007 B1
7235086 Sauer et al. Jun 2007 B2
7326221 Sakamoto et al. Feb 2008 B2
7329272 Burkhart et al. Feb 2008 B2
7338502 Rosenblatt Mar 2008 B2
7381210 Zarbatany et al. Jun 2008 B2
7399304 Gambale et al. Jul 2008 B2
7435251 Green Oct 2008 B2
7449024 Stafford Nov 2008 B2
7491217 Hendren Feb 2009 B1
7601161 Nobles et al. Oct 2009 B1
7628797 Tieu et al. Dec 2009 B2
7635386 Gammie Dec 2009 B1
7637926 Foerster et al. Dec 2009 B2
7722629 Chambers May 2010 B2
7803167 Nobles et al. Sep 2010 B2
7842051 Dana et al. Nov 2010 B2
7846181 Schwartz et al. Dec 2010 B2
7879072 Bonutti et al. Feb 2011 B2
7905892 Nobles et al. Mar 2011 B2
7918867 Dana et al. Apr 2011 B2
7931641 Chang et al. Apr 2011 B2
7993368 Gambale et al. Aug 2011 B2
8075573 Gambale et al. Dec 2011 B2
8083754 Pantages et al. Dec 2011 B2
8105355 Page et al. Jan 2012 B2
8197497 Nobles et al. Jun 2012 B2
8202281 Voss Jun 2012 B2
8246636 Nobles et al. Aug 2012 B2
8258005 Findley, III et al. Aug 2012 B2
8282659 Oren et al. Oct 2012 B2
8287556 Gilkey et al. Oct 2012 B2
8298291 Ewers et al. Oct 2012 B2
8303622 Alkhatib Nov 2012 B2
8348962 Nobles et al. Jan 2013 B2
8372089 Nobles et al. Feb 2013 B2
8398676 Roorda et al. Mar 2013 B2
8430893 Ma Apr 2013 B2
8469975 Nobles et al. Jun 2013 B2
8496676 Nobles et al. Jul 2013 B2
8500776 Ebner Aug 2013 B2
8540736 Gaynor et al. Sep 2013 B2
8568427 Nobles et al. Oct 2013 B2
8623036 Harrison et al. Jan 2014 B2
8728105 Aguirre May 2014 B2
8758370 Shikhman et al. Jun 2014 B2
8771296 Nobles et al. Jul 2014 B2
9131938 Nobles et al. Sep 2015 B2
9326764 Nobles et al. May 2016 B2
9332976 Yribarren May 2016 B2
9364238 Bakos et al. Jun 2016 B2
9398907 Nobles et al. Jul 2016 B2
9402605 Viola Aug 2016 B2
9649106 Nobles et al. May 2017 B2
9706988 Nobles et al. Jul 2017 B2
10178993 Nobles et al. Jan 2019 B2
10182802 Nobles et al. Jan 2019 B2
10194902 Nobles et al. Feb 2019 B2
10285687 Nobles et al. May 2019 B2
10420545 Nobles et al. Sep 2019 B2
10512458 Nobles Dec 2019 B2
10610216 Nobles et al. Apr 2020 B2
10624629 Nobles et al. Apr 2020 B2
20010031973 Nobles et al. Oct 2001 A1
20020013601 Nobles et al. Jan 2002 A1
20020045908 Nobles et al. Apr 2002 A1
20020049453 Nobles et al. Apr 2002 A1
20020111653 Foerster May 2002 A1
20020087178 Nobles et al. Jul 2002 A1
20020096183 Stevens et al. Jul 2002 A1
20020128598 Nobles Sep 2002 A1
20020169475 Gainor et al. Nov 2002 A1
20020183787 Wahr et al. Dec 2002 A1
20030078601 Skikhman et al. Apr 2003 A1
20030114863 Field et al. Jun 2003 A1
20030144673 Onuki et al. Jul 2003 A1
20030204205 Sauer et al. Oct 2003 A1
20030208209 Gambale et al. Nov 2003 A1
20030220667 van der Burg et al. Nov 2003 A1
