SWARM INTELLIGENCE-ENHANCED DIAGNOSIS AND THERAPY SELECTION FOR CANCER USING TUMOR- EDUCATED PLATELETS

Information

  • Patent Application
  • 20190360051
  • Publication Number
    20190360051
  • Date Filed
    February 19, 2018
    6 years ago
  • Date Published
    November 28, 2019
    5 years ago
Abstract
The invention provides methods of administering immunotherapy that modulates an interaction between PD-i and its ligand, to a cancer patient, based on tumor-educated gene expression profiles obtained from anucleated cells. The invention further provides methods of typing a sample of a subject for the presence or absence of a cancer, based on tumor-educated gene expression profiles obtained from anucleated cells. The invention further provides a method for obtaining a biomarker panel for typing of a sample from a subject using particle swarm optimization-based algorithms.
Description

The invention is in the field of medical diagnostics, in particular in the field of disease diagnostics and monitoring. The invention is directed to markers for the detection of disease, to methods for detecting disease, and to a method for determining the efficacy of a disease treatment.


BACKGROUND OF THE INVENTION

Cancer is one of the leading causes of death in developed countries. Studies have revealed that many cancer patients are diagnosed at a late stage, when they are more difficult to treat. Cancer is mainly driven by successive mutations in normal cells, resulting in DNA damages and ultimately causing significant gene alterations that contribute to a cancerous state.


Cancer is often diagnosed on the basis of tumor markers. Tumor markers are substances that are present in a cancer cell or that is produced in another cell in response to a cancer. Some tumor markers are also present in normal cells but, for example, in an alternative form of at higher levels, in a cancerous cell. Tumor markers can often be identified in a liquid sample, such as blood, urine, stool, or bodily fluids.


Most presently used tumor markers are proteins. An example is prostate-specific antigen (PSA), which is used as a tumor marker for prostate cancer. Most single tumor markers are not reliable to be useful in the management of an individual patient with cancer. Alternative markers, such as gene expression levels and DNA alterations such as DNA methylation, have begun to be used as tumor markers. The identification of alterations in expression levels and/or genomic DNA of multiple genes may improve detection, diagnosis, prognosis and treatment of cancer. Extensive data mining and statistical analysis is required to discover combinations of tumor markers that can differentiate between normal variation and a cancerous state.


Blood-based liquid biopsies, including tumor-educated blood platelets (TEPs; Nilsson et al., 2011. Blood 118: 3680-3683; Best et al., 2015. Cancer Cell 28: 666-676; Nilsson et al., 2015. Oncotarget 7: 1066-1075), have emerged as promising biomarker sources for non-invasive detection of cancer and therapy selection. A notorious challenge is the identification of optimal biomarker panels from such liquid biosources. To select robust biomarker panels for disease classification the use of ‘swarm intelligence’ was proposed, especially particle swarm optimization (PSO) (Kennedy et al., 2001. The Morgan Kaufmann Series in Evolutionary Computation. Ed: David B. Fogel; Bonyadi and Michalewicz 2016. Evolutionary computation: 1-54; Kennedy and Eberhart, 1995. Proceedings of IEEE International Conference on Neural Networks: 1942-1948).


PSO-driven algorithms are inspired by the concomitant swarm of birds and schools of fish that by self-organisation efficiently adapt to their environment or identify sources of food. Bioinformatically, PSO algorithms are exploited for the identification of optimal solutions for complex parameter selection procedures, including the selection of biomarker gene lists (Alshamlan et al., 2015. Computational Biol Chem 56: 49-60; Martinez et al., 2010. Computational Biol Chem 34: 244-250).


SUMMARY OF THE INVENTION

Targeted therapy and personalized medicine are critically depending on disease profiling and the development of companion diagnostics. Mutations in disease-derived nucleic acids can be highly predictive for the response to targeted treatment. However, obtaining easily accessible high-quality nucleic acids remains a significant developmental hurdle. Blood generally contains 150,000-350,000 thrombocytes (platelets) per microliter, providing a highly available biomarker source for research and clinical use. Moreover, thrombocyte isolation is relatively simple and is a standard procedure in blood bank/hematology labs. Since platelets do not contain a nucleus, their RNA transcripts—needed for functional maintenance—are derived from bone marrow megakaryocytes during thrombocyte origination. In addition, thrombocytes may take up RNA and/or DNA from other cells during circulation via various transfer mechanisms. Tumor cells for instance release an abundant collection of genetic material, some of which is secreted by microvesicles in the form of mutant RNA During circulation in the blood stream thrombocytes may absorb the genetic material secreted by cancer cells and other diseased cells, serving as an attractive platform for the companion diagnostics of cancer, specifically in the context of personalized medicine.


The present invention provides a method of administering immunotherapy that modulates an interaction between programmed death protein 1 (PD-1) and its ligand, to a cancer patient, comprising the steps of providing a sample from the patient, the sample comprising mRNA products that are obtained from anucleated cells of said patient; determining a gene expression level for at least four genes, more preferred at least five genes, more preferred at least six genes listed in Table 1 in said sample; comparing said determined gene expression level to a reference expression level of said genes in a reference sample; typing the patient as a positive responder to said immunotherapy, or as a not-positive responder, based on the comparison with the reference; and administering immunotherapy to a cancer patient that is typed as a positive responder.


In a preferred method of the invention, a gene expression level is determined for at least four genes listed in Table 1, more preferred at least five genes, more preferred at least six genes, more preferred at least ten genes, more preferred at least fifty genes, more preferred all genes, listed in Table 1.


Said immunotherapy that modulates an interaction between PD-1 and its ligand, PD-L1 or PD-L2, is aimed at activating the immune system to attack the cancer of the patient. Known modulators that inhibit interaction between PD-1 and its ligand include monoclonal antibodies such as atezolizumab (Genentech Oncology/Roche), avelumab (Merck/Pfizer), durvalumab (AstraZeneca/MedImmune), nivolumab (Bristol-Myers Squibb), lambrolizumab (Merck), pidilizumab (CureTech) and pembrolizumab (Merck), and fusion proteins such as AMP-224 (GlaxoSmithKline). A preferred immunotherapy comprises nivolumab.


In another embodiment, the invention provides a method of typing a sample of a subject for the presence or absence of a lung cancer, comprising the steps of providing a sample from the subject, whereby the sample comprises mRNA products that are obtained from anucleated cells of said subject; determining a gene expression level for at least five genes listed in Table 2; comparing said determined gene expression level to a reference expression level of said genes in a reference sample; and typing said sample for the presence or absence of a lung cancer on the basis of the comparison between the determined gene expression level and the reference gene expression level.


Said subject, a mammalian, preferably a human, is not known to suffer from lung cancer. Said lung cancer preferably is a non-small cell lung cancer.


In a preferred method of the invention, a gene expression level is determined for at least ten genes listed in Table 2, more preferred at least forty five genes, more preferred at least fifty genes, more preferred all genes, listed in Table 2.


Anucleated cells, as referred to herein above, may act as local and systemic responders during tumorigenesis and cancer metastasis, thereby being exposed to tumor-mediated education, and resulting in altered behaviour. Anucleated cells, such as thrombocytes can function as a RNA biomarker trove to detect and classify cancer from diverse sources. Said RNA present in anucleated cells preferably originates from tumor cells, and is transferred from tumor cells to anucleated cells. These anucleated cells can be easily isolated from a liquid biopsy such as blood and may contain RNA from nucleated tumor cells.


