The present invention relates to a swage apparatus and a swage method.
A coupling is used to connect two tubes to each other. In connecting, an end of each tube is inserted in the coupling. After the insertion, the coupling is caulked (swaged). Thereby, two tubes are connected via the coupling.
The coupling which is to be swaged by moving a ring-shaped member along the axial direction is known. Such a coupling includes a circular cylindrical sleeve (a first member), and a swage ring (a second member). A tapered portion is formed at an end portion of the sleeve. In the tapered portion, the outer diameter of the sleeve becomes smaller closer to the distal end. The swage ring is arranged coaxially with the sleeve. In connecting tubes, firstly, an end of each tube is inserted in the sleeve. Next, the swage ring is moved with respect to the sleeve along the axial direction. More specifically, the swage ring is relatively moved such that the tapered portion passes through the swage ring. Thereby, the sleeve is compressed at the tapered portion, and the tube is swaged.
In relation to the above, Patent Literature 1 (JP H09-501224 A) discloses an attachment component which is to be attached to the tube by swaging. This attachment component includes a circular cylindrical sleeve. The sleeve has a tapered outer surface, and an inner surface for receiving the tube. When the swaging ring engages the outer surface of the sleeve and the ring moves in a forward direction along the axis with respect to the sleeve, the ring applies a radial force to the sleeve and the sleeve is swaged.
On the other hand, in swaging the coupling, a swage apparatus is used. Relatedly, in Patent Literature 2 (JP H02-182329 A), a swaging tool is disclosed. This swaging tool includes a first die, a second die that is movable toward the first die, a head for holding the first die with respect to the second die during swaging, and a cylinder for supporting the second die which has a means for moving the second die toward the first die.
Moreover, in Patent Literature 3 (Japan Patent No. 2,875,889), the swage tool is disclosed. This swage tool includes a housing, a piston movable in the axial direction with respect to the housing, a first engaging member fixed on the housing and restricting a movement of one of the ring or the sleeve along the axial direction, and a second engaging member coupled to the piston so as to move with the piston and which moves the other of the ring or the sleeve along the axial direction toward the first engaging member.
Furthermore, in Patent Literature 4 (JP H10-511897 A), an axial swage tool having a stabilizing pin is disclosed.
In swaging the coupling, it is important that the axis of the coupling is not deviated. When the axis is deviated, the force is not applied in the proper direction. As a result, the sleeve cannot be uniformly compressed, and there may be a case in which characteristics such as airtightness required for the coupling cannot be maintained.
Accordingly, an object of the present invention is to provide a swage apparatus and a swage method which can prevent the deviation of the axis.
A swage apparatus according to the present invention is a swage apparatus for swaging the coupling. The coupling includes: a first member having a circular cylindrical shape in which an end of a tube is inserted; and a second member having a ring shape and disposed coaxially with the first member. The coupling can be swaged by moving the second member with respect to the first member along an axis of the coupling. The swage apparatus includes: a main body for supporting the coupling such that the axis of the coupling is oriented in a first direction; a stopper which comes into contact with one member of the first member or the second member and restricts a movement of the one member in the first direction; a pusher which comes into contact with the other member of the first member or the second member and pushes the other member in the first direction; and a cover member which covers the coupling so as to prevent a deviation of the axis of the coupling.
Another swage apparatus according to the present invention is a swage apparatus for swaging the coupling. The coupling includes: a first member having a circular cylindrical shape in which an end of a tube is inserted; and a second member having a ring shape and disposed coaxially with the first member. The coupling can be swaged by moving the second member with respect to the first member along an axis of the coupling. The swage apparatus includes: a main body for supporting the coupling such that the axis of the coupling is oriented in a first direction; a stopper which comes into contact with one member of the first member or the second member and restricts a movement of the one member in the first direction; a pusher which comes into contact with the other member of the first member or the second member and pushes the other member in the first direction; and an axis detecting unit which detects whether or not the axis of the coupling and an axis of the tube are along the first direction.
A swage method according to the present invention includes: supporting a coupling such that an axis of the coupling is oriented in a first direction; restricting a movement of one member of the first member or the second member in the first direction; pushing the other member of the first member or the second member in the first direction; and covering the coupling with a cover member so as to prevent a deviation of the axis of the coupling.
