Suturing devices and methods for suturing an opening in the apex of the heart

Information

  • Patent Grant
  • 11839370
  • Patent Number
    11,839,370
  • Date Filed
    Tuesday, June 19, 2018
    5 years ago
  • Date Issued
    Tuesday, December 12, 2023
    5 months ago
Abstract
Apparatuses and methods for closing a transapical opening (9) in a wall of the heart include utilizing a suturing device (100) that is advanced through the transapical opening (9), extending suture arms (110) from a retracted position to an extended position within a ventricle of the heart, extending needles (120) from a retracted position to an extended position through the wall of the heart to engage a plurality of suture portions (52) held by the suture arms (110), retracting the needles through the wall of the heart to draw the suture portions through the wall of the heart, retracting the suture arms, withdrawing the suturing device from the transapical opening, and closing the transapical opening with the suture portions (52). The needles (120) can be deployed from within the transapical opening (9) at an angle to a longitudinal axis of the suturing device or through the exterior wall of the heart parallel to the longitudinal axis of the suturing device.
Description
BACKGROUND
Field

Embodiments of the present invention relate to suturing devices and methods. Some embodiments relate to suturing devices and methods for suturing an anatomic structure, such as a heart.


Description of the Related Art

Health practitioners frequently use sutures to close various openings such as cuts, punctures, and incisions in various places in the human body. Generally, sutures are convenient to use and function properly to hold openings in biological tissue closed thereby aiding in blood clotting, healing, and prevention of scarring.


There are some circumstances under which it is not feasible to use conventional sutures and suturing methods to close an opening. Additionally, there are some circumstances under which the use of conventional sutures and suturing methods require invasive procedures that subject a patient to risk of infection, delays in recovery, increases in pain, and other complications.


SUMMARY

Methods, systems and apparatuses are provided in certain embodiments of the present application to suture an opening in the apex of the heart.


In one embodiment, a suturing device for closing a transapical opening extending through a wall of the heart between inner and outer surfaces of the heart is provided. The suturing device includes an elongate housing having a proximal end and a distal end configured to be delivered through the transapical opening into a chamber of the heart, a handle at the proximal end of the elongate housing configured to be manipulate from outside of the heart, a plurality of arms arranged about an outer diameter of an arm-receiving portion of the elongate housing, the arms being extendable from the arm-receiving portion from a retracted position within the arm-receiving portion to an extended position when the arm-receiving portion is located within the chamber of the heart, wherein the arms in the extended position point distally and form an acute angle with a longitudinal axis of the elongate housing, each arm configured to hold a suture portion a distance away from the outer diameter of the arm-receiving portion at or near a distal end of the arm; and a plurality of needles slidably received in the elongate housing proximal to the arm-receiving portion, each needle being associated with a needle lumen extending at least partially along the length of the elongate housing, each needle lumen having a needle guide at a distal end of the needle lumen, each needle guide having an angled surface extending away from the longitudinal axis of the elongate housing towards a needle aperture, each needle aperture being positioned proximal to the plurality of arms, wherein each needle is movable in a proximal-to-distal direction along the longitudinal axis of the elongate body along its respective needle lumen and outwardly through its respective needle aperture through heart tissue into engagement with the suture portion held by one of the arms when the plurality of arms are in their extended positions, the needles further being retractable away from the arms back through the heart tissue to draw the suture portions through the heart tissue, wherein the arms, needle lumens, needle guides and needle apertures are configured such that the needle guides are located within the tranaspical opening between the inner and outer surfaces of the heart when the arm-receiving portion is positioned within the chamber of the heart and such that the needles are moveable from within the transapical opening between the inner and outer surfaces of the heart through the heart tissue and penetrate through the inner surface of the heart radially outward of the transapical opening when the arms are extended inside the chamber of the heart.


In another embodiment, a method for closing a transapical opening in a wall of the heart, is provided. The method includes advancing a suturing device at least partially through the transapical opening, the suturing device including, an elongate body having a proximal end and a distal end and a handle at the proximal end of the elongate body configured to be manipulated from outside of the heart, a needle sheath positioned distal to the distal end of the elongate body, an arm sheath positioned distal to a distal end of the needle sheath, a tapered or rounded tip positioned distal to a distal end of the arm sheath and configured to be delivered through the transapical opening and into a ventricle of the heart, four arms proximal to the tip arranged symmetrically about an outer diameter of the arm sheath, each arm configured to hold a suture portion a distance away from the outer diameter of the arm sheath at or near a distal end of the arm, the arms being extendable from said arm sheath from a retracted position within the arm sheath to an extended position, wherein the arms in the extended position point distally and form an acute angle with a longitudinal axis of the elongate body, and four needles slidably housed in said elongate body, each needle being associated with a needle lumen extending at least partially along the length of the elongate body and at least partially along the length of the needle sheath, each needle lumen having a needle guide at a distal end of the needle lumen, each needle guide having an angled surface extending away from the longitudinal axis of the elongate body towards a needle aperture, each needle aperture being positioned proximal to the four arms, wherein each needle is movable in a proximal-to-distal direction along the longitudinal axis of the elongate body along its respective needle lumen and outwardly from the needle sheath through its respective needle aperture to pass through heart tissue into engagement with the suture portion held by one of the arms, the needles further being retractable away from the arms back through the heart tissue to draw the suture portions through the heart tissue. The method also includes positioning the suturing device such that the four arms are positioned within the ventricle of the heart and a distal end of each needle aperture is positioned within the transapical opening, extending the arms from the suturing device from the retracted position to the extended position in the ventricle of the heart, extending the needles from a position within the transapical opening through the wall of the heart in a proximal-to-distal direction along the longitudinal axis of the elongate body and outwardly from the elongate body into engagement with the suture portions held by the arms, retracting the needles through the wall of the heart to draw the suture portions through the wall of the heart, retracting the arms from the extended position to the retracted position, withdrawing the suturing device from the transapical opening, and closing the transapical opening with the suture portions.


In another embodiment, a suturing device for closing a transapical opening extending through a wall of the heart between inner and outer surfaces of the heart is provided. The suturing device includes an elongate housing having a proximal end and a distal end configured to be delivered through the transapical opening into a chamber of the heart, the elongate housing having a needle-receiving portion and an arm-receiving portion distal to the needle-receiving portion, a handle at the proximal end of the elongate housing configured to be manipulated from outside of the heart, a plurality of arms arranged about an outer diameter of the arm-receiving portion of the elongate housing, the arms being extendable from the arm-receiving portion from a retracted position within the arm-receiving portion to an extended position when the arm-receiving portion is located within the chamber of the heart, wherein the arms in the extended position point distally and form an acute angle with a longitudinal axis of the elongate housing, each arm configured to hold a suture portion a distance away from the outer diameter of the arm-receiving portion at or near a distal end of the arm, a plurality of needles slidably received in the needle-receiving portion of the elongate housing, the needle-receiving portion having a larger cross-sectional dimension than the arm-receiving portion and having a distal end proximal to the arm-receiving portion, each needle being associated with a needle lumen extending at least partially along the length of the elongate housing and at least partially along the length of the needle-receiving portion, each needle further being associated with a needle aperture at the distal end of the needle-receiving portion, wherein each needle is movable in a proximal-to-distal direction along the longitudinal axis of the elongate housing along its respective needle lumen and out of the distal end of the needle-receiving portion through its respective needle aperture to pass through heart tissue into engagement with the suture portion held by one of the arms when the plurality of arms are in their extended positions, each of the needles being slidable parallel to each other as they move in the proximal-to-distal direction, the needles further being retractable away from the arms back through the heart tissue to draw the suture portions through the heart tissue, wherein the arms, needle lumens, and needle apertures are configured such that the needle apertures are located outside of the heart and face the outer surface of the heart when the arm-receiving portion is positioned within the chamber of the heart and such that the needles are moveable from outside of the heart through the outer surface of the heart, through the heart tissue and penetrate through the inner surface of the heart radially outward of the transapical opening when the arms are extended inside the chamber of the heart.


In another embodiment, a method for closing a transapical opening in a wall of the heart is provided. The method includes, advancing a suturing device at least partially through the transapical opening, the suturing device including an elongate body having a proximal end and a distal end and a handle at the proximal end of the elongate body configured to be manipulated from outside of the heart, a needle sheath positioned distal to the distal end of the elongate body, an arm sheath positioned distal to a distal end of the needle sheath, the arm sheath having a diameter less than a diameter of the elongate body, a tip positioned distal to a distal end of the arm sheath and configured to be delivered through the transapical opening and into a ventricle of the heart, four arms proximal to the tip arranged symmetrically about an outer diameter of the arm sheath, each arm configured to hold a suture portion a distance away from the outer diameter of the arm sheath at or near a distal end of the arm, the arms being extendable from said arm sheath from a retracted position to an extended position, wherein the arms in the extended position point distally and form an acute angle with a longitudinal axis of the elongate body, and four needles slidably housed in said elongate body, each needle being associated with a needle lumen extending at least partially along the length of the elongate body and at least partially along the length of the needle sheath, each needle further being associated with a needle aperture at the distal end of the needle sheath, wherein each needle is movable in a proximal-to-distal direction along the longitudinal axis of the elongate body along its respective needle lumen and out of the distal end of the needle sheath through its respective needle aperture to pass through heart tissue into engagement with the suture portion held by one of the arms, each of the needles being slidable parallel to each other as they move in the proximal-to-distal direction, the needles further being retractable away from the arms back through the heart tissue to draw the suture portions through the heart tissue. The method also includes positioning the suturing device such that the four arms are positioned within the ventricle of the heart and a distal end of the needle sheath is exterior to the wall of the heart, extending the arms from the suturing device from the retracted position to the extended position in the ventricle of the heart, extending the needles through the wall of the heart in a proximal-to-distal direction along an axis parallel to the longitudinal axis of the elongate body into engagement with the suture portions held by the arms, retracting the needles through the wall of the heart to draw the suture portions through the wall of the heart, retracting the arms from the extended position to the retracted position, withdrawing the suturing device from the transapical opening, and closing the transapical opening with the suture portions.





BRIEF DESCRIPTION OF THE DRAWINGS

The above-mentioned and other features disclosed herein are described below with reference to the drawings of specific embodiments. The illustrated embodiments are intended for illustration, but not limitation. The drawings contain the following figures:



FIG. 1 depicts a schematic partial cross sectional view of an exemplifying treatment area, comprising a human heart.



FIG. 2 depicts a perspective view of a suturing device 100 in a retracted configuration.



FIG. 3 depicts a perspective view of a distal portion of the suturing device 100 in the retracted configuration.



FIG. 4 depicts a perspective view of a distal portion of the suturing device 100 in the retracted configuration.



FIG. 5 depicts a perspective view of a distal portion of the suturing device 100 showing a suture arm 110 in an extended position.



FIG. 6 depicts a perspective view of a distal portion of the suturing device 100 showing the suture arm 110 in an extended position.



FIG. 7 depicts a perspective view of a distal portion of the suturing device 100 showing the needle 120 in an extended position.



FIG. 8A depicts a perspective view of a distal portion of the suturing device 100 with the arm sheath 26 removed.



FIG. 8B depicts a side view of a distal portion of the suturing device 100 showing the arms 110 and needles 120 in an extended position.



FIG. 9 depicts a cross-sectional view of a handle 101.



FIG. 10 depicts a cross-section view of a distal portion of the suturing device 100.



FIG. 11 depicts a method of placing a suture through a heart wall using the suturing device 100.



FIG. 12 depicts a suture 52 extending through the tissue adjacent a transapical opening.



FIG. 13 depicts the suture 52 closing a transapical opening.



FIG. 14 depicts a perspective view of a suturing device 300 in a retracted configuration.



FIG. 15 depicts a perspective view of a distal portion of the suturing device 300 in the retracted configuration.



FIG. 16 depicts a perspective view of a distal portion of the suturing device 300 in the retracted configuration.