Said sample comprising mRNA products is preferably obtained from a liquid biopsy, preferably blood. Said anucleated cells preferably are or comprise thrombocytes. In a preferred embodiment, thrombocytes are isolated from a blood sample and mRNA is subsequently isolated from said isolated thrombocytes.


A gene expression level for at least four genes listed in Table 1, more preferred at least five genes listed in Table 1, and/or for at least five genes listed in Table 2, in said sample may be determined by any method known in the art, including micro-array-based analyses, serial analysis of gene expression (SAGE), multiplex Polymerase Chain Reaction (PCR), multiplex Ligation-dependent Probe Amplification (MLPA), bead based multiplexing such as Luminex/XMAP, and high-throughput sequencing including next generation sequencing. The gene expression level is preferably determined by next generation sequencing.


The invention further provides a method of treating a cancer patient, preferably a lung cancer patient, by assigning immunotherapy that modulates an interaction between PD-1 and its ligand to said patient, wherein said cancer patient is selected by typing a sample from the patient, the sample comprising mRNA products that are obtained from anucleated cells of said subject; determining a gene expression level for at least four genes listed in Table 1, more preferred at least five genes listed in Table 1; comparing said determined gene expression level to an expression level of said genes in a reference sample; typing the patient as a positive responder to said immunotherapy, or as a not-positive responder, based on the comparison with the reference; and assigning immunotherapy to a cancer patient that is selected as a positive responder.


Further provided is immunotherapy that modulates an interaction between PD-1 and its ligand, for use in a method of treating a cancer patient, preferably a lung cancer patient, wherein said cancer patient is selected by typing a sample from the patient, the sample comprising mRNA products that are obtained from anucleated cells of said subject; determining a gene expression level for at least four genes listed in Table 1, more preferred at least five genes listed in Table 1; comparing said determined gene expression level to an expression level of said genes in a reference sample; typing the patient as a positive responder to said immunotherapy, or as a not-positive responder, based on the comparison with the reference; and assigning immunotherapy to a cancer patient that is selected as a positive responder.


As is indicated herein above, said immunotherapy that modulates an interaction between PD-1 and its ligand. PD-L1 or PD-L2, is aimed at activating the immune system to attack the cancer of the patient. Known modulators that inhibit interaction between PD-1 and its ligand include monoclonal antibodies such as atezolizumab (Genentech Oncology/Roche), avelumab (Merck/Pfizer), durvalumab (AstraZeneca/MedImmune), nivolumab (Bristol-Myers Squibb), lambrolizumab (Merck), pidilizumab (CureTech) and pembrolizumab (Merck), and fusion proteins such as AMP-224 (GlaxoSmithKline). A preferred immunotherapy comprises nivolumab.


The invention further provides a method for obtaining a biomarker panel for typing of a sample from a subject, the method comprising isolating anucleated cells, preferably thrombocytes, from a liquid sample of a subject having condition A; isolating RNA from said isolated cells; determining RNA expression levels for at least 100 genes in said isolated RNA; determining RNA expression levels for said at least 100 genes in a control sample from a subject not having condition A; and using particle swarm optimization-based algorithms to obtain a biomarker panel that discriminates between a subject having condition A and a subject not having condition A.


It is preferred that the subject having condition A is suffering from a cancer, preferably a lung cancer, or had a known, positive response to a cancer treatment, while a subject not having condition A is not suffering from a cancer, or had a known, negative response to a cancer treatment.





FIGURE LEGENDS


FIG. 1. PSO-enhanced thromboSeq for NSCLC diagnostics.


(a) Overview of Non-cancer and NSCLC platelet samples (total of 728) included in this study for thromboSeq. (b) Overview of alternative splicing analyses, the estimated contribution to the TEP signatures, and additional Figures related to these analyses. RBP=HNA-binding protein (c) Schematic representation of the particle-swarm intelligence approach. Light to dark grey colored dots represent AUC-values of 38 samples classified using a thromboSeq classification algorithm, with use of 100 randomly selected parameters (left) or 100 parameters selected by swarm-intelligence (right). Dots were mirrored twice for visualization purposes. Most optimal AUC-value reached by swarm-enhanced thromboSeq is indicated in both plots with an asterisk. (d) ROC analysis of swarm-enhanced thromboSeq classifications using Non-cancer and NSCLC cohorts matched for patient age and blood storage time. Grey dashed line indicates ROC evaluation of the training cohort assessed by LOOCV, red line indicates ROC evaluation of the evaluation cohort (n=40), blue line indicates ROC evaluation of the validation cohort (n=130). Indicated are cohort size, most optimal accuracy, and AUC-value. Acc.=accuracy. (e) Performance of the swarm-enhanced thromboSeq algorithm evaluated in the full 728-samples cohort summarized in a ROC curve. Swarm intelligence made use of the evaluation cohort (red line, n=88 samples) to optimize the classification performance of the 120-samples training cohort by selection of the biomarker gene panel. The swarm-enhanced thromboSeq NSCLC diagnostics algorithm was validated using a patient age and/or blood storage time-unmatched cohort (n=520, blue line). Performance of the training cohort, assessed by LOOCV, is indicated with a grey dashed line. Indicated are cohort, size, most optimal accuracy, and AUC-value. Acc.=accuracy.



FIG. 2—TEP-based nivolumab response prediction.


(a) Schematic overview of the experimental setup. Blood of patients eligible for treatment with PD-1 inhibitor nivolumab was included from one month before till start of treatment (baseline, t=0). Tumor response read-out based on CT-imaging and according to the RECIST 1.1, criteria were performed at 6-8 weeks, 3 months, and 6 months, after start of nivolumab therapy. Best response was selected as overall tumor response (see Example 1). (b) Heatmap of unsupervised clustering of platelet mRNAs following swarm-intelligence driven gene panel selection of responders (blue, n=44) and non-responders (red, n=60). (c) ROC analysis of the swarm-enhanced thromboSeq nivolumab response prediction algorithm of 104 nivolumab baseline samples. Training cohort performance as measured by LOOCV approach is indicated by a red line, dependent evaluation cohort by a black line, and independent validation cohort by a blue line. Grey solid (upper bound) and dotted (lower bound) lines indicate the ROC curve resulting from a randomly trained algorithm. The black dot indicates a potential clinical threshold of the algorithm for optimal therapy selection and non-responder rule-out. (d) A 2×2 cross-table indicating the classification accuracies of the independent validation cohort, with the thromboSeq classification read-out optimized towards a rule-out value. A 100% sensitivity results in 53% specificity. Indicated are sample numbers and percentages.



FIG. 3—Experimental approach thromboSeq.


(a) Schematic representation of thromboSeq machine learning-based liquid biopsies for cancer diagnostics and therapy monitoring. A library of RNA-seq data generated from platelets of individuals with different diseases and healthy individuals served as input for thromboSeq algorithm development. Following algorithm optimization using the swarm-module and model validation, the platform enables RNA signature-based disease classification and therapy monitoring. (b) Schematic representation and sample cohort details of the training, evaluation, and validation cohorts. Cohorts are used for assessing the analytical performance of swarm-enhanced thromboSeq and to investigate the diagnostic classification power in patient age- and blood storage time-matched cohorts. The patient age and blood storage time-matched cohort was validated on a 130-samples training cohort, optimized using a 40-samples evaluation cohort.