20040015177 Chu Jan 2004 A1
20040044365 Bachman Mar 2004 A1
20040059351 Eigler et al. Mar 2004 A1
20040153116 Nobles Aug 2004 A1
20040236356 Rioux et al. Nov 2004 A1
20040260298 Kaiseer et al. Dec 2004 A1
20050070923 McIntosh Mar 2005 A1
20050149066 Stafford Jul 2005 A1
20050187575 Hallbeck et al. Aug 2005 A1
20050203564 Nobles Sep 2005 A1
20050228407 Nobles et al. Oct 2005 A1
20050261708 Pasricha et al. Nov 2005 A1
20050261710 Sakamoto et al. Nov 2005 A1
20050277986 Foerster et al. Dec 2005 A1
20060052813 Nobles Mar 2006 A1
20060064113 Nakao Mar 2006 A1
20060064115 Allen et al. Mar 2006 A1
20060069397 Nobles et al. Mar 2006 A1
20060074484 Huber Apr 2006 A1
20060095052 Chambers May 2006 A1
20060195120 Nobles et al. Aug 2006 A1
20060265010 Paraschac et al. Nov 2006 A1
20060282088 Ryan Dec 2006 A1
20060282094 Stokes et al. Dec 2006 A1
20060282102 Nobles et al. Dec 2006 A1
20060287657 Bachman Dec 2006 A1
20070005079 Zarbatany et al. Jan 2007 A1
20070010829 Nobles et al. Jan 2007 A1
20070043385 Nobles et al. Feb 2007 A1
20070060930 Hamilton et al. Mar 2007 A1
20070106310 Goldin et al. May 2007 A1
20070118151 Davidson May 2007 A1
20070142846 Catanese, III et al. Jun 2007 A1
20070213757 Boraiah Sep 2007 A1
20070219630 Chu Sep 2007 A1
20070276413 Nobles Nov 2007 A1
20070276414 Nobles Nov 2007 A1
20080033459 Shafi et al. Feb 2008 A1
20080077162 Domingo Mar 2008 A1
20080114384 Chang et al. May 2008 A1
20080188873 Speziali Aug 2008 A1
20080228201 Zarbatany Sep 2008 A1
20080269786 Nobles et al. Oct 2008 A1
20080269788 Phillips Oct 2008 A1
20090036906 Stafford Feb 2009 A1
20090048615 McIntosh Feb 2009 A1
20090099410 De Marchena Apr 2009 A1
20090105729 Zentgraf Apr 2009 A1
20090105751 Zentgraf Apr 2009 A1
20090118726 Auth et al. May 2009 A1
20090125042 Mouw May 2009 A1
20090287183 Bishop et al. Nov 2009 A1
20090299409 Coe et al. Dec 2009 A1
20090312772 Chu Dec 2009 A1
20090312783 Whayne et al. Dec 2009 A1
20090312789 Kassab et al. Dec 2009 A1
20100016870 Campbell Jan 2010 A1
20100030242 Nobles et al. Feb 2010 A1
20100042147 Janovsky et al. Feb 2010 A1
20100063586 Hasenkam et al. Mar 2010 A1
20100087838 Nobles et al. Apr 2010 A1
20100094314 Hernlund et al. Apr 2010 A1
20100100167 Bortlein et al. Apr 2010 A1
20100179585 Carpenter et al. Jul 2010 A1
20100210899 Schankereli Aug 2010 A1
20110190793 Nobles et al. Aug 2011 A1
20110251627 Hamilton et al. Oct 2011 A1
20120016384 Wilke et al. Jan 2012 A1
20120035628 Aguirre et al. Feb 2012 A1
20120143222 Dravis et al. Jun 2012 A1
20120165838 Kobylewski et al. Jun 2012 A1
20120296373 Roorda et al. Nov 2012 A1
20130103056 Chu Apr 2013 A1