FIG. 17 depicts a perspective view of a distal portion of the suturing device 300 showing suture arms 310 in an extended position.



FIG. 18 depicts a perspective view of a distal portion of the suturing device 300 showing suture arms 310 in an extended position.



FIG. 19 depicts a perspective view of a distal portion of the suturing device 300 showing arms 310 and needles 320 in an extended position.



FIG. 20 depicts a cross-sectional view of a handle 301.



FIG. 21 depicts a cross-sectional view of a distal portion of the suturing device 300 showing one of the arms 310 and one of the needles 320 in an extended position.



FIG. 22 depicts a method of placing a suture through a heart wall using the suturing device 300.



FIG. 23A depicts the suture 52 closing a transapical opening.



FIG. 23B depicts the suture 52 closing a transapical opening and a pledget 1000.



FIG. 24 depicts a perspective view of a distal end of the suture device 100 showing four suture arms 110 and four needles 120 in an extended position.





DETAILED DESCRIPTION

Embodiments of suturing systems and methods for suturing biological tissue are disclosed herein. The suturing apparatuses and their methods of use can be useful in a variety of procedures, such as treating (e.g., closing) wounds and naturally or surgically created apertures or passageways. In embodiments described herein, the suturing systems and methods are used to close an opening in the apex of the heart. In other examples, the suturing devices can be used to treat an anatomical valve, such as a heart valve, including heart valves that may be weakened or stretched, or have other structural defects, such as congenital defects, that cause them to close improperly. One or more suturing devices can be used to treat or repair valves, such as the tricuspid, pulmonary, mitral, and aortic valves, for example. In some suturing procedures, a suturing system including a suturing device disclosed herein can be used to perform procedures such as edge-to-edge repair (like an Alfieri technique), suturing of ventricular spaces, suturing of the chordae, suturing in other locations in the heart, and the like. The suturing system can be used to close or reduce a variety of other tissue openings, lumens, hollow organs or natural or surgically created passageways in the body. The suturing system can also include one or more pledgets. The suturing system can further include a knot-tying/forming device.



FIG. 1 illustrates access through the apex 7 of the heart. As depicted in FIG. 1, a guidewire 10 is advanced into the left ventricle 6 of the heart through a puncture or opening 9 near an apex 7. The heart may be accessed through a limited thoracotomy, small trocar puncture, or small catheter puncture. With the guidewire 10 in place, the physician can insert a sheath 12 to the left ventricle 6. Treatment devices can be advanced through the lumen of the sheath 12. For example, treatment devices may be delivered to mitral valve 8 to repair or replace the valve. In an alternative embodiment, devices can be advanced over the guidewire 10 and positioned at or near a desired location without the need to insert an introducer sheath 12.


After the treatment of the heart is complete, a suitable suturing device, such as those disclosed herein, can be delivered through the apex to close the opening in the apex. In some embodiments, the introducer sheath 12 and/or guidewire 10 may be used to position the device within the opening 9. Alternatively, the suturing device may be directly inserted into the opening 9. FIGS. 2-13 illustrate one embodiment of a suturing device 100 that can be used to place suture through heart tissue to close the opening in the apex.


In the embodiment depicted in FIG. 2, the suturing device 100 includes an elongate body 32 having a proximal end 18 and a distal end 20, a handle portion 101, a needle sheath 24, an arm sheath 26, and a distal tip 22. In some embodiments, the needle sheath 24, arm sheath 26, and distal tip 22 can all form part of the elongate body 32 or be integral therewith. In some embodiments, the elongate body 32, needle sheath 24, arm sheath 26, and distal tip 22 can together form an elongate shaft or elongate housing that extends from the handle 101 to a distal end of the distal tip 22.


The handle portion 101 comprises actuators 104, 106, and 108. The handle portion 101 advantageously requires little manipulation during use. In some embodiments, the handle portion 101 can be operated with a single hand. The suturing apparatus can be used to close an opening located deep within the patient's tissue (e.g., the heart) without requiring the application of pressure over an extended period of time. As a result, the suturing apparatus can substantially reduce the recovery period following a medical procedure, thereby allowing the patient to return home more quickly and substantially reducing costs. The dimensions of the suturing device 100 can vary according to the approach to the transapical site and the particular medical procedure performed.


In some embodiments, the hollow elongate body 32 has a constant diameter of about 6-16 Fr and a length of about 15 to 80 cm, more preferably less than about 80 cm, 70 cm, 60 cm, 50 cm, 40 cm or 30 cm. In some embodiments, the elongate body 32 includes one or more selectively tapering portions along the longitudinal direction.


The needle sheath 24 extends distally from the distal end 20 of the elongate body 32. As described in further detail with respect to FIGS. 3 and 4, the needle sheath 24 can include one or more needle apertures from which a needle may extend and one or more needle guides shaped and sized to direct a needle in a particular direction. In some embodiments, the needle sheath 24 has a constant diameter of about 6-16 Fr. In some embodiments, the needle sheath 24 has the same diameter as the elongate body 32. In some embodiments, the needle sheath 24 is integrally formed with one or more of the elongate body 32, the arm sheath 26, and the distal tip 22, such that together they all comprise the elongate body.


The arm sheath 26 extends distally from the distal end of the needle sheath 24. As described in further detail with respect to FIGS. 3 and 4, the arm sheath 26 can include one or more arm apertures from which a suture arm can extend. In some embodiments, the arm sheath 24 has a constant diameter of about 6-16 Fr. In some embodiments, the arm sheath 26 has the same diameter as the elongate body 32. In some embodiments, the arm sheath 26 is integrally formed with one or more of the elongate body 32, the needle sheath 24, and the distal tip 22.


The distal tip 22 extends distally from the arm sheath 26. The distal tip 22 can taper distally to a smaller diameter. In some embodiments, the distal tip 22 is integrally formed with one or more of the elongate body 32, the needle sheath 24, and the arm sheath 26.



FIGS. 3-4 depict a distal end of the suturing device 100 in a retracted configuration. As shown in FIGS. 3 and 4, the arm sheath 26 can include one or more arm apertures 112 from which one or more suture arms 110 can extend. Each suture arm 110 can include a suture clasp 114 positioned near a distal end of the arm 110. The suture clasp 114 can hold an end or other portion of a suture. Each of the suture arms 110 can be pre-loaded with the ends of a suture before operation. The ends of the suture can pass from the suture clasps 114 through a distal hole 118 in the distal tip 22 whereby the ends of the suture enter the distal tip 22 and can be passed proximally through the hollow elongate body 32. In some embodiments, each end of the suture can include a capture portion having a loop that can be tied onto the ends of the suture clasp 114 or otherwise positioned within the suture clasp 114. For example, in some embodiments, each capture portion is positioned within an opening of the suture clasp 114. It is contemplated however that the capture portions are not restricted solely to tied loops, rather other types of capture portions can be utilized such as, by way of example, spheres or ferrules. Examples of suture capture portions are shown and described in U.S. Pat. No. 8,348,962 entitled “SUTURING DEVICE AND METHOD” and filed on Aug. 14, 2006, the entirety of which is hereby incorporated by reference.


As discussed in further detail with respect to FIGS. 5 and 6, the suture arms 110 can extend from the retracted position to an extended position in which the arms point distally and form an acute angle with a longitudinal axis of the elongate body 32.


The suturing device 100 of FIGS. 1-13 can include four arm apertures 112, each arm aperture corresponding to one of four suture arms 110. However, the suturing device 100 can include any number of arm apertures and any number of suture arms. For example, the arm sheath 26 can include one aperture, two apertures, three apertures, four apertures, five apertures, six apertures, or any other suitable number of apertures 112. In some embodiments, the suturing device 100 can include one suture arm, two suture arms, three suture arms, four suture arms, five suture arms, six suture arms, or any other suitable number of suture arms 110. In some embodiments, the suture arms 110 of the suturing device 100 can be arranged symmetrically about the outer diameter of the arm sheath 26.


As shown in FIGS. 3 and 4, the needle sheath 24 can include one or more needle apertures 122, and one or more needle guides 124. Each needle guide 124 can form part of a needle lumen 126 extending at least partially along the length of the elongate body 32. A plurality of needles 120 can be slidably housed within the elongate body 32. In the retracted configuration each needle 120 can reside within one of the needle lumens 126. As shown in FIGS. 3 and 4, a distal end of each needle 120 may extend into an interior section of the needle sheath 24 in the retracted configuration. As explained in further detail with respect to FIGS. 7 and 8A-8B, each needle 120 can move in a proximal-to-distal direction along the longitudinal axis of the elongate 32 body along its respective needle lumen 126.


Each needle guide 124 can include a curved or angled surface, angling away from the longitudinal axis of the elongate body 32. As a needle 120 moves distally along its needle lumen 126, the needle guide 124 can direct the needle 120 out of its respective needle aperture 122 at an angle relative to the longitudinal axis of the elongate body 32 to an extended configuration, as illustrated in FIGS. 7 and 8A-8B. When the needles 120 are in an extended position, each needle 120 can engage a suture portion held by one of the suture arms 110.


The needles 120 can be flexible and made of a material with shape memory, such as SUPERFLEX NITINOL™. Alternatively, the needles 120 can be comprised of spring steel, surgical stainless steel or any variation thereof. Each of the needles 120 can have a diameter of about 0.019 inches, but needles with other diameters can be used in accordance with the particular medical procedure contemplated. In some embodiments, each needle 120 includes a proximal section having a first diameter and a distal section having a second diameter smaller than the first diameter. The diameter of the proximal section of the needle 120 can be of a sufficient thickness to penetrate the tissue of the heart without deflection. The diameter of the distal section can be of sufficient size to clasp a suture portion held by one of the arms 110. Use of a needle 120 with two different diameters can allow for the diameter at the distal end of the needle 120 to be relatively smaller than the diameter of a needle 120 having only a single diameter throughout while still penetrating the tissue of the heart. Such a needle 120 can allow for smaller arms 110 and clasps 114.


When the suture arms 110 are retracted into the arm apertures 112 and the needles 120 are retracted into the needle apertures 122, the arms 110 and the needles 120 are recessed within the suturing device, as shown in FIGS. 3 and 4. This prevents the arms 110 and the needles 120 from causing tissue damage while the distal end portion passes through a biological structure.


The suturing device 100 of FIGS. 1-13 includes four needles 120. However, the suturing device 100 can include any number of needle apertures and any number of needles. For example, the suturing device can include one needle, two needles, three needles, four needles, five needles, six needles, or any other suitable number of needles 120.



FIGS. 5 and 6 depict the distal end of the suturing device 100 with one of the suture arms 110 in an extended position. As described in further detail herein with respect to FIGS. 9 and 10, each suture arm 110 can be deployed from the retracted configuration to the extended configuration by actuation of the actuator 104. The actuator 104 is configured to cause the suture arms 110 to move in a proximal-to-distal direction along a longitudinal axis of the elongate body 32 such that a proximal end of each arm 110 moves from a proximal end of its respective arm aperture 112 to a distal end of the arm aperture 112. As each suture arm 110 translates in a proximal-to-distal direction, a distal end of each suture arm 110 can contact a ramp positioned within the arm sheath 26, as discussed further with respect to FIGS. 8A and 8B. The ramp can be curved or angled to cause the arm 110 to extend at an acute angle with respect to the longitudinal axis of the elongate body 32.