FIG. 4—Technical performance parameters of thromboSeq.


(a) Overview of the demographic characteristics of the platelet sample cohort (n=263) matched for patient age and blood storage time. Characteristics are shown for both Non-cancer (n=104) and NSCLC (n=159) individuals. Indicated per clinical group are number of male individuals and percentage of total, median age (including interquartile range (IQR) and minimal and maximum age, in years), smoking status and percentage of total, and metastasis of the primary NSCLC towards other organs (yes/no). n.a.=not applicable. (b) Overview of platelet activation markers as measured by flow cytometric analysis of n=3 (8 hours time point) or n=6 (other time points) platelet samples collected from healthy donors and isolated using the thromboSeq platelet isolation protocol. Light and dark grey boxes represent average percentage of platelets expressing respectively P-selectin or CD-63 on the surface. The box indicates the interquartile range (IQR), black line represents the median, and the whiskers indicate 1.5×IQR. Dots represent expression of these surface markers after platelet activation with TRAP (see Example 1). Platelet samples are only minimally activated using the thromboSeq platelet isolation protocol. (c) Summary of the platelet total RNA yield in nanograms per microliter isolated from 6 mL whole blood in EDTA-coated Vacutainers tubes. The RNA concentration and quality was measured by Bioanalyzer RNA Picochip analysis. Total RNA yield was summarized in boxplots for both Non-cancer (n=86) and NSCLC (n=151) separately. The box indicates the interquartile range (IQR), black line represents the median, and the whiskers indicate 1.5×IQR. Platelets of NSCLC patients had a significantly higher RNA yield as compared to Non-cancer patients (p=0.0014, two-sided independent Student's t-test). (d) Linearity and efficiency of SMARTer cDNA synthesis and amplification using the thromboSeq protocol. Correlation plot of estimated RNA input (x-axis, in pg/μL) to the output SMARTer cDNA yield (y-axis, in nM, n=177 observations in total). Each dot represents a sample, color-coded by clinical group. An average RNA input, as measured by Bioanalyzer Picochip RNA, of ˜500 pg was used for SMARTer cDNA synthesis and PCR amplification. The RNA input and cDNA output showed a positive correlation (r=0.23, p=0.003, Pearson's correlation). (e) Linearity and efficiency of Truseq cDNA library preparation and PCR amplification using the thromboSeq protocol. Correlation plot of SMARTer cDNA yield used as input (x-axis, in nM) to the outputted Truseq platelet cDNA sequence library yield (y-axis, in nM, n=177 observations in total). Each dot represents a sample, color-coded by clinical group. All SMARTer cDNA output, except a 1.5 μL purification buffer aliquot for Bioanalyzer analysis, was used as input for the Truseq Library Preparation. The SMARTer cDNA yield and Truseq platelet cDNA library output showed a positive correlation (r=0.44, p<0.0001, Pearson's correlation). (f) Bioanalyzer traces of samples with spiked, smooth, and intermediate spiked/smooth profiles. For each example, the total RNA on Picochip Bioanalyzer, the SMARTer amplified cDNA on DNA High Sensitivity Bioanalyzer, and Truseq cDNA library on DNA 7500 Bioanalyzer are shown. X-axes indicate the length of the product (in nucleotides (nt) for RNA, and base pairs (bp) for cDNA), while y-axes indicate the relative fluorescence as measured by the Bioanalyzer 2100. From spiked towards smooth SMARTer cDNA samples, a gradual increase of smoothness of the SMARTer cDNA Bioanalyzer slopes was observed, while the total RNA and Truseq cDNA show non-distinguishable profiles. (g) Overview of the relative cDNA yield in nM resulting from the SMARTer amplification (top), relative cDNA length in bp of the spiked, smooth, and intermediate spiked/smooth SMARTer cDNA groups (middle), and number of intron-spanning spliced RNA reads (bottom). cDNA concentrations were measured by the area-under-the-graph on a Bioanalyzer cDNA High Sensitivity chip. cDNA yield is comparable among the three distinct SMARTer profiles. The relative cDNA length was measured by selection of a 200-9000 bp region in the Bioanalyzer software. The SMARTer cDNA slopes are strongly correlated to the average cDNA length. The contribution of reads mapping to intergenic regions do negatively influence the number of intron-spanning reads eligible for thromboSeq analysis. Number of samples per SMARTer slope and clinical group is shown below the graph. The box indicates the interquartile range (IQR), black line represents the median, and the whiskers indicate 1.5×IQR. (h) Histogram of the average fragment length of reads mapped to intergenic regions for both spiked (upper) and smooth (bottom) samples (n=50 each, randomly sampled). Overlapping reads mapping to intergenic regions were merged (see Online Methods), and total resulting fragment sizes were quantified. Both spiked and smooth samples contain primarily fragments of <250 nt, with a peak in the 100-200 nt region. (i) Selection of intron-spanning spliced RNA reads for thromboSeq analysis. Stackplot indicates the distribution of reads for each sample, subspecified from intron-spanning, exonic, intronic, intergenic, and mitochondrial regions. Of note, the intron-spanning reads were subtracted from the reads mapping to the exonic regions. Samples (n=263) were sorted according to the proportion (y-axis) of intron-spanning reads. (j) Selection of samples with >3000 genes detected for thromboSeq analysis. Plot indicates for 740 platelet RNA samples subjected to thromboSeq the total number of intron-spanning reads (x-axis), and the number of genes detected (y-axis), with at least one intron-spanning read. The number of detected genes is partially correlated to the total number of intron-spanning reads yielded per sample. Samples with less than 3000 genes detected (n=10) were excluded from analyses. (k) Summary of the number of genes detected with confidence (i.e. >30 spliced RNA reads) in the platelet RNA samples using shallow thromboSeq (10-20 million reads on average), shown for both Non-cancer (n=377) and NSCLC (n=353) cohorts. The box indicates the interquartile range (IQR), black line represents the median, and the whiskers indicate 1.5×IQR. The average detection of genes per samples is ˜4500 different RNAs, and slightly decreased on average in platelets of NSCLC patients as compared to Non-cancer individuals. (l) Comparison of shallow versus deep thromboSeq. A total of 12 platelet RNA samples collected from healthy controls were subjected to deep thromboSeq (median 59.7 (min-max: 43.2-96.2) million raw reads counts per sample) and compared with the matched shallow thromboSeq RNA-seq data. For the deep thromboSeq, platelet samples were reprepared for sequencing, starting from platelet total RNA, with comparable input concentrations. Plot indicates the raw read counts for each gene (log-transformed y-axis) sorted by median read counts of all samples (x-axis). The three genes with highest expression in deep thromboSeq are highlighted. (m) Leave-one-sample-out cross-correlation. To investigate the comparability of one sample (test case) to all other sample (reference cohort), we performed cross-correlations, during which counts of each sample was correlated to the median counts of all other samples. This step was included as a quality control step (see Online Methods) following the selection for samples with sufficient number of genes detected (see also (j)). The cross-correlation was calculated 730 times, i.e. all samples were left out of the reference cohort, once. Results indicate that all samples show high inter-sample Pearson's correlations. Samples with a inter-sample-correlation <0.5 (n=2) were excluded from analyses.