20130261645 Nobles et al. Oct 2013 A1
20130324800 Cahill Dec 2013 A1
20140148825 Nobles May 2014 A1
20140163585 Nobles et al. Jun 2014 A1
20140303654 Nobles et al. Oct 2014 A1
20140309670 Bakos et al. Oct 2014 A1
20140379006 Sutherland et al. Dec 2014 A1
20150126815 Nobles May 2015 A1
20150359531 Sauer Dec 2015 A1
20160007998 Nobles et al. Jan 2016 A1
20160302787 Nobles Oct 2016 A1
20170035425 Fegelman et al. Feb 2017 A1
20170049451 Hausen Feb 2017 A1
20170296168 Nobles et al. Apr 2017 A1
20170128059 Coe et al. May 2017 A1
20170245853 Nobles Aug 2017 A1
20170303915 Nobles Oct 2017 A1
20190029672 Nobles et al. Jan 2019 A1
20190150903 Nobles May 2019 A1
20190239880 Nobles Aug 2019 A1
Foreign Referenced Citations (74)
Number Date Country
2006251579 Nov 2006 AU
101495049 Dec 2010 CN
101257852 Aug 2011 CN
102892359 Jan 2013 CN
29 01 701 Jul 1980 DE
0 241 038 Oct 1987 EP
0 544 485 Jun 1993 EP
0839 550 May 1998 EP
0 894 475 Feb 1999 EP
1 196 093 Apr 2002 EP
1 303 218 Apr 2003 EP
0 941 698 May 2005 EP
0 983 027 Dec 2005 EP
1 852 071 Nov 2007 EP
1 987 779 Nov 2008 EP
2 572 649 Mar 2013 EP
2 701 401 Aug 1994 FR
A 9507398 Jul 1997 JP
09-266910 Oct 1997 JP
H10-43192 Feb 1998 JP
2001-524864 Dec 2001 JP
2003-225241 Aug 2003 JP
2007-503870 Mar 2007 JP
2008-514305 May 2008 JP
2008-541857 Nov 2008 JP
2008-546454 Dec 2008 JP
2009-261960 Nov 2009 JP
2010-522625 Jul 2010 JP
2011-067251 Apr 2011 JP
5848125 Dec 2015 JP
2010 125954 Jan 2012 RU
1560129 Apr 1990 SU
WO 9205828 Apr 1992 WO
WO 9301750 Feb 1993 WO
WO 9307800 Apr 1993 WO
WO 9512429 May 1995 WO
WO 9517127 Jun 1995 WO
WO 9525468 Sep 1995 WO
WO 9525470 Sep 1995 WO
WO 9603083 Feb 1996 WO
WO 9629012 Sep 1996 WO
WO 9640347 Dec 1996 WO
WO 9703613 Feb 1997 WO
WO 9747261 Feb 1997 WO
WO 9707745 Mar 1997 WO
WO 9712540 Apr 1997 WO
WO 9720505 Jun 1997 WO
WO 9724975 Jul 1997 WO
WO 9727807 Aug 1997 WO
WO 9740738 Nov 1997 WO
WO 9812970 Apr 1998 WO
WO 9852476 Nov 1998 WO
WO 9940851 Aug 1999 WO
WO 9942160 Aug 1999 WO
WO 9945848 Sep 1999 WO
WO 00002489 Jan 2000 WO
WO 01001868 Jan 2001 WO
WO 0195809 Dec 2001 WO
WO 02024078 Mar 2002 WO
WO 04012789 Feb 2004 WO
WO 06127636 Nov 2006 WO
WO 07001936 Jan 2007 WO
WO 09081396 Jul 2009 WO
WO 11094619 Aug 2011 WO
WO 11156782 Dec 2011 WO
WO 12012336 Jan 2012 WO
WO 13027209 Feb 2013 WO
WO 13142487 Sep 2013 WO
WO 15002815 Jan 2015 WO
WO 15085145 Jun 2015 WO
WO 17180092 Oct 2017 WO
WO 19035095 Feb 2019 WO
WO 19051379 Mar 2019 WO
WO 19055433 Mar 2019 WO
Non-Patent Literature Citations (22)
Entry
Advances in Vascular Surgery, by John S. Najarian, M.D. and John P. Delaney, M.D., copyright 1983 by Year Book Publishers, Inc. at pp. 94,95,96, and 224.