As shown in FIGS. 5 and 6, each suture clasp 114 can include a track 113, an opening 115, a tapered or beveled portion 116, and a distal surface 117. The capture portion of the suture can be positioned within the opening 115 through which one of the needles 120 can extend to grasp the capture portion. A length of the suture can extend along the track 113, which can facilitate alignment of the capture portion, and into the elongate body 32. The beveled or tapered section 116 extends about the opening 116 and is configured to receive a needle when the suture arms 110 extend through the suture apertures 112. The taper can help guide the needles into the suture clasps and toward a suture portion within a clasp. This can be beneficial if a needle has prolapsed slightly or otherwise deviated from a preferred alignment, such as an alignment with the center of a suture clasp opening 116. The distal surface 117 is angled with respect to a longitudinal axis of the arm 110 to conform to the angle of the ramps positioned within the arm sheath 26 so that the suture arms 110 do not extend beyond the circumference of the arm sheath 26 when in the retracted position. In some embodiments, the distal surface 117 is positioned at a 45° angle with respect to the longitudinal axis of the arm 110.



FIG. 7 depicts the distal end of the suturing device 100 with one of the needles 120 in an extended position. Each needle 120 extends from its respective needle aperture 122 at an angle to the longitudinal axis of the elongate body 32 due to the angled surface of its respective needle guide 124. As described in further detail herein with respect to FIGS. 9 and 10, each needle 120 can be deployed from the retracted configuration to the extended configuration shown in FIG. 7 by actuation of the actuator 106. The actuator 106 can be further manipulated to retract the needle 120 back into the needle sheath 24.



FIG. 8A depicts the distal end of the suturing device 100 with the arm sheath 26 removed. As shown in FIG. 8A, a spreading member 134 is positioned within the distal end of the arm sheath 26. The spreading member includes a plurality of ramps 136. Each ramp 136 provides an angled or curved surface configured to cause one of the arms 110 to extend at an acute angle to the longitudinal axis of the elongate body 32 when the arm 110 comes into contact with the ramp 136 when moving in the proximal-to-distal direction. In some embodiments, the arms 110 may extend at a 45° angle with respect to the longitudinal axis of the elongate body 32. In some embodiments, each ramp may be positioned at a 45° with respect to a longitudinal axis of the elongate body 32. When fully extended, a proximal end of each arm 110 can contact one of the ramps 136. In some embodiments, the angled surface of each ramp 136 can abut a proximal portion of the arm 110 to prevent the arm 110 from moving towards the longitudinal axis of the elongate body 32 when the arm 110 is in the extended portion.



FIG. 8B depicts the distal end of the suturing device 100 with the suture arms 110 and the needles 120 in an extended position. In comparison to FIG. 8A, the arms 110 are positioned at the distal end of the arm sheath 26 such that a proximal portion of each arms 110 abuts one of the ramps 136. As shown in FIGS. 7 and 8B, each needle 120 can include a tip 130 and a suture catch portion or hook 132. The tip 130 may be tapered or otherwise shaped to pass through the tissue of the heart. Each suture catch portion or hook 132 can be configured to engage a suture portion positioned within the suture clasp 114 of the suture arm 110 when the needle 120 extends through the suture clasp 114 of the suture arm 110. Once the hook 132 of the needle 120 has engaged the suture portion, the distal end of the needle 120 and the suture portion can be pulled proximally through the elongate body 32 which will cause the bent portion of the needle to be retracted along needle guide 124 into its respective needle lumen 126.



FIG. 9 depicts a cross-sectional view of the handle 101 showing the internal components thereof. FIG. 10 depicts a cross-sectional view of the distal end of the suturing device 101 showing the internal components of the elongate body 32, the needle sheath 24, the arm sheath 26 and the distal tip 22. As described herein, the actuator 104 can be actuated to cause one or more of the arms 110 to deploy from the retracted position to the extended position. In some embodiments, actuator 104 can be actuated to deploy each arm 110 at the same time. In some embodiments, individual arms 110 can be actuated. Actuator 106 can be actuated to deploy one or more of the needles 120 from the retracted position to the extended position. In some embodiments, actuator 106 can be actuated to deploy each needle 120 at the same time. In some embodiments, individual needles 120 can be actuated. The actuator 106 can further be manipulated to cause retraction of one or more of the needles 120. The actuator 108 can be actuated to retract one or more of the arms 110 from the extended position to the retracted position. In some embodiments, actuator 108 can be actuated to retract each arm 110 at the same time. In some embodiments, individual arms 110 can be retracted.



FIGS. 11-13 illustrate an embodiment of a method of closing a transapical opening using the suturing device 100 shown in FIGS. 1-10. The suturing device 100 can be introduced through the opening 9 near the apex 7. As indicated above, the suturing device 100 can be introduced into the opening with or without the aid of a guidewire 10 that may pass through a lumen of the elongate body 32 and the distal tip 22. The suturing device 100 can be positioned through the opening a sufficient distance to permit the arms 110 to be deployed within the ventricle 6 of the heart without damage to the surrounding tissue. The arms 110 can then be deployed within the ventricle 6.


With the arms 110 deployed, the device 100 can be retracted to cause the arms 110 to engage the heart internal wall tissue surrounding the opening 9. In some embodiments, the angle of each suture arm 110 may match an incline of the heart internal wall tissue surrounding the opening 9. The needle apertures 122 can be spaced apart from the arm apertures 112 such that the distal end of each needle aperture 122 is positioned within the transapical opening 9 when the arms 110 engage the heart internal wall tissue surrounding the opening 9. If the distal end of each needle aperture 122 is not positioned within the transapical opening 9 when the arms 110 engage the heart internal wall tissue, the suturing device 100 can be further positioned so that the distal end of each needle aperture 122 is positioned within the transapical opening 9.


After the needle apertures 122 are positioned within the transapical opening 9, the needles 120 can be advanced from a position within the transapical opening 9 through the heart wall tissue and into the ventricle 6 in a proximal-to-distal direction along the longitudinal axis of the elongate body 32 and outwardly from the needle sheath 24. FIG. 11 shows the needles 120 extended through the heart wall tissue from within the opening 9 and to the suture clasps 114 or beyond the suture clasps 114. The tip 22 is not shown in FIG. 11. After extending to or beyond the suture clasps 114, the needles 120 can be snatch the end portions of a suture 52 from the arms 110. For example, the needles 120 can be retracted to snatch the end portions of the suture 52.


The suture can be withdrawn through the heart tissue as the needles 120 are retracted into the elongate body 32. The arms 110 can then be retracted and the entire suturing device 100 can be withdrawn. The suture can be removed from the device and pulled through the heart tissue to result in the configuration as shown in FIG. 12, where the suture extends across the transapical opening along an inner surface of the left ventricle and exits the heart from within the transapical opening. Placing the suture along the inner surface of the left ventricle advantageously provides closure to the transapical opening from within the left ventricle. In this embodiment, with the suture exiting the heart from within the transapical opening rather than from the outer surface of the heart, tension applied on the suture can more easily draw the tissue surrounding the opening closed.


After the suture 52 has been placed, the suture ends can be tied together or a knot can be placed to close the opening 9, as shown in FIG. 13. In some embodiments, the placed suture 52 may be an initial suture that is used to then guide an additional suture through the sutured tissue. In such embodiments, the initial suture is removed from the patient and the additional suture is used to draw the opening closed.


In some embodiments, the two suture arms 110 shown in FIG. 11 hold opposite ends of the suture 52. Although only two needles 120 and two arms 110 are shown in the extended position in FIG. 11, one of skill in the art would understand that two additional arms 110 can be deployed to hold the ends of a second suture, which can be grasped by two additional needles 120. The first pair of suture arms 110 holding opposite ends of the first suture can be diametrically opposed to one another. The second pair of suture arms 110 holding the ends of the second suture can also be diametrically opposed to one another. The four suture arms 110 forming the first pair and second pair of suture arms 110 can be arranged symmetrically about the outer diameter of the arm sheath 26. In some embodiments, the first suture 52 may cross over or under the second suture when extended across the transapical opening 9. An example of an embodiment having four suture arms 110 and four needles 120 in an extended configuration is shown in FIG. 24. Examples of the use of multiple sutures to close a transapical opening are described in U.S. patent application Ser. No. 13/016,897 entitled “METHODS AND APPARATUSES FOR SUTURING OF CARDIAC OPENINGS” and filed on Jan. 28, 2011, the entirety of which is hereby incorporated by reference. The embodiments described herein are improvements over those described in U.S. patent application Ser. No. 13/016,897, but one of skill in the art would understand that some of the features described in U.S. patent application Ser. No. 13/016,897 can be used in the embodiments described herein.


Although the device 100 can be used for suturing transapical openings of the heart, the suturing device 100 can be used to suture other tissues such as, by way of example, a patent ductus arteriosus, a patent foramen ovale (PFO), a heart defect, a puncture wound, and the like.



FIGS. 14-23 illustrate an embodiment of a suturing device 300 that can be used to place suture through heart tissue to close the opening in the apex. The suturing device 300 can include many of the same or similar features to the suturing device 100 described herein.


In the embodiment depicted in FIG. 14, the suturing device 300 includes an elongate body 232 having a proximal end 218 and a distal end 220, a handle portion 301, a needle sheath 224, an arm sheath 226, and a distal tip 222. In some embodiments, the needle sheath 224, arm sheath 226, and distal tip 222 can all form part of the elongate body 232 or be integral therewith. In some embodiments, the elongate body 232, needle sheath 224, arm sheath 226, and distal tip 222 can together form an elongate shaft or elongate housing that extends from the handle 301 to a distal end of the distal tip 222.


The handle portion 301 comprises actuators 304, 306, and 308. The handle portion 301 advantageously requires little manipulation during use. In some embodiments, the handle portion 301 can be operated with a single hand. The suturing apparatus can be used to close an opening located deep within the patient's tissue (e.g., the heart) without requiring the application of pressure over an extended period of time. As a result, the suturing apparatus can substantially reduce the recovery period following a medical procedure, thereby allowing the patient to return home more quickly and substantially reducing costs. The dimensions of the suturing device 300 can vary according to the approach to the transapical site and the particular medical procedure performed.


In some embodiments, the hollow elongate body 232 has a constant diameter of about 6-16 Fr and a length of about 15 to 80 cm, more preferably less than about 80 cm, 70 cm, 60 cm, 50 cm, 40 cm or 30 cm. In some embodiments, the elongate body 232 includes one or more selectively tapering portions along the longitudinal direction.


The needle sheath 224 extends distally from the distal end 220 of the elongate body 232. As described in further detail with respect to FIGS. 15 and 16, the needle sheath 224 can include one or more needle apertures from which a needle may extend. As shown in FIG. 14, the needle sheath 224 has a cross-section that is generally square or rectangular in shape and has a width extending beyond the diameter of the elongate body 32. However, the needle sheath 224 can have any suitable shape. In some embodiments, the needle sheath 224 can have a cylindrical cross-section. In some embodiments, the needle sheath 224 can have a constant diameter of about 6-16 Fr. In some embodiments, the needle sheath 224 has the same diameter as the elongate body 232. In some embodiments, the needle sheath 224 is integrally formed with one or more of the elongate body 232, the arm sheath 226, and the distal tip 222.


The arm sheath 226 extends distally from the distal end of the needle sheath 224. As described in further detail with respect to FIGS. 15 and 16, the arm sheath 226 can include one or more arm apertures from which a suture arm can extend. In some embodiments, the arm sheath 224 has a constant diameter of about 6-16 Fr. In some embodiments, the arm sheath 226 has the same diameter as the elongate body 232. In some embodiments, the arm sheath 226 is integrally formed with one or more of the elongate body 232, the needle sheath 224, and the distal tip 222.


The distal tip 222 extends distally from the arm sheath 226. As shown in FIG. 14, the distal tip 222 can have a generally cylindrical cross-section. In some embodiments, the distal tip 222 has a constant diameter of about 6-16 Fr. In some embodiments, the distal tip 222 can taper distally to a smaller diameter. In some embodiments, the distal tip 222 is integrally formed with one or more of the elongate body 232, the needle sheath 224, and the arm sheath 226.