FIG. 5—Differential spliced RNAs in TEPs of NSCLC patients.


(a) Unsupervised hierarchical clustering of differentially spliced RNAs between Non-cancer (n=104) and NSCLC (n=159) individuals. A total of 1625 genes (698 up, 927 down) showed a significance with a False Discovery Rate <0.01 (see Example 3). Columns indicate samples, rows indicate genes, and color intensity represent the z-score transformed RNA expression values (prior to visualization subjected to the RUV-based iteration correction-module). Clustering of samples showed non-random partitioning (p<0.0001, Fisher's exact test). (b) PAGODA gene ontology analysis (see Example 1). Significantly enriched genes were subjected to unbiased gene cluster identification and gene ontology analysis. Most significant results by adjusted Z-score, indicating high statistical significance, were clustered and visualized. Grey code indicates a dark to light (low-to-high) score per sample per gene cluster. The most significant biological group (maximum adjusted Z-score of 13.9) includes gene ontologies related to translation, RNA binding proteins (RBPs), and signaling, with a low splicing score in NSCLC samples compared to Non-cancer samples. The most significantly enriched gene cluster in NSCLC patients compared to Non-cancer individuals is related to signaling and immune response (maximum adjusted Z-score of 5.3). This clustering analysis identified correlations between platelet homeostasis gene signatures in platelets of Non-cancer individuals and specific immune signaling pathways in TEPs of NSCLC patients. RBP=RNA binding proteins.



FIG. 6—thromboSplicing.


(a) Schematic figure represents the read distribution analyses procedure. From the patient age- and blood storage time-matched cohort, we mapped 100 bp reads to the human genome and quantified the number of reads mapping to four distinct regions (see Example 3). i.e. exonic, intronic, and intergenic regions (together the ‘genomic regions’) and the mitochondrial genome (abbreviated as mtDNA). Of note, the intron-spanning spliced reads were included in the exonic regions. (b) Boxplots indicate for Non-cancer (light grey, n=104) and NSCLC (dark grey, n=159) the median and spread of reads mapping to mitochondrial (mtDNA), exonic, intronic, or intergenic regions, and the median and spread of intron-spanning and exon boundary reads. The box indicates the interquartile range (IQR), black line represents the median, and the whiskers indicate 1.5×IQR. Intron-spanning reads are defined as reads that start on exon a and end on exon b. Exon boundary reads are defined as reads that overlay a neighbouring exon-intron boundary. The exonic, intronic, intergenic, intron-spanning, and exon boundary reads were normalized to one million total genomic reads. (c) Summary figure of the analysis of alternative RNA isoforms. Schematic figure represents the development of an isoform count matrix. For this, 92 bp trimmed RNA-seq reads were mapped to the human genome and following subjected to the MISO algorithm. The MISO algorithm allows for inferring expressed RNA isoforms from single read RNA-seq data. MISO output data was deconvoluted into a count matrix that contains per sample for each expressed RNA isoform the number of reads supporting that particular isoform. The count matrix of 104 Non-cancer individuals and 159 NSCLC patients was used for differential expression analysis. Isoforms with a significance value (FDR)<0.01 were selected. Piechart of the total number of differentially spliced RNA isoforms (FDR<0.01, n=743, summarized in color codes) per gene (n=571, summarized in the pies of the piechart), indicating the distribution of significantly altered isoforms between Non-cancer and NSCLC per parent gene. In 38% of the significantly altered RNA isoforms multiple isoforms belonged to the same parent gene, supporting the notion that some genes show co-regulation of multiple RNA isoforms. Pie chart of total number of genes (n=571 in total) that shows for all RNA isoforms co-increased expression levels ( 277/571, 49%), co-decreased expression levels ( 281/571, 49%), or alternative splicing ( 13/571, 2%). Additional details are provided in Example 2. (d) Summarizing figure of the exon skipping events analysis. Schematic figure represent the experimental approach for detection of exon skipping events. Reads were mapped and analyzed using the MISO algorithm, which infers reads favouring either inclusion (on top of the schematic figure) or exclusion (below of schematic figure) of the specific exon. For this, the algorithm does also takes reads mapping to neighbouring exons into account. After filtering for average read coverage in the majority of the sample cohort (see Online Methods), a total 230 exons remained eligible for analysis. Percent spliced in (PSI)-values, as outputted by MISO, were used for differential ANOVA statistics. A total of 27 exons were identified as potentially skipped in either Non-cancer or NSCLC samples (FDR<0.01). The histogram shows the direction of the PSI-value, where positive PSI-values favour exclusion in Non-cancer, and negative PSI-values favour exclusion in NSCLC. The gene names of the annotated events, sorted by FDR-value and filtered for unique gene names, are listed in the box. Additional details are provided in Example 2.



FIG. 7—P-selectin signature.


(a) Correlation plot of proportion of reads mapping to exonic coordinates (x-axis) versus the log-transformed. RUV-corrected, and counts-per-million of P-selectin. Each dot represent a sample, coded by clinical group (NSCLC, n=159, dark grey, and Non-cancer, n=104, light grey). The exonic reads correlate with the expression levels of P-selectin (r=0.51, p<0.001). (b) Distribution of correlation coefficients of the correlation between log-transformed counts-per-million levels of 4722 genes and the log-transformed counts-per-million of P-selectin. A subset of the genes show a strong correlation with P-selectin (r approximates −1 or 1), whereas other do not (r approximates 0). For the histogram, a bin size of 0.05 was used. (c) Venn-diagram overlay of genes upregulated in the NSCLC TEP signature (698 genes, see also FIG. 5a), and genes with a significant positive correlation (FDR<0.01) towards P-selectin (SELP signature, 1820 genes), 77% ( 536/698) of genes increased in the TEP signature are also present in the SELP signature, suggesting that the SELP signature might partially contribute to the TEP signature.



FIG. 8—RNA-binding protein (RBP) analysis of TEP-derived RNA signatures.