According to the present invention, the swage apparatus and swage method are provided with which it is possible to prevent the deviation of the axis.
Referring to the drawings, embodiments will be explained.
At first, the first embodiment will be explained.
The coupling 1 is used for connecting a tube 2-1 and a tube 2-2. In the present embodiment, it is supposed that the tube 2-1 and the tube 2-2 are tubes to be disposed in an aircraft. As shown in
The sleeve 3 has a cylindrical shape having the same diameter. In the sleeve 3, an end of each tube 2 is inserted. At both ends of the sleeve 3, tapered portions 6 (6-1 and 6-2) are formed. In each tapered portion 6, the outer diameter of the sleeve 3 is smaller closer to the tip side. In addition, the sleeve 3 has a pair of stoppers 5 (5-1, 5-2). Each stopper 5 is provided to restrict a movement of corresponding swage ring 4. Each stopper 5 is formed at the proximal end of corresponding tapered portion 6.
The pair of swage rings 4 is arranged on both the distal end portions of the sleeve 3, respectively. Each swage ring 4 has a ring shape and is disposed coaxially with the sleeve 3. In each swage ring 4, the end portion of the sleeve 3 is inserted. An inner diameter of each swage ring 4 is greater than an outer diameter of the tip portion of the tapered portion 6, and is smaller than an outer diameter of the proximal portion of the tapered portion 6.
In swaging the coupling 1, each swage ring 4 is moved with respect to the sleeve 3 along the axis c of the coupling. In some cases each swage ring 4 is moved while the sleeve 3 is in a state of being fixed, and in some cases the sleeve 3 is moved while each swage ring 4 is in a state of being fixed. Each swage ring 4 is pushed until it comes into contact with the corresponding stopper 5. Thereby, the sleeve 3 is compressed at the tapered portion 6, and each tube 2 inserted is tightened. In other words, the coupling 1 is swaged.
Subsequently, the swage apparatus for swaging the coupling 1 will be explained. Firstly, outline of the swage apparatus will be explained.
On the main body 8, the coupling 1 in which the tube has been inserted is disposed. The coupling 1 is disposed such that the axis c of the coupling 1 orients to the first direction.
The stopper 10 is provided with the main body 8 so as to protrude from the main body 8. The stopper 10 comes into contact with the swage ring 4 or the stopper 5, and restricts a movement of the swage ring 4 or the stopper 5 (the sleeve 3) in the first direction.
The yoke 9 is disposed on the main body 8 so as to be movable along the first direction. The york 9 has a function as the pusher. That is, the yoke 9 comes into contact with the other of the swage ring 4 or the stopper 5, and has a function to push the swage ring 4 or the sleeve 3 along the first direction.
By pushing the swage ring 4 or the sleeve 3 by the yoke 9, the swage ring 4 is moved relative to the sleeve 3, and the coupling 1 is swaged. In
Note that there is a case in which the coupling 1 separates from the swage apparatus 7 if the coupling 1 is not restricted at the upper side, for example, the coupling is movable in an upward direction of
The configuration of the swage apparatus 7 will be explained in more detail below.
As shown in
The yoke 9 is disposed on the sliding surface 14. The yoke 9 is supported by the main body 8. Moreover, the yoke 9 is movable on the sliding surface 14 along the first direction. For example, inside the main body 8, a cylinder (not shown) and a piston (not shown) are provided. In this case, the yoke 9 is connected to the piston (piston rod) in the main body 8 using an opening (not shown) provided in the sliding surface 14. Thereby, the yoke 9 is supported so as to be movable along the first direction.
In addition, the York 9 has a shape not to interfere with the coupling 1 and the tube 2. That is, when viewed along the first direction, the yoke 9 has an arc shape.
Moreover, the yoke 9 has a mounting surface 12 and a stopper 15. On the mounting surface 12, a part of the coupling 1 (the swage ring 4 or the stopper 5) is placed. The stopper 15 is a portion which pushes the swage ring 4 or the stopper 5 (see
The stopper 10 is located at the end portion of a first direction side of the sliding surface 14. As described above, the stopper 10 restricts the swage ring 4 or the sleeve 3 from moving in the first direction.