FIGS. 15 and 16 depict the distal end of the suturing device 100 in a retracted configuration. As shown in FIGS. 15 and 16, the arm sheath 226 can include one or more arm apertures 312 from which one or more suture arms 310 can extend. Each suture arm 310 can include a suture clasp 314 positioned near a distal end of the arm 314. The suture clasp 314 can hold an end or other portion of a suture. Each of the suture arms 310 can be pre-loaded with the ends of a suture before operation. The ends of the suture can pass from the suture clasps 314 through a distal hole 318 in the distal tip 222 whereby the ends of the suture enter the distal end 220 and can be passed proximally through the hollow elongate body 232. In some embodiments, each end of the suture can include a capture portion having a loop that can be tied onto the ends of the suture clasps 314 or otherwise positioned within the suture clasp 314. For example, in some embodiments, each capture portion is positioned within an opening of the suture clasp 314. It is contemplated however that the capture portions are not restricted solely to tied loops, rather other types of capture portions can be utilized such as, by way of example, spheres or ferrules.


As discussed in further detail with respect to FIGS. 22 and 23, the suture arms 310 can extend from the retracted position to an extended position in which the arms point distally and form an acute angle with a longitudinal axis of the elongate body 332.


The suturing device 300 of FIGS. 14-23 includes four arm apertures 312, each corresponding to one of four suture arms 310. However, the suturing device 300 can include any number of arm apertures and any number of suture arms. For example, the arm sheath 226 can include one aperture, two apertures, three apertures, four apertures, five apertures, six apertures, or any other suitable number of apertures 312. In some embodiments, the suturing device 300 can include one suture arm, two suture arms, three suture arms, four suture arms, five suture arms, six suture arms, or any other suitable number of suture arms 310. In some embodiments, the suture arms 310 of the suturing device 300 can be arranged symmetrically about the outer diameter of the needle sheath 312.


As shown in FIGS. 15 and 16, the needle sheath 224 can include one or more needle apertures 322. Each aperture 322 can be positioned at a distal end of a needle lumen 326 extending at least partially along the length of the elongate body 232. Each needle lumen 326 can extend parallel to the longitudinal axis of the elongate body 232. A plurality of needles can be slidably housed within the elongate body 232. In the retracted configuration each needle can reside within one of the needle lumens 326. As explained in further detail with respect to FIG. 19, each needle can move in a proximal-to-distal direction along the longitudinal axis of the elongate 332 body along its respective needle lumen 320.


When the needles are in an extended position, each needle 120 can engage a suture portion held by one of the suture arms 310. The needles can be flexible and made of a material with shape memory, such as SUPERFLEX NITINOL™. Alternatively, the needles can be comprised of spring steel, surgical stainless steel or any variation thereof. In some embodiments, the needles can be made of a rigid material configured to prevent or reduce bending of the needle. Each of the needles can have a diameter of about 0.019 inches, but needles with other diameters can be used in accordance with the particular medical procedure contemplated. In some embodiments, each needle includes a proximal section having a first diameter and a distal section having a second diameter smaller than the first diameter. The diameter of the proximal section of the needle can be of a sufficient thickness to penetrate the tissue of the heart without deflection. The diameter of the distal section can be of sufficient size to clasp a suture portion held by one of the arms 310. Use of a needle with two different diameters can allow for the diameter at the distal end of the needle to be relatively smaller than the diameter of a needle having only a single diameter throughout while still penetrating the tissue of the heart. Such a needle can allow for smaller arms 310 and clasps 314.


When the suture arms 310 are retracted into the arm apertures 312 and the needles are retracted into the needle apertures 322, the arms 310 and the needles are recessed within the suturing device, as shown in FIGS. 15 and 16. This prevents the arms 310 and the needles from causing tissue damage while the distal end portion passes through a biological structure.


The suturing device 300 of FIGS. 14-23 includes four needles 320. Only two needle apertures are shown in in FIG. 15, but one of skill in the art would understand that there can be a needle aperture 322 for each needle 320 of the suturing device 300. The suturing device 300 can include any number of needle apertures and any number of needles. For example, the suturing device can include one needle, two needles, three needles, four needles, five needles, six needles, or any other suitable number of needles.



FIGS. 17 and 18 depict the distal end of the suturing device 300 with the suture arms 310 in an extended position. As described in further detail herein with respect to FIGS. 20 and 21, each suture arm 310 can be deployed from the retracted configuration to the extended configuration by actuation of the actuator 304. The actuator 304 is configured to cause the suture arms 310 to move in a proximal-to-distal direction along a longitudinal axis of the elongate body 232 such that a proximal end of each arm 310 moves from a proximal end of its respective arm aperture 312 to a distal end of the arm aperture 312. As shown in FIG. 17, a spreading member 334 is positioned within the distal end of the arm sheath 226. The spreading member 334 includes a plurality of ramps 336. Each ramp 336 provides an angled or curved surface configured to cause one of the arms 310 to extend at an acute angle to the longitudinal axis of the elongate body 232 when the arm 310 comes into contact with the ramp 336 when moving in the proximal-to-distal direction. In some embodiments, the arms 310 may extend at a 450 angle with respect to the longitudinal axis of the elongate body 232. In some embodiments, each ramp may be positioned at a 45° with respect to a longitudinal axis of the elongate body 232. When fully extended, a proximal end of each arm 310 can contact one of the ramps 336. In some embodiments, the angled surface of each ramp 336 can abut a proximal portion of the arm 310 to prevent the arm 310 from moving towards the longitudinal axis of the elongate body 232 when the arm 310 is in the extended portion.


As shown in FIGS. 17 and 18, each suture clasp 314 can include a track 313, an opening 315, a tapered or beveled portion 316, and a distal surface 317. The capture portion of the suture can be positioned within the opening 315 through which one of the needles 320 can extend to grasp the capture portion. A length of the suture can extend along the track 313, which can facilitate alignment of the capture portion, and into the elongate body 232. The beveled or tapered section 316 extends about the opening 316 and is configured to receive a needle when the suture arms 310 extend through the suture apertures 312. The taper can help guide the needles into the suture clasps and toward a suture portion within a clasp. This can be beneficial if a needle has prolapsed slightly or otherwise deviated from a preferred alignment, such as an alignment with the center of a suture clasp opening 316. The distal surface 317 is angled with respect to a longitudinal axis of the arm 310 to conform to the angle of the ramps 336 positioned within the arm sheath 226 so that the suture arms 310 do not extend beyond the circumference of the arm sheath 226 when in the retracted position. In some embodiments, the distal surface 317 is positioned at a 45° angle with respect to the longitudinal axis of the arm 310.



FIG. 19 depicts the distal end of the suturing device 300 with a plurality of needles 320 and suture arms 310 in an extended position. In comparison to FIGS. 17 and 18, the arms 310 are positioned at the distal end of the arm sheath 226 such that a proximal portion of each arms 310 abuts one of the ramps 336. Each needle 320 extends from its respective needle aperture 322 parallel to the longitudinal axis of the elongate body 232. As described in further detail herein with respect to FIGS. 20 and 21, each needle 320 can be deployed from the retracted configuration to the extended configuration shown in FIG. 19 by actuation of the actuator 306. The actuator 106 can be further manipulated to retract the needle 320 back into the needle sheath 224.


As shown in FIG. 19, each needle 320 can include a tip 330 and a suture catch portion or hook 332. The tip 330 may be tapered or otherwise shaped to pass through the tissue of the heart. Each suture catch portion or hook 332 can be configured to engage a suture portion positioned within the suture clasp 314 of the suture arm 310 when the needle 320 extends through the suture clasp 314 of the suture arm 310. Once the hook 332 of the needle 320 has engaged the suture portion, the distal end of the needle 320 and the suture portion can be pulled proximally through the elongate body 232 which will cause the needle to be retracted along its respective needle lumen 326.



FIG. 20 depicts a cross-sectional view of the handle 301 showing the internal components thereof. FIG. 21 depicts a cross-sectional view of the distal end of the suturing device 101 showing the internal components of the elongate body 232, the needle sheath 224, the arm sheath 226 and the distal tip 222 with the suture arms 310 and one of the needles 320 in the extended position. As described herein, the actuator 304 can be actuated to cause one or more of the arms 310 to deploy from the retracted position to the extended position. In some embodiments, actuator 304 can be actuated to deploy each arm 310 at the same time. In some embodiments, individual arms 310 can be actuated. Actuator 306 can be actuated to deploy one or more of the needles 320 from the retracted position to the extended position. In some embodiments, actuator 306 can be actuated to deploy each needle 320 at the same time. In some embodiments, individual needles 320 can be actuated. The actuator 306 can further be manipulated to cause retraction of one or more of the needles 320. In some embodiments, the actuator 306 is configured to cause movement of one or more of the elongate body 232 and the needle sheath 224 in addition to the needles 320. The elongate body 332 and/or needle sheath 224 may translate relative to the arm sheath 226 and distal tip 222. In some embodiments, the actuator 306 can manipulated to cause movement of the needles 320, elongate body 232, and needle sheath 224 together in a proximal-to-distal direction. Upon contact with a surface providing resistance, the elongate body 232 and needle sheath 224 may cease movement while the needles 320 continue to move in the proximal-to-distal direction into the surface contacted by the needle sheath 224. The actuator 306 can further be manipulated to cause retraction of the needles 320, needle sheath 224 and elongate body 232. When the needles 320 are positioned within a surface, the actuator 306 can be manipulated to cause retraction of the needles 320 until the distal ends of the needles 320 retract out of the surface and into the needle sheath 224. The needles 320, needle sheath 224, and elongate body 232 may then all retract in the distal-to-proximal direction. The actuator 308 can be actuated to retract one or more of the arms 310 from the extended position to the retracted position. In some embodiments, actuator 308 can be actuated to retract each arm 310 at the same time. In some embodiments, individual arms 310 can be retracted.



FIGS. 22 and 23 illustrate an embodiment of a method of closing a transapical opening using the suturing device 300 of FIGS. 14-21. The suturing device 300 can be introduced through the opening 9 near the apex 7. As indicated above, the suturing device 300 can be introduced into the opening with or without the aid of a guidewire 10 that may pass through a lumen of the elongate body 232 and the distal tip 222. The suturing device 300 can be positioned through the opening a sufficient distance to permit the arms 310 to be deployed within the ventricle 6 of the heart without damage to the surrounding tissue. With the arms 310 deployed, the device 300 can be retracted to cause the arms 310 to engage the heart internal wall tissue surrounding the opening 9. The arms 110 can then be deployed within the ventricle 6. While maintaining the arms 310 in engagement with the heart internal wall tissue, the elongate body 232, needle sheath 224, and needles 320 can be extended in a proximal to distal direction towards the exterior heart wall tissue surrounding the apex. After the needle sheath 224 contacts the exterior heart wall tissue, the needle sheath 224 and elongate body 232 may cease movement while the needles 320 extend from the needle apertures 322 in a proximal-to-distal direction into the heart wall tissue along an axis parallel to a longitudinal axis of the elongate body 232. FIG. 22 shows two of the needles 320 extended through the heart wall tissue adjacent to the opening 9 and to the suture clasps 314 or beyond the suture clasps 314. The needle sheath 224 is shown as transparent in FIG. 22 to illustrate the positioning of the needle within the needle sheath 224. After extending to the suture clasps 314, the needles 320 can snatch the end portions of a suture 52 from the arms 310. For example, the needles 320 can be retracted to snatch the end portions of the suture 52. The suture can be withdrawn through the heart tissue as the needles 320 are retracted back into the needle sheath 224 and elongate body 232, and further as the needles 320, sheath 224, and elongate body 232 are retracted in a distal-to-proximal direction away from the distal tip 222. The arms 310 can then be retracted and the entire suturing device 300 can be withdrawn. The suture can be removed from the device and pulled through the heart tissue to result in the configuration as shown in FIG. 23A, where the suture extends across the transapical opening along an inner surface of the left ventricle and exits the heart from exterior heart wall tissue. Placing the suture along the inner surface of the left ventricle advantageously provides closure to the transapical opening from within the left ventricle.