(a) Schematic biological model highlighting the difference between nucleated cells and anucleated platelets in the context of regulation of translation. Nucleated cells (left) are able to regulate and maintain the transcriptome by transcription factor (TF)-mediated DNA transcription, resulting in protein translation. Anucleated platelets lack genomic DNA, and thus the ability to regulate the RNA content by TFs. Circulating platelets retain the ability to selectively splice the pre-mRNA repertoire, suggesting a key regulatory function during the induction of splicing events. (b) Schematic representation of the RBP-thromboSearch engine algorithm. The algorithm is designed to identify correlations between the presence of RBP motif sequences in specific genomic regions of the genome, here applied to 5′-UTRs and 3′-UTRs. At start, the algorithm extracts the reference sequence of the regions of interest from the human genome (hg19). In addition, the algorithm was complemented with validated RBP binding sites motif sequences that were previously identified (Ray et al., 2013. Nature 499: 172-177). By reduction of the motif sequences, 547 non-redundant oligonucleotide sequences were matched with the UTR reference sequences, and all matched counts (ranging 0 to 460) were summarized in a UTR-to-motif matrix, used for downstream analyses. For further details of the RBP-thromboSearch engine algorithm, see Example 1. (c) UTR-read coverage filter. UTR regions (n=19180, x-axis) included in this analysis were quantified for number of mapping reads (y-axis). UTRs with more than five (5′-UTRs) or three (3′-UTRs) mapped reads were considered present in platelets. Blue dots represent mean counts across all samples, grey shade indicates the respective standard deviations. (d) Enrichment of identified RBP binding sites per UTR region. The x- and y-axes represent the mean binding sites for the 5′ and 3′-UTR per RBP (dots, n=102). Several RBPs are specifically enriched in the 3′-UTR, whereas others are enriched in the 5′-UTR (see also Example 4). (e and f) Heatmap of all RBPs (n=80, rows) and all 5′-UTR (e) and 3′-UTH (f) regions detected with sufficient coverage in platelets (n=3210 for 5′-UTR, and n=3720 for 3′UTR, columns, see Example 4). Number of binding sites is reflected by the heatmaps colors (see grey scale). UTR regulation by RBPs seems to be mediated by presence/absence of RBP binding sites. (g) Correlation analysis between n binding sites of an RBP and the logarithmic fold-change (log FC) of genes (n=4722) in the NSCLC/Non-cancer differential splicing analysis (see also FIG. 5a). Positive correlations indicate an enrichment in binding sites with an increase of the log FC, whereas negative correlations indicate the opposite. Plots indicate the relation between the Spearman's correlation coefficient (x-axis) and the concomitant p-value adjusted for multiple hypothesis testing (FDR). Results suggest that RBP docking sites are implicated in the log FC of genes between NSCLC and Non-cancer.



FIG. 9—Schematic overview of PSO-enhanced thromboSeq classification algorithm and application to NSCLC and Non-cancer cohorts matched for patient age and blood storage time.


(a) Schematic overview of the iterative correction module as implemented in thromboSeq. The RNA-seq data correction procedure includes multiple steps, i.e. 1) filtering of low abundant genes, 2) determination of stable genes among confounding variables, 3) raw-read counts Remove Unwanted Variation (RUV)-based factor analysis and correction, and 4) reference group-mediated counts-per-million and TMM-normalisation (see also Example 1). In detail, in step 1 genes with low confidence of detection, i.e. less than 30 intron-spanning spliced RNA reads in more than 90% of the sample cohort, are excluded. In the schematic example, the two upper genes (rows) contain in >90% of the samples (in this schematic example n=10 in total) sufficient numbers of reads, as indicated by the light grey boxes. Thus, these genes will be included for analysis. The lower two boxes indicate insufficient numbers of samples with sufficient numbers of genes, thus prompting the algorithm to remove these particular genes from the downstream analyses. Secondly, the algorithm searches for genes that show a stable expression pattern among all other samples. For this, the algorithm performs multiple Pearson's correlation analyses among a (potential confounding) variable and raw read counts, resulting in a distribution of the correlation coefficients. In the schematic figure, this is shown for intron-spanning reads library size (left) and patient age (right). The correlation distribution is shown below, and the putative thresholds (also subjected to PSO selection, see (e)) are indicated by black lines. Of note, as the raw intron-spanning read counts are normalised by counts-per-million normalization afterwards, stable genes have to approximate a correlation coefficient of one (see also FIG. 9b-c). During the third step, the algorithm first identifies factors contributing to the data in an unbiased way, using the RUVseq-correction module (RUVg-function). The RUVSeq correction approach estimates and corrects based on a generalized linear model of a subset of genes and by singular value decomposition the contribution of covariates of interest and unwanted variation. Secondly, the algorithm iteratively correlates the variable of interest (group) and potentially confounding variables (patient age and blood storage time) to the factors identified by RUVSeq. If a factor is determined to be correlated to a confounding factor (e.g. intron-spanning reads library size in ‘Factor 1’), the factor will be marked for removal (‘Remove’). Alternatively, if a factor is determined to be correlated to the factor of interest (e.g. group in ‘Factor 2’) or to none of the factors identified as involved factors (e.g. ‘Factor 3’), the factor will not be removed (‘Keep’). Finally, in the fourth step, default counts-per-million normalization and Trimmed Mean of M-values (TMM)-correction is performed using only the samples from the training cohort as eligible samples to calculate the TMM-correction factor. (b) Same example for correlation intron-spanning library size as shown in A.2 (left), but here y-axis indicates counts-per-million (CPM) normalized counts. This graph emphasizes that, for this particular variable, a correlation coefficient up to 1 has to be selected, resulting in selection of genes stable after CPM-normalization. (c) Interquartile range distribution of all genes after CPM-normalization ordered by correlation with library size. Highly correlated genes (right of black line, example threshold r>0.8) show a minimal interquartile range after CPM-normalization as compared to the samples with a diminished correlation coefficient (left of the black line). (d) Relative log expression (RLE) plots of 263 samples normalized using our previous approach (upper plot) and the novel approach (current study, lower plot). The RLE plot indicates the log-ratio of a read count to the median count across samples, and should show for a well-normalized datasets a similar distribution centered around zero. The correction module reduces the intersample variability significantly (p<0.0001, two-sided Student's t-test). (e) Schematic overview of the swarm-enhanced thromboSeq classification module. Multiple steps and filters of the algorithm are swarm-optimized, as indicated by the ‘bird’-sign. First, the dataset is subjected to the iterative correction module (see FIG. 9a). Second, most differentially spliced genes are calculated and selected (see Example 1). Third, highly correlated genes among genes selected in the second step are removed. Fourth, an SVM model is built using the training cohort, optimizing the gamma (g) and cost (c) parameters by a grid search (see Online Methods). Fifth, all genes selected for classification are recursively ranked according to the contribution to the SVM model, resulting in a ranked classification gene list. This list is subjected to swarm-based filtering. Sixth, using the reduced gene list an updated SVM model, again with gamma (g) and cost (c) optimization by grid search, is built. Seventh, the gamma (g) and cost (c) values are further optimized by a second particle-swarm optimization algorithm (see Online Methods). Finally, using the reduced gene list and optimized gamma (g) and cost (c) parameters the final SVM model is built.



FIG. 10—Comparative analysis of TEP RNA profiles of NSCLC patients at 2-4 weeks after start of nivolumab treatment. (a) Differential splicing analysis of n=17 Responders and n=11 Non-responders of which blood was collected at 2-4 weeks following start of treatment. An 195-gene panel shows significant separation between Responders and Non-responders (gene panel optimized by swarm-intelligence, p<0.0001 by Fisher's exact test). Venn diagram shows that a 1246-gene baseline response prediction signature and a 195-gene baseline follow-up response prediction signature have minimal overlay. (b) Differential splicing analysis of n=61 Responders and n=72 Non-responders of which blood was collected at baseline and during 2-4 weeks following start of treatment. (c) 378 altered RNAs were identified in TEPs of Responders and 107 altered RNAs in TEPs of Non-responders that were on treatment (genes panel optimized by swarm-intelligence, p<0.0001 by Fishers exact test). Venn diagram shows that both signatures have minimal overlay.