Subsequently, the cover member 11 will be explained.
As shown in
In addition, the cover member 11 includes a cover surface 13. The cover surface 13 also has an arc shape when viewed along the first direction. The cover surface 13 comes into contact with another region of the outer circumference of the coupling 1. More specifically, when viewed along the first direction, the cover surface 13 has a semicircular shape.
As shown in
In addition, the cover member 11 is attached to the main body 8 so as to be openable and closable. As shown in
Furthermore, as shown in
Moreover, the swage apparatus 7 includes a first alert section 19. The first alert section 19 has a function to inform an operator that it is in the closed state. In the present embodiment, the first alert section 19 is realized by the fixing mechanism 17. That is, the engaging member 16-1 and the engaging member 16-2 are configured to emit a sound when these are engaged. The operator can recognize that the engaging member 16-1 and the engaging member 16-2 have been engaged by listening to the sound, and confirm the swage apparatus 7 is in the closed state.
Next, the swage method will be explained.
Step S10: Placing the Coupling
Firstly, the end of each tube 2 is inserted into the end portion of the coupling 1 (the sleeve 3). Then, the coupling 1 is placed on the swage apparatus 7 which is in an open state. In placing, the coupling 1 is placed such that the axis c is along the first direction. In addition, the coupling 1 is placed such that the swage ring 4 and the stopper 5 are located between the stopper 15 and the stopper 10.
Step S20: Changing to the Closed State
Next, the cover member 11 is rotated, and the coupling 1 is covered. That is, the swage apparatus 7 is changed to the closed state. The cover member 11 is fixed to the main body 8 by the fixing mechanism 17.
Step S33: Pushing
Next, the york 9 is moved along the first direction. Thereby, the swage ring 4 or the sleeve 3 is pushed until the swage ring 4 comes into contact with the stopper 5. As a result, the tapered portion 6 (see
Similarly, regarding the other tube 2, the coupling 1 is swaged by repeating the process of steps S1 to S3. Thus, the pair of tubes 2 is connected via the coupling 1.
As explained above, according to the present embodiment, the cover member 11 is provided. Therefore, it is possible to enhance a contact degree between the coupling 1 and the swaging apparatus 7, and possible to prevent the axis c of the coupling 1 from being displaced during pushing. Thereby, it is possible to uniformly compress the coupling 1, and properly connect the pair of tubes 2.
In addition, according to the present embodiment, since the fixing mechanism 17 (see
Furthermore, according to the present embodiment, the first alert section 19 (see
Note that, according the present embodiment, the case in which the pair of tubes 2 is the pipes used for the aircraft has been explained. For the pipes used for the aircraft, high airtightness (or water tightness) is required. Also, the pipes used for the aircraft are often to be arranged in a narrow portion. Therefore, there are many cases in which the operator cannot perform the connecting work in a free attitude. Furthermore, as described above, the operator is often forced to work in the dark environment. Therefore, it is difficult to operate the swage apparatus 7 such that the axis is not deviated. In contrast, according to the present embodiment, since it is possible to prevent the deviation of the axis c, it is possible to connect the pipes in the narrow portion to each other while maintaining the high airtightness. However, a use of the swage apparatus 7 is not limited to above mentioned use.
Further, according the present embodiment, the case in which the cover member 11 is attached to the main body 8 via the connecting member 20 has been explained (see
Further, according the present embodiment, the case in which the pair of engagement members (16-1, 16-2) is used as the fixing mechanism 17 has been explained. However, it is possible to use another mechanism as the fixing mechanism 17. For example, it is possible to use magnets attached to the main body 8 and the cover member 11 as the fixing mechanism 17.
Furthermore, according the present embodiment, the case in which the pair of engagement members (16-1, 16-2) emitting the sound is used as the first alert section 19 has been explained. However, it is possible to use another mechanism as the first alert section 19. For example, it is possible that the first alert section 19 is configured to use light for informing the operator that it is in the closed state.
Next, the second embodiment will be explained.
The pressure sensor 18 is attached to the mounting surface 12 of the yoke 9, and has a function of measuring a load (pressure) applied from the coupling 1 (the swage ring 4 or the sleeve 3) to the yoke 9. It is possible to use, for example, a strain gauge, a piezoelectric element etc. as the pressure sensor 18.