After the suture 52 has been placed, the suture ends can be tied together or a knot can be placed to close the opening 9, as shown in FIG. 23B. In some embodiments, the placed suture 52 may be an initial suture that is used to then guide an additional suture through the sutured tissue. In such embodiments, the initial suture is removed from the patient and the additional suture is used to draw the opening closed.



FIG. 23 further illustrates placement of a pledget 1000 adjacent the outside surface of the tissue, for example the outside surface of the heart adjacent a sutured transapical opening, to absorb bodily fluid, e.g. blood, adjacent the opening. The pledget can be delivered over suture portions extending away from the opening, and as illustrated, may be deployed with a knot 1002 that secures the suture 52 in closing the transapical opening 9. In another embodiment, the knot 1002 can be placed adjacent the outside surface of the heart, and the pledget 1000 placed over the knot, to provide for readily accessible removal of the temporary placement of the pledget 1000 adjacent the opening 9. Placement of multiple sutures 52 at the opening 9 can provide increased securement of the pledget adjacent the opening 9. In another embodiment, a knot 1002 can be applied both at the heart outer surface wall and on the outer surface of the pledget 1000.


In some embodiments, the two suture arms 310 shown in FIG. 22 hold opposite ends of the suture 52. Although only two needles 320 and arms 310 are shown together in the extended position in FIG. 22, one of skill in the art would understand that two additional arms 310 can be deployed to hold the ends of a second suture, which can be grasped by two additional needles 320. The first pair of suture arms 310 holding opposite ends of the first suture can be diametrically opposed to one another. The second pair of suture arms 310 holding the ends of the second suture can also be diametrically opposed to one another. The four suture arms 310 forming the first pair and second pair of suture arms 310 can be arranged symmetrically about the outer diameter of the arm sheath 226. In some embodiments, the first suture 52 may cross over or under the second suture when extended across the transapical opening 9.


Although the device 300 can be used for suturing transapical openings of the heart, the suturing device 300 can be used to suture other tissues such as, by way of example, a patent ductus arteriosus, a patent foramen ovale (PFO), a heart defect, a puncture wound, and the like.


In any of the above-described methods, suture(s) can be placed through the tissue near the opening before or after performing another procedure or procedures through the opening. In some embodiments suture(s) can be placed both before and after performing one or more other procedures.


It is envisioned that the suturing devices and methods described herein can be used to close or reduce a variety of tissue openings, lumens, hollow organs or natural or surgically created passageways in the body. These include, but are not limited to, arterial openings or other blood vessel openings, septal defects, patent foramen ovale, and heart valves. The devices and methods can also apply multiple sutures or other pieces of material across the opening simultaneously.


From the foregoing description, it will be appreciated that inventive suturing devices and methods are disclosed. While several components, techniques and aspects have been described with a certain degree of particularity, it is manifest that many changes can be made in the specific designs, constructions and methodology herein above described without departing from the spirit and scope of this disclosure.


Certain features that are described in this disclosure in the context of separate implementations can also be implemented in combination in a single implementation. Conversely, various features that are described in the context of a single implementation can also be implemented in multiple implementations separately or in any suitable subcombination. Moreover, although features may be described above as acting in certain combinations, one or more features from a claimed combination can, in some cases, be excised from the combination, and the combination may be claimed as any subcombination or variation of any subcombination.


Moreover, while methods may be depicted in the drawings or described in the specification in a particular order, such methods need not be performed in the particular order shown or in sequential order, and that all methods need not be performed, to achieve desirable results. Other methods that are not depicted or described can be incorporated in the example methods and processes. For example, one or more additional methods can be performed before, after, simultaneously, or between any of the described methods. Further, the methods may be rearranged or reordered in other implementations. Also, the separation of various system components in the implementations described above should not be understood as requiring such separation in all implementations, and it should be understood that the described components and systems can generally be integrated together in a single product or packaged into multiple products. Additionally, other implementations are within the scope of this disclosure.


Conditional language, such as “can,” “could,” “might,” or “may,” unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include or do not include, certain features, elements, and/or steps. Thus, such conditional language is not generally intended to imply that features, elements, and/or steps are in any way required for one or more embodiments.


Conjunctive language such as the phrase “at least one of X, Y, and Z,” unless specifically stated otherwise, is otherwise understood with the context as used in general to convey that an item, term, etc. may be either X, Y, or Z. Thus, such conjunctive language is not generally intended to imply that certain embodiments require the presence of at least one of X, at least one of Y, and at least one of Z.


Language of degree used herein, such as the terms “approximately,” “about,” “generally,” and “substantially” as used herein represent a value, amount, or characteristic close to the stated value, amount, or characteristic that still performs a desired function or achieves a desired result. For example, the terms “approximately”, “about”, “generally,” and “substantially” may refer to an amount that is within less than or equal to 10% of, within less than or equal to 5% of, within less than or equal to 1% of, within less than or equal to 0.1% of, and within less than or equal to 0.01% of the stated amount.


Some embodiments have been described in connection with the accompanying drawings. The figures are not drawn to scale, since dimensions and proportions other than what are shown are contemplated and are within the scope of the disclosed inventions. Distances, angles, etc. are merely illustrative and do not necessarily bear an exact relationship to actual dimensions and layout of the devices illustrated. Components can be added, removed, and/or rearranged. Further, the disclosure herein of any particular feature, aspect, method, property, characteristic, quality, attribute, element, or the like in connection with various embodiments can be used in all other embodiments set forth herein. Additionally, it will be recognized that any methods described herein may be practiced using any device suitable for performing the recited steps.


While a number of embodiments and variations thereof have been described in detail, other modifications and methods of using the same will be apparent to those of skill in the art. Accordingly, it should be understood that various applications, modifications, materials, and substitutions can be made of equivalents without departing from the unique and inventive disclosure herein or the scope of the claims as presented now or in the future.

Claims
  • 1. A suturing device for closing a transapical opening extending through a wall of the heart between inner and outer surfaces of the heart, comprising: an elongate housing having a proximal end and a distal end configured to be delivered through the transapical opening into a chamber of the heart, the elongate housing comprising a needle-receiving portion and an arm-receiving portion;a handle at the proximal end of the elongate housing configured to be manipulated from outside of the heart;a plurality of arms arranged about an outer diameter of the arm-receiving portion of the elongate housing in a retracted position, the arm-receiving portion being distal to the needle-receiving portion when the arms are in the retracted position, the arms being extendable from the arm-receiving portion from the retracted position within the arm-receiving portion to an extended position when the arm-receiving portion is located within the chamber of the heart, wherein each arm is associated with an arm aperture within the arm-receiving portion, wherein a proximal end of each arm is positioned at a proximal end of the respective arm aperture associated with the arm in the retracted position, wherein the proximal end of each arm is configured to move distally within the respective arm aperture associated with the arm from the proximal end of the respective arm aperture to a distal end of the respective arm aperture as the arm moves from the retracted position to the extended position, wherein the arms in the extended position point distally and form an acute angle with a longitudinal axis of the elongate housing, each arm configured to hold a suture portion a distance away from the outer diameter of the arm-receiving portion at or near a distal end of the arm;a plurality of needles slidably received in the needle-receiving portion of the elongate housing, the needle-receiving portion having a larger cross-sectional dimension than the arm-receiving portion and having a distal end proximal to the arm-receiving portion, each needle being associated with a needle lumen extending at least partially along the length of the elongate housing and at least partially along the length of the needle-receiving portion, each needle further being associated with a needle aperture at the distal end of the needle-receiving portion, wherein each needle is movable in a proximal-to-distal direction along the longitudinal axis of the elongate housing along the respective needle lumen associated with the needle and out of the distal end of the needle-receiving portion through the respective needle aperture associated with the needle to pass through heart tissue into engagement with the suture portion held by one of the arms when the plurality of arms are in the extended position, each of the needles being slidable parallel to each other as the needles move in the proximal-to-distal direction, the needles further being retractable away from the arms back through the heart tissue to draw the suture portions through the heart tissue;wherein the arms, needle lumens, and needle apertures are configured such that the needle apertures are located outside of the heart and face the outer surface of the heart when the arm-receiving portion is positioned within the chamber of the heart and such that the needles are moveable from outside of the heart through the outer surface of the heart, through the heart tissue and penetrate through the inner surface of the heart radially outward of the transapical opening when the arms are extended inside the chamber of the heart.
  • 2. The suturing device of claim 1, wherein the plurality of arms comprises a first arm and a second arm diametrically opposed from one another.
  • 3. The suturing device of claim 2, wherein the plurality of arms comprises a third arm and a fourth arm diametrically opposed from one another, wherein the first, second, third, and fourth arms are arranged symmetrically about the outer diameter of the arm-receiving portion.
  • 4. The suturing device of claim 3, wherein the first arm and the second arm are configured to hold suture portions of a first suture and the third and fourth arm are configured to hold suture portions of a second suture.
  • 5. The suturing device of claim 1, further comprising a spreading member having a plurality of ramps positioned near a distal end of the arm-receiving portion, each ramp comprising an angled surface extending away from the longitudinal axis of the elongate housing and being positioned to engage the distal end of one of the plurality of arms when the proximal ends of the arms move distally within the arm apertures.
  • 6. The suturing device of claim 1, wherein each needle further comprises a needle hook configured to engage the suture portion held in one of the arms.
  • 7. The suturing device of claim 1, wherein each needle comprises a proximal section having a first diameter and a distal section having a second diameter, the second diameter being smaller than the first diameter.
  • 8. The suturing device of claim 1, further comprising: a first actuator configured to extend the arms from the retracted position to the extended position;a second actuator configured to adjust the needles between a retracted position and an extended position; anda third actuator configured to retract the arms from the extended position to the retracted position.
  • 9. A method for closing a transapical opening in a wall of the heart, comprising: advancing a suturing device at least partially through the transapical opening, the suturing device comprising: an elongate body having a proximal end and a distal end and a handle at the proximal end of the elongate body configured to be manipulated from outside of the heart;a needle sheath positioned distal to the distal end of the elongate body;an arm sheath having a diameter less than a diameter of the elongate body;a tip positioned distal to a distal end of the arm sheath and configured to be delivered through the transapical opening and into a ventricle of the heart;four arms proximal to the tip arranged symmetrically about an outer diameter of the arm sheath in a retracted position, the arm sheath being distal to the needle sheath when the arms are in the retracted position, each arm configured to hold a suture portion a distance away from the outer diameter of the arm sheath at or near a distal end of the arm, the arms being extendable from said arm sheath from the retracted position to an extended position, wherein each arm is associated with an arm aperture within the arm sheath, wherein a proximal end of each arm is positioned at a proximal end of the respective arm aperture associated with the arm in the retracted position, wherein the proximal end of each arm is configured to move distally within the respective arm aperture associated with the arm from the proximal end of the respective arm aperture to a distal end of the respective arm aperture as the arm moves from the retracted position to the extended position, wherein the arms in the extended position point distally and form an acute angle with a longitudinal axis of the elongate body; andfour needles slidably housed in said elongate body, each needle being associated with a needle lumen extending at least partially along the length of the elongate body and at least partially along the length of the needle sheath, each needle further being associated with a needle aperture at the distal end of the needle sheath, wherein each needle is movable in a proximal-to-distal direction along the longitudinal axis of the elongate body along the respective needle lumen associated with the needle and out of the distal end of the needle sheath through the respective needle aperture associated with the needle to pass through heart tissue into engagement with the suture portion held by one of the arms, each of the needles being slidable parallel to each other as the needles move in the proximal-to-distal direction, the needles further being retractable away from the arms back through the heart tissue to draw the suture portions through the heart tissue;positioning the suturing device such that the four arms are positioned within the ventricle of the heart and a distal end of the needle sheath is exterior to the wall of the heart;extending the arms from the suturing device from the retracted position to the extended position in the ventricle of the heart;extending the needles through the wall of the heart in a proximal-to-distal direction along an axis parallel to the longitudinal axis of the elongate body into engagement with the suture portions held by the arms;retracting the needles through the wall of the heart to draw the suture portions through the wall of the heart;retracting the arms from the extended position to the retracted position;withdrawing the suturing device from the transapical opening; andclosing the transapical opening with the suture portions.
  • 10. The method of claim 9, wherein each needle further comprises a needle hook configured to engage the suture portion held in one of the arms.
  • 11. The method of claim 9, wherein each needle comprises a proximal section having a first diameter and a distal section having a second diameter, the second diameter being smaller than the first diameter.
  • 12. The method of claim 9, wherein the suturing device comprises: a first actuator configured to extend the arms from the retracted position to the extended position;a second actuator configured to adjust the needles between the retracted position and extended position; anda third actuator configured to retract the arms from the extended position to the retracted position.
  • 13. The method of claim 9, further comprising retracting the suturing device so that the extended arms engage heart internal wall tissue prior to extending the needles.
  • 14. The method of claim 13, further comprising extending the elongate body, needle sheath, and needles in a proximal-to-distal direction towards the heart until the needle sheath contacts an exterior surface of the heart while the arms engage the heart internal wall tissue.
  • 15. The method of claim 14, wherein extending the needles through the wall of the heart, comprises extending the needles through the needle apertures and into the wall of the heart after the needle sheath contacts the exterior surface of the heart.
  • 16. The method of claim 15, wherein the suturing device comprises a single actuator configured to extend the elongate body, needle sheath, and needles in a proximal-to-distal direction towards the heart.
  • 17. The method of claim 16, further comprising retracting the needles, needle sheath, and elongate body simultaneously using the single actuator.
  • 18. The method of claim 9, wherein a first pair of the four arms hold suture ends of a first suture and a second pair of the four arms hold suture ends of a second suture.
INCORPORATION BY REFERENCE TO ANY PRIORITY APPLICATIONS