DETAILED DESCRIPTION
(1) Abbreviations

As used herein, the term “cancer” refers to a disease or disorder resulting from the proliferation of oncogenically transformed cells. “Cancer” shall be taken to include any one or more of a wide range of benign or malignant tumours, including those that are capable of invasive growth and metastasis through a human or animal body or a part thereof, such as, for example, via the lymphatic system and/or the blood stream. As used herein, the term “tumour” includes both benign and malignant tumours or solid growths, notwithstanding that the present invention is particularly directed to the diagnosis or detection of malignant tumours and solid cancers. Cancers further include but are not limited to carcinomas, lymphomas, or sarcomas, such as, for example, ovarian cancer, colon cancer, breast cancer, pancreatic cancer, lung cancer, prostate cancer, urinary tract cancer, uterine cancer, acute lymphatic leukaemia. Hodgkin's disease, small cell carcinoma of the lung, melanoma, neuroblastoma, glioma (e.g. glioblastoma), and soft tissue sarcoma, lymphoma, melanoma, sarcoma, and adenocarcinoma. In preferred embodiments of aspects of the present invention, thrombocyte cancer is disclaimed.


The term “liquid biopsy”, as is used herein, refers to a liquid sample that is obtained from a subject. Said liquid biopsy is preferably selected from blood, urine, milk. cerebrospinal fluid, interstitial fluid, lymph, amniotic fluid, bile, cerumen, feces, female ejaculate, gastric juice, mucus pericardial fluid, pleural fluid, pus, saliva, semen, smegma, sputum, synovial fluid, sweat, tears, vaginal secretion, and vomit. A preferred liquid biopsy is blood.


The term “blood”, as is used herein, refers to whole blood (including plasma and cells) and includes arterial, capillary and venous blood.


The term “anucleated blood cell”, as used herein, refers to a cell that lacks a nucleus. The term includes reference to both erythrocyte and thrombocyte. Preferred embodiments of anucleated cells according to this invention are thrombocytes. The term “anucleated blood cell” preferably does not include reference to cells that lack a nucleus as a result of faulty cell division.


The term “thrombocyte”, as used herein, refers to blood platelets. i.e. small, irregularly-shaped cell fragments that do not have a DNA-containing nucleus and that circulate in the blood of mammals. Thrombocytes are 2-3 μm in diameter, and are derived from fragmentation of precursor megakaryocytes. Platelets or thrombocytes lack nuclear DNA, although they retain some megakaryocyte-derived mRNAs as part of their lineal origin. The average lifespan of a thrombocyte is 5 to 9 days. Thrombocytes are involved and play an essential role in hemostasis, leading to the formation of blood clots.


(2) Determining Gene Expression Levels

The present invention describes methods of diagnosing, prognosticating or predicting a response to treatment, based on analyzing gene expression levels in anucleated cells such as thrombocytes extracted from blood. This approach is robust and easy. This is attributed to the rapid and straight forward extraction procedures and the quality of the extracted nucleic acid. Within the clinical setting, thrombocytes extraction from blood samples is implemented in general biological sample collection and therefore it is foreseen that the implementation into the clinic is relatively easy.


The present invention provides general methods of diagnosing, prognosticating or predicting treatment response of a subject using said general methods. When reference is herein made to a method of the invention, any and all of these embodiments are referred to, except if explicitly indicated otherwise.


A method of the invention can be performed on any suitable body sample comprising anucleated blood cells, such as for instance a tissue sample comprising blood, but preferably said sample is whole blood.


A blood sample of a subject can be obtained by any standard method, for instance by venous extraction.


The amount of blood that is required is not limited. Depending on the methods employed, the skilled person will be capable of establishing the amount of sample required to perform the various steps of the methods of the present invention and obtain sufficient nucleic acid for genetic analysis. Generally, such amounts will comprise a volume ranging from 0.01 μl to 100 ml, preferably between 1 μl to 10 ml, more preferably about 1 ml.


The body fluid, preferably blood sample, may be analyzed immediately following collection of the sample. Alternatively, analysis according to the method of the present invention can be performed on a stored body fluid or on a stored fraction of anucleated blood cells thereof, preferably thrombocytes. The body fluid for testing, or the fraction of anucleated blood cells thereof, can be preserved using methods and apparatuses known in the art. In an anucleated blood cell fraction, the thrombocytes are preferably maintained in inactivated state (i.e. in non-activated state). In that way, the cellular integrity and the disease-derived nucleic acids are best preserved. A thrombocyte-containing sample from a body fluid preferably does not include platelet poor plasma or platelet rich plasma (PRP). Further isolation of the platelets is preferred for optimal resolution.


A body fluid, preferably blood sample, may suitably be processed, for instance, it may be purified, or digested, or specific compounds may be extracted therefrom. Anucleated cells may be extracted from the sample by methods known to the skilled person and be transferred to any suitable medium for extraction of nucleic acid. The subject's body fluid may be treated to remove nucleic acid degrading enzymes like RNases and DNases, in order to prevent destruction of the nucleic acids.


Thrombocyte extraction from the body sample of the subject may involve any available method. In transfusion medicine, thrombocytes are often collected by apheresis, a medical technology in which the blood of a donor or patient is passed through an apparatus that separates out one particular constituent and returns the remainder to the circulation. The separation of individual blood components is done with a specialized centrifuge. Plateletpheresis (also called thrombopheresis or thrombocytapheresis) is an apheresis process of collecting thrombocytes. Modern automatic plateletpheresis allows blood donors to give a portion of their thrombocytes, while keeping their red blood cells and at least a portion of blood plasma. Although it is possible to provide the body fluid comprising thrombocytes as envisioned herein by apheresis, it is often easier to collect whole blood and isolate the thrombocyte fraction therefrom by centrifugation. Generally, in such a protocol, the thrombocytes are first separated from other blood cells by a centrifugation step of about 120×g for about 20 minutes at room temperature to obtain a platelet rich plasma (PRP) fraction. The thrombocytes are then washed, for example in phosphate-buffered saline/ethylenediaminetetraacetic acid, to remove plasma proteins and enrich for thrombocytes. Wash steps are generally followed by centrifugation at 850-1000×g for about 10 min at room temperature. Further enrichments can be carried out to yield more pure thrombocyte fractions.


Platelet isolation generally involves blood sample collection in Vacutainer tubes containing anticoagulant citrate dextrose (e.g. 36 ml citric acid, 5 mmol KCl, 90 mmol/l NaCl, 5 mmol/l glucose, 10 mmol/l EDTA pH 6.8). A suitable protocol for platelet isolation is described in Ferretti et al. (Ferretti et al., 2002. J Clin Endocrinol Metab 87: 2180-2184). This method involves a preliminary centrifugation step (1,300 rpm per 10 min) to obtain platelet-rich plasma (PRP). Platelets may then be washed three times in an anti-aggregation buffer (Tris-HCl 10 mmol/l; NaCl 150 mmol/l; EDTA 1 mmol/l; glucose 5 mmol/l; pH 7.4) and centrifuged as above, to avoid any contamination with plasma proteins and to remove any residual erythrocytes. A final centrifugation at 4,000 rpm for 20 min may then be performed to isolate platelets. For quantitative determination, the protein concentration of platelet membranes may be used as internal reference. Such protein concentrations may be determined by the method of Bradford (Bradford, 1976. Anal Biochem 72: 248-254), using serum albumin as a standard.