The load judging unit 23 judges whether or not the load applied to the coupling 1 is appropriate by comparing a measurement result of the pressure sensor 18 with a predetermined set value. In other words, the load judging unit 23 judges whether or not a force with which the coupling 1 is pushed against the swage apparatus 7 is appropriate.
The alert portion 21 is provided to inform the operator a judgment result of the load judging unit 23. The operator can judge whether or not the force for pushing the coupling 1 is appropriate using the alert section 21. It is possible to use, for example, a light-emitting mechanism, a sound emitting mechanism etc. as the alert section 21. By using these mechanisms, it is possible for the operator to recognize the judgment result even in the dark environment.
According to the present embodiment, the load judging unit 23 judges whether or not the force with which the coupling 1 is pushed against the swaging apparatus 7 is appropriate. In swaging the coupling 1, it is important that the axis of the coupling 1 and an axis of the tube 2 are coincidence with each other. In order to match the axis of the coupling 1 with the axis of the tube 2, there is a case in which the operator push the coupling 1 against the swage apparatus 7 with an excessive force. In such a case, on the contrary, the axis c of the coupling 1 is likely to be deviated. On the other hand, according to the present embodiment, it is possible to confirm whether or not the coupling 1 is too much pushed (whether or not the excessive force is applied to the swage apparatus 7 via the coupling 1). Thereby, it is possible to more reliably prevent the deviation of the axis c at the time of swaging.
Moreover, if the cover member 11 is forced in the closed state under the condition in which the axis c is deviated from the first direction, the load applied from the coupling 1 to the swage apparatus 7 becomes different value from that of the normal state. Therefore, it is possible to confirm whether or not the axis c is deviated from the first direction by judging whether or not the load applied from the coupling 1 to the swage apparatus 7 is appropriate using the load judging unit 23.
Note that it is not absolutely necessary that the pressure sensor 18 is attached to the mounting surface 12 as long as the pressure sensor 18 is configured to detect the load applied from the coupling 1 to the swage apparatus 7. For example, it is possible that the pressure sensor 18 is attached to the sliding surface 14.
Next, the third embodiment will be explained.
The axis detecting unit 24 has a function of detecting whether or not the axis of the coupling 1 coincides with the axis of the tube 2. More specifically, an axis judging unit 26 has a function of judging whether or not the axis of the coupling 1 and tube 2 coincides with the first direction. More specifically, regarding the tube 2 inserted into the other side opposite to a swage side, the axis judging unit 26 detects whether or not the axis of the coupling 1 coincides with the axis of the tube 2.
The axis detecting unit 24 includes an optical sensor 22 and the axis judging unit 26.
The optical sensor 22 is attached to a side surface of the main body 8. The optical sensor 22 has a function of measuring a distance between the optical sensor 22 and the tube 2 in a predetermined direction.
The axis judging unit 26 has a function of judging whether or not the axis of the coupling 1 coincides with the axis of the tube 2 based on a measurement result of the optical sensor 22.
The alert section 25 has a function of informing the operator a judgment result of the axis judging unit 26. The operator can judge whether or not the axis of the coupling 1 coincides with the axis of the tube 2 using the alert section 25. Note that it is possible to use, for example, a light-emitting mechanism, a sound-emitting mechanism etc. as the alert section 25. By using these mechanisms, the operator can recognize the judgment result even in the dark environment.
Subsequently, the swage method according to the present embodiment will be explained.
Next, effects of the present embodiment will be explained.