This application is a U.S. national phase application of International Application No. PCT/US2018/038215, filed Jun. 9, 2018, which claims priority benefit of U.S. Provisional Application No. 62/522029, filed Jun. 19, 2017, the entirety of which is hereby incorporated by reference.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2018/038215 6/19/2018 WO
Publishing Document Publishing Date Country Kind
WO2018/236822 12/27/2018 WO A
US Referenced Citations (546)
Number Name Date Kind
118683 Bruce Sep 1871 A
1064307 Fleming Jun 1913 A
1822330 Ainslie Sep 1931 A
1989919 Everitt Feb 1935 A
2348218 Karle May 1944 A
2473742 Auzin Jun 1949 A
2548602 Greenburg Apr 1951 A
2637290 Sigoda May 1953 A
2738790 Todt, Sr. et al. Mar 1956 A
2849002 Oddo Aug 1958 A
2945460 Kagiyama Jul 1960 A
3241554 Coanda Mar 1966 A
3292627 Harautuneian Dec 1966 A
3394705 Abramson Jul 1968 A
3664345 Dabbs et al. May 1972 A
3665926 Flores May 1972 A
3774596 Cook Nov 1973 A
3828790 Curtiss et al. Aug 1974 A
3831587 Boyd Aug 1974 A
3842840 Schweizer Oct 1974 A
3877434 Ferguson et al. Apr 1975 A
3882852 Sinnreich May 1975 A
3882855 Schulte et al. May 1975 A
3888117 Lewis Jun 1975 A
3903893 Scheer Sep 1975 A
3946740 Bassett Mar 1976 A
3946741 Adair Mar 1976 A
3952742 Taylor Apr 1976 A
3976079 Samuels Aug 1976 A
4052980 Grams et al. Oct 1977 A
RE29703 Fatt Jul 1978 E
4107953 Casillo Aug 1978 A
4119100 Rickett Oct 1978 A
4164225 Johnson et al. Aug 1979 A
4230119 Blum Oct 1980 A
4291698 Fuchs et al. Sep 1981 A
4299237 Foti Nov 1981 A
4307722 Evans Dec 1981 A
4345601 Fukuda Aug 1982 A
4351342 Wiita et al. Sep 1982 A
4417532 Yasukata Nov 1983 A
4423725 Baran et al. Jan 1984 A
4447227 Kotsanis May 1984 A
4457300 Budde Jul 1984 A
4484580 Nomoto et al. Nov 1984 A
4512338 Balko et al. Apr 1985 A
4546759 Solar Oct 1985 A
4553543 Amarasinghe Nov 1985 A
4573966 Weikl et al. Mar 1986 A
4589868 Dretler May 1986 A
4610662 Weikl et al. Sep 1986 A
4617738 Kopacz Oct 1986 A
4662068 Polonsky May 1987 A
4664114 Ghodsian May 1987 A
4734094 Jacob et al. Mar 1988 A
4744364 Kensey May 1988 A
4750492 Jacobs Jun 1988 A
4771776 Powell et al. Sep 1988 A
4774091 Yamahira et al. Sep 1988 A
4794928 Kletschka Jan 1989 A
4795427 Helzel Jan 1989 A
4796629 Grayzel Jan 1989 A
4824436 Wolinsky Apr 1989 A
4827931 Longmore May 1989 A
4841888 Mills et al. Jun 1989 A
4861330 Voss Aug 1989 A
4898168 Yule Feb 1990 A
4923461 Caspari et al. May 1990 A
4926860 Stice et al. May 1990 A
4932956 Reddy et al. Jun 1990 A
4935027 Yoon Jun 1990 A
4954126 Wallsten Sep 1990 A
4957498 Caspari et al. Sep 1990 A
4972845 Iversen et al. Nov 1990 A
4981149 Yoon et al. Jan 1991 A
4983116 Koga Jan 1991 A
4984564 Yuen Jan 1991 A
4994070 Waters Feb 1991 A
5002531 Bonzel Mar 1991 A
5021059 Kensey et al. Jun 1991 A
5037433 Wilk et al. Aug 1991 A
5057114 Wittich et al. Oct 1991 A
5059201 Asnis Oct 1991 A
5065772 Cox, Jr. Nov 1991 A
5074871 Groshong Dec 1991 A
5078743 Mikalov et al. Jan 1992 A
5090958 Sahota Feb 1992 A
5100418 Yoon et al. Mar 1992 A
5104394 Knoepfler Apr 1992 A
5106363 Nobuyoshi Apr 1992 A
5108416 Ryan et al. Apr 1992 A
5108419 Reger et al. Apr 1992 A
5116305 Milder et al. May 1992 A
5122122 Allgood Jun 1992 A
5129883 Black Jul 1992 A
5133724 Wilson et al. Jul 1992 A
5135484 Wright Aug 1992 A
5160339 Chen et al. Nov 1992 A
5163906 Ahmadi Nov 1992 A
5167223 Koros et al. Dec 1992 A
5171251 Bregen et al. Dec 1992 A
5176691 Pierce Jan 1993 A
5192301 Kamiya et al. Mar 1993 A
5222508 Contarini Jun 1993 A
5222941 Don Michael Jun 1993 A
5222974 Kensey et al. Jun 1993 A
5224948 Abe et al. Jul 1993 A
5236443 Sontag Aug 1993 A
5242459 Buelna Sep 1993 A
5281234 Wilk et al. Jan 1994 A
5281237 Gimpelson Jan 1994 A
5282827 Kensey et al. Feb 1994 A
5286259 Ganguly et al. Feb 1994 A
5290249 Foster et al. Mar 1994 A
5291639 Baum et al. Mar 1994 A
5300106 Dahl et al. Apr 1994 A
5304184 Hathaway et al. Apr 1994 A
5308323 Sogawa et al. May 1994 A
5312344 Grinfeld May 1994 A
5314409 Sarosiek et al. May 1994 A
5320604 Walker et al. Jun 1994 A
5320632 Heidmueller Jun 1994 A
5330446 Weldon et al. Jul 1994 A
5330497 Freitas et al. Jul 1994 A
5331975 Bonutti Jul 1994 A
5336229 Noda Aug 1994 A
5336231 Adair Aug 1994 A
5337736 Reddy Aug 1994 A
5339801 Poloyko Aug 1994 A
5342306 Don Michael Aug 1994 A
5342385 Norelli et al. Aug 1994 A
5342393 Stack Aug 1994 A
5350399 Erlebacher et al. Sep 1994 A
5356382 Picha et al. Oct 1994 A
5364407 Poll Nov 1994 A
5364408 Gordon Nov 1994 A
5368601 Sauer et al. Nov 1994 A
5370618 Leonhardt Dec 1994 A
5370685 Stevens Dec 1994 A
5374275 Bradley et al. Dec 1994 A
5380284 Don Michael Jan 1995 A
5382261 Palmaz Jan 1995 A
5383854 Safar et al. Jan 1995 A
5383896 Gershony et al. Jan 1995 A
5383897 Wholey Jan 1995 A
5383905 Golds et al. Jan 1995 A
5389103 Melzer et al. Feb 1995 A
5391147 Imran et al. Feb 1995 A
5391174 Weston Feb 1995 A
5395383 Adams et al. Mar 1995 A
5397325 Badia et al. Mar 1995 A
5403329 Hinchcliffe Apr 1995 A
5403331 Chesterfield et al. Apr 1995 A
5403341 Solar Apr 1995 A
5405322 Lennox et al. Apr 1995 A
5405354 Sarrett Apr 1995 A
5417699 Klein et al. May 1995 A
5417700 Egan May 1995 A
5423777 Tajiri et al. Jun 1995 A
5423837 Mericle et al. Jun 1995 A
5425708 Nasu Jun 1995 A
5425737 Burbank et al. Jun 1995 A
5425744 Fagan et al. Jun 1995 A
5429118 Cole et al. Jul 1995 A
5431666 Sauer et al. Jul 1995 A
5439470 Li Aug 1995 A
5445167 Yoon et al. Aug 1995 A
5447515 Robicsek Sep 1995 A
5452513 Zinnbauer et al. Sep 1995 A
5454823 Richardson et al. Oct 1995 A
5458574 Machold et al. Oct 1995 A
5458609 Gordon et al. Oct 1995 A
5462560 Stevens Oct 1995 A
5462561 Voda Oct 1995 A
5470338 Whitefield et al. Nov 1995 A
5474572 Hayburst Dec 1995 A
5476469 Hathaway et al. Dec 1995 A
5476470 Fitzgibbons, Jr. Dec 1995 A
5496332 Sierra et al. Mar 1996 A
5499991 Garman et al. Mar 1996 A
5501691 Goldrath Mar 1996 A
5507754 Green et al. Apr 1996 A
5507755 Gresl et al. Apr 1996 A
5514159 Matula et al. May 1996 A
5520609 Moll et al. May 1996 A
5520702 Sauer et al. May 1996 A
5522961 Leonhardt Jun 1996 A
5527321 Hinchliffe Jun 1996 A
5527322 Klein et al. Jun 1996 A
5527338 Purdy Jun 1996 A
5540658 Evans et al. Jul 1996 A
5540704 Gordon et al. Jul 1996 A
5545170 Hart Aug 1996 A
5549633 Evans et al. Aug 1996 A
5558642 Schweich et al. Sep 1996 A
5558644 Boyd et al. Sep 1996 A
RE35352 Peters Oct 1996 E
5562686 Sauer et al. Oct 1996 A
5562688 Riza Oct 1996 A
5565122 Zinnbauer et al. Oct 1996 A
5571090 Sherts Nov 1996 A
5573540 Yoon Nov 1996 A
5584835 Greenfield Dec 1996 A
5584861 Swain et al. Dec 1996 A
5591195 Taheri et al. Jan 1997 A
5593422 Muijs Van de Moer et al. Jan 1997 A
5599307 Bacher et al. Feb 1997 A
5603718 Xu Feb 1997 A
5613974 Andreas et al. Mar 1997 A
5613975 Christy Mar 1997 A
5626590 Wilk May 1997 A
5630833 Katsaros et al. May 1997 A
5632751 Piraka May 1997 A
5632752 Buelna May 1997 A
5634936 Linden et al. Jun 1997 A
5637097 Yoon Jun 1997 A
5643289 Sauer et al. Jul 1997 A
5645553 Kolesa et al. Jul 1997 A
5662663 Shallman Sep 1997 A
5669917 Sauer et al. Sep 1997 A
5669971 Bok et al. Sep 1997 A
5674198 Leone Oct 1997 A
5681296 Ishida Oct 1997 A
5681351 Jamiolkowski et al. Oct 1997 A
5688245 Runge Nov 1997 A
5690674 Diaz Nov 1997 A
5695468 Lafontaine et al. Dec 1997 A
5695504 Gifford, III et al. Dec 1997 A
5697905 D'Amnbrosio Dec 1997 A
5700273 Buelna et al. Dec 1997 A
5700277 Nash et al. Dec 1997 A
5707379 Fleenor et al. Jan 1998 A
5709693 Taylor Jan 1998 A
5716329 Dieter Feb 1998 A
5720757 Hathaway et al. Feb 1998 A
5722983 Van Der Weegen Mar 1998 A
5728109 Schulze et al. Mar 1998 A
5738629 Moll et al. Apr 1998 A
5743852 Johnson Apr 1998 A