A sample comprising anucleated cells can be freshly prepared at the moment of harvesting, or can be prepared and stored at −70° C. until processed for sample preparation. Preferably, storage is performed under conditions that preserve the quality of the nucleic acid content of the anucleated cells. Examples of preservative conditions are fixation using e.g. formaline and paraffin embedding, the addition of RNase inhibitors such as RNAsin (Pharmingen) or RNasecure (Ambion), the addition of aqueous solutions such as RNAlater (Assuragen; U.S. Ser. No. 06/204,375), Hepes-Glutamic acid buffer mediated Organic solvent Protection Effect (HOPE; DE10021390), and RCL2 (Alphelys; WO04083369), and the addition of non-aquous solutions such as Universal Molecular Fixative (Sakura Finetek USA Inc.; U.S. Pat. No. 7,138,226).


Methods to determine gene expression levels are known to a skilled person and include, but are not limited to, Northern blotting, quantitative PCR, microarray analysis and RNA sequencing. It is preferred that said gene expression levels are determined simultaneously. Simultaneous analyses can be performed, for example, by multiplex qPCR, RNA sequencing procedures, and microarray analysis. Microarray analysis allow the simultaneous determination of gene expression levels of expression of a large number of genes, such as more than 50 genes, more than 100 genes, more than 1000 genes, more than 10,000 genes, or even whole-genome based, allowing the use of a large set of gene expression data for normalization of the determined gene expression levels in a method of the invention.


Microarray-based analysis involves the use of selected biomolecules that are immobilized on a solid surface, an array. A microarray usually comprises nucleic acid molecules, termed probes, which are able to hybridize to gene expression products. The probes are exposed to labeled sample nucleic acid, hybridized, and the abundance of gene expression products in the sample that are complementary to a probe is determined. The probes on a microarray may comprise DNA sequences. RNA sequences, or copolymer sequences of DNA and RNA. The probes may also comprise DNA and/or RNA analogues such as, for example, nucleotide analogues or peptide nucleic acid molecules (PNA), or combinations thereof. The sequences of the probes may be full or partial fragments of genomic DNA. The sequences may also be in vitro synthesized nucleotide sequences, such as synthetic oligonucleotide sequences.


A probe preferably is specific for a gene expression product of a gene as listed in Tables 1-3. A probe is specific when it comprises a continuous stretch of nucleotides that are completely complementary to a nucleotide sequence of a gene expression product, or a cDNA product thereof. A probe can also be specific when it comprises a continuous stretch of nucleotides that are partially complementary to a nucleotide sequence of a gene expression product of said gene, or a cDNA product thereof. Partially means that a maximum of 5% from the nucleotides in a continuous stretch of at least 20 nucleotides differs from the corresponding nucleotide sequence of a gene expression product of said gene. The term complementary is known in the art and refers to a sequence that is related by base-pairing rules to the sequence that is to be detected. It is preferred that the sequence of the probe is carefully designed to minimize nonspecific hybridization to said probe. It is preferred that the probe is, or mimics, a single stranded nucleic acid molecule. The length of said complementary continuous stretch of nucleotides can vary between 15 bases and several kilo bases, and is preferably between 20 bases and 1 kilobase, more preferred between 40 and 100 bases, and most preferred about 60 nucleotides. A most preferred probe comprises about 60 nucleotides that are identical to a nucleotide sequence of a gene expression product of a gene, or a cDNA product thereof. In a method of the invention, probes comprising probe sequences as indicated in Tables 1-3 and 5-7 can be employed.


To determine the gene expression level by micro-arraying, the gene expression products in the sample are preferably labeled, either directly or indirectly, and contacted with probes on the array under conditions that favor duplex formation between a probe and a complementary molecule in the labeled gene expression product sample. The amount of label that remains associated with a probe after washing of the microarray can be determined and is used as a measure for the gene expression level of a nucleic acid molecule that is complementary to said probe.


A preferred method for determining gene expression levels is by sequencing techniques, preferably next-generation sequencing (NGS) techniques of RNA samples. Sequencing techniques for sequencing RNA have been developed. Such sequencing techniques include, for example, sequencing-by-synthesis. Sequencing-by-synthesis or cycle sequencing can be accomplished by stepwise addition of nucleotides containing, for example, a cleavable or photobleachable dye label as described, for example, in U.S. Pat. Nos. 7,427,673; 7,414,116; WO 04/018497 WO 91/06678; WO 07/123744; and U.S. Pat. No. 7,057,026. Alternatively, pyrosequencing techniques may be employed. Pyrosequencing detects the release of inorganic pyrophosphate (PPi) as particular nucleotides are incorporated into the nascent strand (Ronaghi et al., 1996, Analytical Biochemistry 242: 84-89; Ronaghi, 2001. Genome Res 11: 3-11; Ronaghi et al., 1998. Science 281: 363; U.S. Pat. Nos. 6,210,891; 6,258,568; and 6,274,320. In pyrosequencing, released PPi can be detected as it is immediately converted to adenosine triphosphate (ATP) by ATP sulfurylase, and the level of ATP generated is detected via luciferase-produced photons.


Sequencing techniques also include sequencing by ligation techniques. Such techniques use DNA ligase to incorporate oligonucleotides and identify the incorporation of such oligonucleotides and are inter alia described in U.S. Pat. Nos. 6,969,488; 6,172,218; and 6,306,597. Other sequencing techniques include, for example, fluorescent in situ sequencing (FISSEQ), and Massively Parallel Signature Sequencing (MPSS).


Sequencing techniques can be performed by directly sequencing RNA, or by sequencing a RNA-to-cDNA converted nucleic acid library. Most protocols for sequencing RNA samples employ a sample preparation method that converts the RNA in the sample into a double-stranded cDNA format prior to sequencing.


The determined gene expression levels are preferably normalized. Normalization refers to a method for adjusting or correcting a systematic error in the measurements for determining gene expression levels. Systemic bias may result from variation by differences in overall performance, differences in isolation efficiency of anucleated cells resulting in differences in purity of the isolated anucleated cells, and to variation between RNA samples, which can be due for example to variations in purity. Systemic bias can be introduced during the handling of the sample during the determination of gene expression levels.


(3) Comparison of Determined Gene Expression Levels

The determined levels of expression of genes from Tables 1-3 in a sample are compared to the levels of expression of the same genes in a reference sample. Said comparison may result in an index score indicating a similarity of the determined expression levels in a sample of an individual, subject or patient, with the expression levels in the reference sample. For example, an index can be generated by determining a fold change/ratio between the median value of gene expression across samples that have been typed as being obtained from individuals suffering from cancer and the median value of gene expression across samples that are typed as being obtained from individuals not suffering from cancer. The relevance of this fold change/ratio as being significant between the two respective groups can be tested, for example, in an ANOVA (Analysis of variance) model. Univariate p-values can be calculated in the model and after multiple correction testing (Benjamini & Hochberg, 1995. JRSS, B, 57: 289-300) can be used as a threshold for determining significance that the gene expression shows a clear difference between the groups. Multivariate analysis may also be performed in adding covariates such as tumor stage/grade/size into the ANOVA model.


Similarly, an index can be determined by Pearson correlation between the expression levels of the genes in a sample of a patient and the average or mean of expression levels in one or more cancer samples that are known to respond to immunotherapy that modulates an interaction between PD-1 and its ligand, and the average or mean expression levels in one or more cancer samples that are known not to respond to immunotherapy that modulates an interaction between PD-1 and its ligand. The resultant Pearson scores can be used to provide an index score. Said score may vary between +1, indicating a prefect similarity, and −1, indicating a reverse similarity. Preferably, an arbitrary threshold is used to type samples as being responsive or as not being responsive. More preferably, samples are classified as responsive or as not responsive based on the respective highest similarity measurement. A similarity score is preferably displayed or outputted to a user interface device, a computer readable storage medium, or a local or remote computer system.