There is a case in which the coupling 1 is strongly pushed against the swage apparatus 7 when, for example, the coupling 1 is placed on the swage apparatus 7. As a result, there is a case in which the axis of the coupling 1 is deviated from the axis of the tube 2. In particular, if a portion of the other side of the coupling 1 opposite to the swage side is in a non-swaged state, the axis of the tube 2 is likely to be deviated. Moreover, if the cover member 11 is used, a moving direction of the coupling 1 is restricted during swaging the coupling 1. Therefore, when the coupling 1 is covered with the cover member 11 under the condition in which the axis of the coupling 1 is deviated from the axis of the tube 2, the excessive force is likely to be applied to the coupling 1 and the tube 2. As a result, the coupling 1 and the tube 2 are likely to be damaged. In addition, the pair of tubes 2 is not properly connected to each other. On the other hand, according to the present embodiment, the axis detecting unit 24 can detect whether or not the axis of the coupling 1 and the axis of the tube 2 coincide with each other. Then, it is possible to cover the coupling 1 with the cover member 11 under the condition in which the axis of the coupling 1 and the axis of the tube 2 coincide with each other. It prevents the coupling 1 from being swaged under the condition in which these axes are not coincidence with each other, and it reliably prevents the coupling 1 and the tube 2 from being damaged.
Note that, in the present embodiment, the case in which the cover member 11 is provided has been explained. However, even if the cover member 11 is not provided, it is effective to provide the axis detecting unit 24. Even when the cover member 11 is not provided, it is possible to swage the coupling 1 after confirming that the axis of the coupling 1 and the axis of the tube 2 are coincidence with each other. Therefore, an effect that the coupling 1 can be properly swaged is obtained.
As described above, regarding the present invention, the explanation has been done using the first embodiment to the third embodiment. However, these embodiments are not absolutely necessary to be independent to each other. It is also possible to combine these embodiments as long as the technical contradiction does not occur. For example, by combing the second embodiment and the third embodiment, both the pressure sensor 18 and the axis detecting unit 24 may be provided to the swage apparatus.
It should be noted that this application claims a priority based on Japan Patent Application No. JP 2013-011302, and the disclosure thereof is incorporated herein by reference.
Number | Date | Country | Kind |
---|---|---|---|
2013-011302 | Jan 2013 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2014/050885 | 1/20/2014 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2014/115660 | 7/31/2014 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5694670 | Hosseinian | Dec 1997 | A |
6430792 | Foster et al. | Aug 2002 | B1 |
6823573 | Morrison | Nov 2004 | B2 |
7155790 | Palejwala | Jan 2007 | B2 |
7805823 | Sembritzky et al. | Oct 2010 | B2 |
7984538 | McKay | Jul 2011 | B2 |
8256079 | Hwang | Sep 2012 | B2 |
8272128 | Chawgo | Sep 2012 | B2 |
9604273 | Hogan | Mar 2017 | B1 |
20030167614 | Morrison et al. | Sep 2003 | A1 |
20050081359 | Palejwala et al. | Apr 2005 | A1 |
20070163101 | Sembritzky et al. | Jul 2007 | A1 |
20090300917 | Hwang | Dec 2009 | A1 |
Number | Date | Country |
---|---|---|
1729916 | Dec 2006 | EP |
S60-100165 | Jul 1985 | JP |
H02-182329 | Jul 1990 | JP |
H09-501224 | Feb 1997 | JP |
H10-511897 | Nov 1998 | JP |
2875889 | Jan 1999 | JP |
Entry |
---|
PCT/IB/338, “Notification of Transmittal of Translation of the International Preliminary Report on Patentability for International Application No. PCT/JP2014/050885,” dated Aug. 6, 2015. |
PCT/IB/373, “International Preliminary Report on Patentability for International Application No. PCT/JP2014/050885,” dated Jul. 28, 2015. |
PCT/ISA/237, “Written Opinion of the International Searching Authority for International Application No. PCT/JP2014/050885,” dated Apr. 22, 2014. |
PCT/IB/326, “Notification Concerning Transmittal of International Preliminary Report on Patentability for International Application No. PCT/JP2014/050885,” dated Aug. 6, 2015. |
Japan Patent Office, “Decision to Grant a Patent for Japanese Patent Application No. 2013-011302,” dated Jan. 4, 2017. |
China Patent Office, “Office Action for Chinese Patent Application No. 201480005110.5,” dated Apr. 21, 2016. |
PCT/ISA/210, “International Search Report for PCT/JP2014/050885”, dated Jan. 20, 2014. |
Europe Patent Office, “Partial Search Report for European Patent Application No. 14743419.5,” dated Sep. 9, 2016. |
Number | Date | Country | |
---|---|---|---|
20150360278 A1 | Dec 2015 | US |