5746753 Sullivan et al. May 1998 A
5749883 Halpern May 1998 A
5759188 Yoon Jun 1998 A
5766183 Sauer Jun 1998 A
5766220 Moenning Jun 1998 A
5769870 Salahieh et al. Jun 1998 A
5779719 Klein et al. Jul 1998 A
5792152 Klein et al. Aug 1998 A
5792153 Swain et al. Aug 1998 A
5795289 Wyttenbach Aug 1998 A
5795325 Valley et al. Aug 1998 A
5797948 Dunham Aug 1998 A
5797960 Stevens et al. Aug 1998 A
5810757 Sweezer et al. Sep 1998 A
5810849 Kontos Sep 1998 A
5810850 Hathaway et al. Sep 1998 A
5817108 Poncet Oct 1998 A
5817110 Kronner Oct 1998 A
5820631 Nobles Oct 1998 A
5836955 Buelna et al. Nov 1998 A
5843100 Meade Dec 1998 A
5846251 Hart Dec 1998 A
5846253 Buelna et al. Dec 1998 A
5853399 Sasaki Dec 1998 A
5853422 Huebsch et al. Dec 1998 A
5855585 Kontos Jan 1999 A
5860990 Nobles et al. Jan 1999 A
5860991 Klein et al. Jan 1999 A
5860992 Daniel et al. Jan 1999 A
5860997 Bonutti Jan 1999 A
5861003 Latson et al. Jan 1999 A
5865729 Meehan et al. Feb 1999 A
5868708 Hart et al. Feb 1999 A
5868762 Cragg et al. Feb 1999 A
5871320 Kovac Feb 1999 A
5871537 Holman et al. Feb 1999 A
5876411 Kontos Mar 1999 A
5899921 Caspari et al. May 1999 A
5902311 Andreas et al. May 1999 A
5902321 Caspari et al. May 1999 A
5906577 Beane et al. May 1999 A
5908428 Scirica et al. Jun 1999 A
5919200 Stambaugh et al. Jul 1999 A
5919208 Valenti Jul 1999 A
5928192 Maahs Jul 1999 A
5931844 Thompson et al. Aug 1999 A
5935098 Blaisdell et al. Aug 1999 A
5935149 Ek Aug 1999 A
5944730 Nobles et al. Aug 1999 A
5951588 Moenning Sep 1999 A
5951590 Goldfarb Sep 1999 A
5954732 Hart et al. Sep 1999 A
5967970 Cowan et al. Oct 1999 A
5971983 Lesh Oct 1999 A
5972005 Stalker et al. Oct 1999 A
5980539 Kontos Nov 1999 A
5993466 Yoon Nov 1999 A
5997555 Kontos Dec 1999 A
6001109 Kontos Dec 1999 A
6004337 Kieturakis et al. Dec 1999 A
6010530 Goicoechea Jan 2000 A
6015428 Pagedas Jan 2000 A
6024747 Kontos Feb 2000 A
6033430 Bonutti Mar 2000 A
6036699 Andreas et al. Mar 2000 A
6059800 Hart et al. May 2000 A
6066160 Colvin et al. May 2000 A
6068648 Cole et al. May 2000 A
6071271 Baker et al. Jun 2000 A
6077277 Mollenauer et al. Jun 2000 A
6086608 Ek et al. Jul 2000 A
6099553 Hart et al. Aug 2000 A
6110185 Barra et al. Aug 2000 A
6113580 Dolisi Sep 2000 A
6117144 Nobles et al. Sep 2000 A
6126677 Ganaja et al. Oct 2000 A
6136010 Modesitt et al. Oct 2000 A
6143015 Nobles Nov 2000 A
6159234 Bonutti et al. Dec 2000 A
6171319 Nobles et al. Jan 2001 B1
6174324 Egan et al. Jan 2001 B1
6187026 Devlin et al. Feb 2001 B1
6190396 Whitin et al. Feb 2001 B1
6200329 Fung et al. Mar 2001 B1
6203565 Bonutti et al. Mar 2001 B1
6210429 Vardi et al. Apr 2001 B1
6217591 Egan et al. Apr 2001 B1
6241699 Suresh et al. Jun 2001 B1
6245079 Nobles et al. Jun 2001 B1
6245080 Levinson Jun 2001 B1
6248121 Nobles Jun 2001 B1
6280460 Bolduc et al. Aug 2001 B1
6290674 Roue et al. Sep 2001 B1
6332889 Sancoff et al. Dec 2001 B1
6348059 Hathaway et al. Feb 2002 B1
6352543 Cole et al. Mar 2002 B1
6383208 Sancoff et al. May 2002 B1
6395015 Borst et al. May 2002 B1
6409739 Nobles et al. Jun 2002 B1
6432115 Mollenauer et al. Aug 2002 B1
6468293 Bonutti et al. Oct 2002 B2
6508777 Macoviak et al. Jan 2003 B1
6527785 Sancoff et al. Mar 2003 B2
6533795 Tran et al. Mar 2003 B1
6537299 Hogendijk et al. Mar 2003 B1
6547725 Paolitto et al. Apr 2003 B1
6547760 Samson et al. Apr 2003 B1
6551331 Nobles et al. Apr 2003 B2
6562052 Nobles et al. May 2003 B2
6585689 Macoviak et al. Jul 2003 B1
6663643 Field et al. Dec 2003 B2
6679895 Sancoff et al. Jan 2004 B1
6682540 Sancoff et al. Jan 2004 B1
6716243 Colvin et al. Apr 2004 B1
6726651 Robinson et al. Apr 2004 B1
6733509 Nobles et al. May 2004 B2
6767352 Field et al. Jul 2004 B2
6770076 Foerster Aug 2004 B2
6770084 Bain et al. Aug 2004 B1
6786913 Sancoff Sep 2004 B1
6978176 Lattouf Jan 2005 B2
6855157 Foerster et al. Feb 2005 B2
6893448 O'Quinn et al. May 2005 B2
6911034 Nobles et al. Jun 2005 B2
6913600 Valley et al. Jul 2005 B2
6936057 Nobles Aug 2005 B1
7004952 Nobles et al. Feb 2006 B2
7083630 DeVries et al. Aug 2006 B2
7083638 Foerster Aug 2006 B2
7090686 Nobles et al. Aug 2006 B2
7090690 Foerster et al. Aug 2006 B2
7118583 O'Quinn et al. Oct 2006 B2
7160309 Voss Jan 2007 B2
7172595 Goble Feb 2007 B1
7220266 Gambale May 2007 B2
7232446 Farris Jun 2007 B1
7235086 Sauer et al. Jun 2007 B2
7326221 Sakamoto et al. Feb 2008 B2
7329272 Burkhart et al. Feb 2008 B2
7338502 Rosenblatt Mar 2008 B2
7381210 Zarbatany et al. Jun 2008 B2
7399304 Gambale et al. Jul 2008 B2
7435251 Green Oct 2008 B2
7449024 Stafford Nov 2008 B2
7491217 Hendren Feb 2009 B1
7601161 Nobles et al. Oct 2009 B1
7628797 Tieu et al. Dec 2009 B2
7635386 Gammie Dec 2009 B1
7637926 Foerster et al. Dec 2009 B2
7722629 Chambers May 2010 B2
7803167 Nobles et al. Sep 2010 B2
7842051 Dana et al. Nov 2010 B2
7846181 Schwartz et al. Dec 2010 B2
7879072 Bonutti et al. Feb 2011 B2
7905892 Nobles et al. Mar 2011 B2
7918867 Dana et al. Apr 2011 B2
7931641 Chang et al. Apr 2011 B2
7993368 Gambale et al. Aug 2011 B2
8075573 Gambale et al. Dec 2011 B2
8083754 Pantages et al. Dec 2011 B2
8105355 Page et al. Jan 2012 B2
8197497 Nobles et al. Jun 2012 B2
8202281 Voss Jun 2012 B2
8246636 Nobles et al. Aug 2012 B2
8252005 Findlay, III et al. Aug 2012 B2
8282659 Oren et al. Oct 2012 B2
8287556 Gilkey et al. Oct 2012 B2
8298291 Ewers et al. Oct 2012 B2
8303622 Alkhatib Nov 2012 B2
8348962 Nobles et al. Jan 2013 B2
8372089 Nobles et al. Feb 2013 B2
8398676 Roorda et al. Mar 2013 B2
8430893 Ma Apr 2013 B2
8469975 Nobles et al. Jun 2013 B2
8496676 Nobles et al. Jul 2013 B2
8500776 Ebner Aug 2013 B2
8540736 Gaynor et al. Sep 2013 B2
8568427 Nobles et al. Oct 2013 B2
8623036 Harrison et al. Jan 2014 B2
8728105 Aguirre May 2014 B2
8758370 Shikhman et al. Jun 2014 B2
8771296 Nobles et al. Jul 2014 B2
9131938 Nobles et al. Sep 2015 B2
9326764 Nobles et al. May 2016 B2
9332976 Yribarren May 2016 B2
9364238 Bakos et al. Jun 2016 B2
9398907 Nobles et al. Jul 2016 B2
9402605 Viola Aug 2016 B2
9649106 Nobles et al. May 2017 B2
9706988 Nobles et al. Jul 2017 B2
10178993 Nobles et al. Jan 2019 B2
10182802 Nobles et al. Jan 2019 B2
10194902 Nobles et al. Feb 2019 B2
10285687 Nobles et al. May 2019 B2
10420545 Nobles et al. Sep 2019 B2
10512458 Nobles Dec 2019 B2
10610216 Nobles et al. Apr 2020 B2
10624629 Nobles et al. Apr 2020 B2
20010031973 Nobles et al. Oct 2001 A1
20020013601 Nobles et al. Jan 2002 A1
20020045908 Nobles et al. Apr 2002 A1
20020049453 Nobles Apr 2002 A1
20020096183 Stevens et al. Jul 2002 A1
20020128598 Nobles Sep 2002 A1
20020169475 Gainor et al. Nov 2002 A1
20020183787 Wahr et al. Dec 2002 A1
20030078601 Skikhman et al. Apr 2003 A1
20030114863 Field et al. Jun 2003 A1
20030144673 Onuki et al. Jul 2003 A1
20030204205 Sauer et al. Oct 2003 A1
20030208209 Gambale et al. Nov 2003 A1
20030220667 van der Burg et al. Nov 2003 A1
20040015177 Chu Jan 2004 A1
20040044365 Bachman Mar 2004 A1
20040059351 Eigler et al. Mar 2004 A1
20040102797 Golden et al. May 2004 A1
20040153116 Nobles Aug 2004 A1
20040236356 Rioux et al. Nov 2004 A1
20040260298 Kaiseer et al. Dec 2004 A1
20050033361 Galdonik et al. Feb 2005 A1
20050070923 McIntosh Mar 2005 A1
20050149066 Stafford Jul 2005 A1
20050187575 Hallbeck et al. Aug 2005 A1
20050203564 Nobles Sep 2005 A1
20050228407 Nobles et al. Oct 2005 A1
20050261708 Pasricha et al. Nov 2005 A1
20050261710 Sakamoto et al. Nov 2005 A1
20050277986 Foerster et al. Dec 2005 A1
20060052813 Nobles Mar 2006 A1
20060064113 Nakao Mar 2006 A1
20060064115 Allen et al. Mar 2006 A1
20060069397 Nobles et al. Mar 2006 A1
20060074484 Huber Apr 2006 A1
20060095052 Chambers May 2006 A1