Cardio Medical Solutions, Inc. brochure titled: “Baladi Inverter for Clamp less Surgery”—Undated.
Clinical Evaluation of Arteriovenous Fistulas as an Adjunct to Lower Extremity Arterial Reconstructions, by Herbert Dardick, M.D., in Current Critical Problems in Vascular Surgery, copyright 1989 by Quality Medical Publishing Inc., at p. 383.
Current Therapy in Vascular Surgery, 2nd edition, by Calvin B. Ernst, M.D. and James C. Stanley, M.D., copyright 1991 by B.C. Decker, Inc., at pp. A and 140.
Eskuri, A., The Design of a Minimally Invasive Vascular Suturing Device, Thesis submitted to Rose-Hulman Institute of Technology, Nov. 1999.
Manual of Vascular Surgery, vol. 2, Edwin J. Wylie, Ronald J. Stoney, William K. Ehrenfeld and David J. Effeney (Richard H. Egdahl ed.), copyright 1986 by Springer-Verlag New York Inc., at p. 41.
Nursing the Open-Heart Surgery Patient, by Mary Jo Aspinall, R.N., M.N., copyright 1973 by McGraw Hill, Inc., at pp. 216 and 231.
Operative Arterial Surgery, by P.R. Bell, M.D., and W Barrie, M.D., copyright 1981 by Bell, Barrie, and Leicester Royal Infirmary, printed byJohn Wright &Sons, pp. 16, 17, 104, 105, 112, and 113.
Sinus Venous Type of Atrial Septal Defect with Partial Anomalous Pulmonary Venous Return, by Francis Robicsek, MD., et ai, in Journal of Thoracic and Cardiovascular Surgery, Oct. 1979, vol. 78, No. 4, at pp. 559-562.
Techniques in Vascular Surgery, by Denton A. Cooley, MD. and Don C. Wukasch, MD., copyright 1979 by WB. Saunders Co., at pp. 38,57,86,134,156, and 184.
The problem: Closing wounds in deep areas during laparoscopic operations The solution: REMA Medizintechnik GmbH (no date).
Vascular Access, Principles and Practice, 3rd edition, by Samuel Eric Wilson, MD., copyright 1996, 1988,1980 by Mosby-Year Book, Inc., pp. 89 and 159.
Vascular and Endovascular Surgery, by Jonathan D. Beard and Peter Gainers, copyright 1998 by W. B. Saunders Co., Ltd, p. 414.
Vascular Surgery, 3rd edition, vol. 1, by Robert B. Rutherford, MD., copyright 1989, 1984, 1976 by W. B.SaundersCo., at pp. 347, 348, 354, 594, 607, 622, 675, 677, 680, 698, 700, 721, 727, 735, and 829.
Vascular Surgery, 4th edition by Robert B. Rutherford, MD., copyright 1995,1989,1976, by W.B. Saunders Co., vol. 1, at pp. 400-404, 661, and A.
Vascular Surgery, 4th edition, by Robert B. Rutherford, M.D., copyright 1995, 1989, 1984, 1976 by W. B. Saunders Co., vol. 2, at pp. 1318, 1363, 1426, 1564, and 1580.
Vascular Surgery, by Robert B. Rutherford, M.D. copyright1977 by WB. Saunders Co., at pp. 334 and 817.
International Search Report and Written Opinion re PCT Application No. PCT/US2014/044429, dated Nov. 4, 2014.
International Preliminary Report on Patentability re PCT Application No. PCT/US2014/044429, dated Jan. 5, 2016.
European Supplemental Search Report for European Application No. 14819989.6, dated Apr. 11, 2017.
European Exam Report re EP Application No. 18199178.7, dated Mar. 21, 2019.
Search Report in corresponding Eurasian Patent Application No. 201990049, dated May 14, 2019, in 1 page.
Related Publications (1)
Number Date Country
20160151064 A1 Jun 2016 US
Provisional Applications (1)
Number Date Country
61842304 Jul 2013 US