20060195120 Nobles et al. Aug 2006 A1
20060248691 Rosemann Nov 2006 A1
20060265010 Paraschac et al. Nov 2006 A1
20060282088 Ryan Dec 2006 A1
20060282094 Stokes et al. Dec 2006 A1
20060282102 Nobles et al. Dec 2006 A1
20060287657 Bachman Dec 2006 A1
20070005079 Zarbatany et al. Jan 2007 A1
20070010829 Nobles et al. Jan 2007 A1
20070043385 Nobles et al. Feb 2007 A1
20070060930 Hamilton et al. Mar 2007 A1
20070106310 Goldin et al. May 2007 A1
20070118151 Davidson May 2007 A1
20070142846 Catanese, III et al. Jun 2007 A1
20070213757 Boraiah Sep 2007 A1
20070219630 Chu Sep 2007 A1
20070276413 Nobles Nov 2007 A1
20070276414 Nobles Nov 2007 A1
20080033459 Shafi et al. Feb 2008 A1
20080065145 Carpenter Mar 2008 A1
20080077162 Domingo Mar 2008 A1
20080114384 Chang et al. May 2008 A1
20080188873 Speziali Aug 2008 A1
20080228201 Zarbatany Sep 2008 A1
20080269786 Nobles et al. Oct 2008 A1
20080269788 Phillips Oct 2008 A1
20090036906 Stafford Feb 2009 A1
20090048615 McIntosh Feb 2009 A1
20090099410 De Marchena Apr 2009 A1
20090105729 Zentgraf Apr 2009 A1
20090105751 Zentgraf Apr 2009 A1
20090118726 Auth et al. May 2009 A1
20090125042 Mouw May 2009 A1
20090287183 Bishop et al. Nov 2009 A1
20090299409 Coe et al. Dec 2009 A1
20090312772 Chu Dec 2009 A1
20090312783 Whayne et al. Dec 2009 A1
20090312789 Kassab et al. Dec 2009 A1
20100016870 Campbell Jan 2010 A1
20100030242 Nobles et al. Feb 2010 A1
20100042147 Janovsky et al. Feb 2010 A1
20100063586 Hasenkam et al. Mar 2010 A1
20100087838 Nobles et al. Apr 2010 A1
20100094314 Hernlund et al. Apr 2010 A1
20100100167 Bortlein et al. Apr 2010 A1
20100179585 Carpenter et al. Jul 2010 A1
20100210899 Schankereli Aug 2010 A1
20110190793 Nobles Aug 2011 A1
20110202077 Chin et al. Aug 2011 A1
20110224720 Kassab et al. Sep 2011 A1
20110251627 Hamilton et al. Oct 2011 A1
20120016384 Wilke et al. Jan 2012 A1
20120035628 Aguirre et al. Feb 2012 A1
20120059398 Pate et al. Mar 2012 A1
20120143222 Dravis et al. Jun 2012 A1
20120165838 Kobylewski et al. Jun 2012 A1
20120296373 Roorda et al. Nov 2012 A1
20130103056 Chu Apr 2013 A1
20130261645 Nobles et al. Oct 2013 A1
20130324800 Cahill Dec 2013 A1
20140276975 Argentine Sep 2014 A1
20140309670 Bakos et al. Oct 2014 A1
20140379006 Sutherland et al. Dec 2014 A1
20150126815 Nobles May 2015 A1
20150359531 Sauer Dec 2015 A1
20160151064 Nobles Jun 2016 A1
20170035425 Fegelman et al. Feb 2017 A1
20170049451 Hausen Feb 2017 A1
20170296168 Nobles et al. Apr 2017 A1
20170128059 Coe et al. May 2017 A1
20190029672 Nobles et al. Jan 2019 A1
20190150903 Nobles May 2019 A1
20190239880 Nobles Aug 2019 A1
Foreign Referenced Citations (82)
Number Date Country
2006251579 Nov 2006 AU
101495049 Dec 2010 CN
101257852 Aug 2011 CN
ZL 201280029608.6 Oct 2016 CN
29 01 701 Jul 1980 DE
0 241 038 Oct 1987 EP
0 544 485 Jun 1993 EP
0839 550 May 1998 EP
0 894 475 Feb 1999 EP
1 196 093 Apr 2002 EP
1 303 218 Apr 2003 EP
0 941 698 May 2005 EP
0 983 027 Dec 2005 EP
1 852 071 Nov 2007 EP
1 987 779 Nov 2008 EP
2 572 649 Mar 2013 EP
2 701 401 Aug 1994 FR
A 9507398 Jul 1997 JP
09-266910 Oct 1997 JP
H10-43192 Feb 1998 JP
2001-524864 Dec 2001 JP
2003-139113 May 2003 JP
2003-225241 Aug 2003 JP
2007-503870 Mar 2007 JP
2008-514305 May 2008 JP
2008-541857 Nov 2008 JP
2008-546454 Dec 2008 JP
2009-261960 Nov 2009 JP
2010-522625 Jul 2010 JP
2011-067251 Apr 2011 JP
5848125 Dec 2015 JP
2010 125954 Jan 2012 RU
1560129 Apr 1990 SU
WO 9205828 Apr 1992 WO
WO 9301750 Feb 1993 WO
WO 9307800 Apr 1993 WO
WO 9512429 May 1995 WO
WO 9517127 Jun 1995 WO
WO 9525468 Sep 1995 WO
WO 9525470 Sep 1995 WO
WO 9603083 Feb 1996 WO
WO 9629012 Sep 1996 WO
WO 9640347 Dec 1996 WO
WO 9703613 Feb 1997 WO
WO 9747261 Feb 1997 WO
WO 9707745 Mar 1997 WO
WO 9712540 Apr 1997 WO
WO 9720505 Jun 1997 WO
WO 9724975 Jul 1997 WO
WO 9727807 Aug 1997 WO
WO 9740738 Nov 1997 WO
WO 9812970 Apr 1998 WO
WO 9852476 Nov 1998 WO
WO 9940851 Aug 1999 WO
WO 9942160 Aug 1999 WO
WO 9945848 Sep 1999 WO
WO 00002489 Jan 2000 WO
WO 01001868 Jan 2001 WO
WO 0195809 Dec 2001 WO
WO 02024078 Mar 2002 WO
WO 04012789 Feb 2004 WO
WO 04096013 Nov 2004 WO
WO 06127636 Nov 2006 WO
WO 07001936 Jan 2007 WO
WO 07016261 Feb 2007 WO
WO 08121738 Oct 2008 WO
WO 09081396 Jul 2009 WO
WO 09137766 Nov 2009 WO
WO 11094619 Aug 2011 WO
WO 11137224 Nov 2011 WO
WO 11156782 Dec 2011 WO
WO 12012336 Jan 2012 WO
WO 12142338 Oct 2012 WO
WO 13027209 Feb 2013 WO
WO 13142487 Sep 2013 WO
WO 13170081 Nov 2013 WO
WO 15002815 Jan 2015 WO
WO 15085145 Jun 2015 WO
WO 17180092 Oct 2017 WO
WO 19035095 Feb 2019 WO
WO 19051379 Mar 2019 WO
WO 19055433 Mar 2019 WO
Non-Patent Literature Citations (19)
Entry
Advances in Vascular Surgery, by John S. Najarian, M.D. and John p. Delaney, M.D., copyright 1983 by Year Book Publishers, Inc. at pp. 94,95,96, and 224.
Cardio Medical Solutions, Inc. brochure titled: “Baladi Inverter for Clamp less Surgery”—Undated.
Clinical Evaluation of Arteriovenous Fistulas as an Adjunct to Lower Extremity Arterial Reconstructions, by Herbert Dardick, M.D., in Current Critical Problems in Vascular Surgery, copyright 1989 by Quality Medical Publishing Inc., at p. 383.
Current Therapy in Vascular Surgery, 2nd edition, by Calvin B. Ernst, M.D. and James C. Stanley, M.D., copyright 1991 By B.C. Decker, Inc., at pp. A and 140.
Eskuri, A., The Design of a Minimally Invasive Vascular Suturing Device, Thesis submitted to Rose-Hulman Institute of Technology, Nov. 1999.
Manual of Vascular Surgery, vol. 2, Edwin J. Wylie, Ronald J. Stoney, William K. Ehrenfeld and David J. Effeney (Richard H. Egdahl ed.), copyright 1986 by Springer-Verlag New York Inc., at p. 41.
Nursing the Open-Heart Surgery Patient, By Mary Jo Aspinall, R.N., M.N., copyright 1973 by McGraw Hill, Inc., at pp. 216 and 231.
Operative Arterial Surgery, by P.R. Bell, M.D., and W Barrie, M.D., copyright 1981 by Bell, Barrie, and Leicester Royal Infirmary, printed byJohn Wright &Sons, pp. 16, 17, 104, 105, 112, and 113.
Sinus Venous Type of Atrial Septal Defect with Partial Anomalous Pulmonary Venous Return, by Francis Robicsek, MD., et ai, in Journal of Thoracic and Cardiovascular Surgery, Oct. 1979, vol. 78, No. 4, at pp. 559-562.
Techniques in Vascular Surgery, by Denton A. Cooley, MD. and Don C. Wukasch, MD., copyright 1979 by WB. Saunders Co., at pp. 38,57,86,134,156, and 184.
The problem: Closing wounds in deep areas during laparoscopic operations The solution: REMA Medizintechnik GmbH (no date).
Vascular Access, Principles and Practice, 3rd edition, by Samuel Eric Wilson, MD., copyright 1996, 1988, 1980 by Mosby-Year Book, Inc., pp. 89 and 159.
Vascular and Endovascular Surgery, by Jonathan D. Beard and Peter Gainers, copyright 1998 by W. B. Saunders Co., Ltd, p. 414.
Vascular Surgery, 3rd edition, vol. 1, by Robert B. Rutherford, MD., copyright 1989, 1984, 1976 By W. B.SaundersCo., at pp. 347, 348, 354, 594, 607, 622, 675, 677, 680, 698, 700, 721, 727, 735, and 829.
Vascular Surgery, 4th edition by Robert B. Rutherford, MD., copyright 1995,1989,1976, by W.B. Saunders Co., vol. 1, at pp. 400-404, 661, and A.
Vascular Surgery, 4th edition, by Robert B. Rutherford, M.D., copyright 1995, 1989, 1984, 1976 by W. B. Saunders Co., vol. 2, at pp. 1318, 1363, 1426, 1564, and 1580.
Vascular Surgery, by Robert B. Rutherford, M.D. copyright1977 by WB. Saunders Co., at pp. 334 and 817.
International Search Report and Written Opinion of PCT/US2018/038215, dated Sep. 25, 2018.
International Preliminary Report on Patentability of PCT/US2018/038215, dated Dec. 24, 2019.
Related Publications (1)
Number Date Country
20200214694 A1 Jul 2020 US
Provisional Applications (1)
Number Date Country
62522029 Jun 2017 US