For predicting a response to immunotherapy that modulates an interaction between PD-1 and its ligand, said reference sample preferably comprises gene expression products that are obtained from anucleated cells of an individual known to respond positive to said immunotherapy, and/or of an individual known not to respond positive to said immunotherapy. Similarly, for typing of a sample of a subject for the presence or absence of a cancer, said reference sample preferably comprises gene expression products that are obtained from anucleated cells of an individual known to suffer from a cancer, and/or known not to suffer from a cancer.


Said reference sample preferably provides a measure of the average or mean level of expression of genes in anucleated cells of at least 2 independent individuals, more preferred at least 5 independent individuals, more preferred at least 10 independent individuals, such as between 10 and 100 individuals.


Said average or mean level of expression of genes in anucleated cells of the reference sample is preferably presented on a user interface device, a computer readable storage medium, or a local or remote computer system. The storage medium may include, but is not limited to, a floppy disk, an optical disk, a compact disk read-only memory (CD-ROM), a compact disk rewritable (CD-RW), a memory stick, and a magneto-optical disk.


(4) Predicting Response to Administration of Immunotherapy that Modulates an Interaction Between PD-1 and its Ligand

The gene expression level for at least four genes listed in Table 1, more preferred at least five genes listed in Table 1 can be used to predict a response to immunotherapy that modulates an interaction between PD-1 and its ligand, to a cancer patient, prior to administering said therapy.


For this, anucleated cells, preferably thrombocytes, are isolated from a patient known to suffer from a cancer, such as a lung cancer. A sample comprising ribonucleic acid (RNA), preferably messenger RNA (mRNA), is isolated from the isolated anucleated cells. Following reverse transcription of the RNA into copy desoxyribonucleic acid (cDNA) using any method known to the skilled person, the resulting cDNA is labelled and gene expression levels are quantified, for example by next generation sequencing, for example on an Illumina sequencing platform.


Based on the sequencing results, the gene expression level for at least four genes listed in Table 1, more preferred at least five genes listed in Table 1 is determined in the sample comprising ribonucleic acid (RNA), from said cancer patient and preferably normalized. The normalized expression levels are compared to the level of expression of the same at least four genes listed in Table 1, more preferred at least five genes in a reference sample. Said reference sample is obtained from one or more cancer patients with a known, positive response to immunotherapy that modulates an interaction between PD-1 and its ligand, and/or obtained from one or more cancer patients with a known, negative response to immunotherapy that modulates an interaction between PD-1 and its ligand. From said comparison, a predicted response efficacy to administration of immunotherapy that modulates an interaction between PD-1 and its ligand such as, for example, administration of nivolumab, is obtained.


Contemplated herein is a method of typing a sample of a subject known to suffer from a cancer, especially a lung cancer, comprising the steps of providing a sample from the subject, whereby the sample comprises mRNA products that are obtained from anucleated cells of said subject; determining a gene expression level for at least four genes listed in Table 1, more preferred at least five genes listed in Table 1; comparing said determined gene expression level to a reference expression level of said genes in a reference sample; and typing said sample for a likelihood of responding to immunotherapy that modulates an interaction between PD-1 and its ligand such as, for example, administration of nivolumab, on the basis of the comparison between the determined gene expression level and the reference gene expression level.


In a preferred method according to the invention, a level of expression of at least four genes listed in Table 1, more preferred at least five genes from Table 1 is determined, more preferred a level of expression of at least ten genes from Table 1, more preferred a level of expression of at least twenty genes from Table 1, more preferred a level of expression of at least thirty genes from Table 1, more preferred a level of expression of at least forty genes from Table 1, more preferred a level of expression of at least fifty genes from Table 1, more preferred a level of RNA expression of all five hundred thirty two genes from Table 1.


It is further preferred that said at least five genes from Table 1 comprise the first four genes listed in Table 1, more preferred the first five genes with the lowest P-value, as is indicated in Table 1, more preferred the first ten genes with the lowest P-value, as is indicated in Table 1, more preferred the first twenty genes with the lowest P-value, as is indicated in Table 1, more preferred the first thirty genes with the lowest P-value, as is indicated in Table 1, more preferred the first forty genes with the lowest P-value, as is indicated in Table 1, more preferred the first fifty genes with the lowest P-value, as is indicated in Table 1.


In a further preferred embodiment, said at least four genes listed in Table 1, more preferred at least five genes from Table 1 comprise ENSG00000084234 (APLP2), ENSG00000165071 (TMEM71), ENSG00000143515 (ATP8B2), ENSG00000119314 (PTBP3) and ENSG00000126698 (DNAJC8); more preferably ENSG000000084234 (APLP2), ENSG00000165071 (TMEM71), ENSG00000143515 (ATP8B2), ENSG00000119314 (PTBP3), ENSG00000126698 (DNAJC8) and ENSG00000121879 (PIK3CA); more preferably ENSG0000000084234 (APLP2), ENSG00000165071 (TMEM71), ENSG00000143515 (ATP8B2), ENSG00000119314 (PTBP3), ENSG00000126698 (DNAJC8), ENSG00000121879 (PIK3CA) and ENSG00000174238 (PITPNA); more preferably ENSG0000084234 (APLP2), ENSG00000165071 (TMEM71), ENSG00000143515 (ATP8B2), ENSG00000119314 (PTBP3), ENSG00000126698 (DNAJC8), ENSG00000121879 (PIK3CA), ENSG00000174238 (PITPNA) and ENSG0000084754 (HADHA); more preferably ENSG0000084234 (APLP2), ENSG00000165071 (TMEM71), ENSG00000143515 (ATP8B2), ENSG00000119314 (PTBP3), ENSG00000126698 (DNAJC8), ENSG00000121879 (PIK3CA), ENSG00000174238 (PITPNA), ENSG00000084754 (HADHA) and ENSG00000272369); more preferably ENSG0000084234 (APLP2), ENSG00000165071 (TMEM71), ENSG00000143515 (ATP8B2), ENSG0000019314 (PTBP3), ENSG0000126698 (DNAJC8), ENSG00000121879 (PIK3CA), ENSG00000174238 (PITPNA), ENSG00000084754 (HADHA), ENSG00000272369) and ENSG00000073111 (MCM2); more preferably ENSG00000084234 (APLP2), ENSG00000165071 (TMEM71), ENSG00000143515 (ATP8B2), ENSG00000119314 (PTBP3), ENSG00000126698 (DNAJC8), ENSG00000121879 (PIK3CA), ENSG00000174238 (PITPNA), ENSG00000084754 (HADHA), ENSG00000272369), ENSG00000073111 (MCM2), ENSG00000137073 (UBAP2), ENSG00000115866 (DARS), ENSG00000229474 (PATL2), ENSG00000086589 (RBM22), ENSG00000145675 (PIK3R1), ENSG00000088833 (NSFL1C), ENSG00000267243, ENSG00000260661, ENSG00000144747 (TMF1) and ENSG00000158578 (ALAS2), more preferably ENSG00000084234 (APLP2), ENSG00000165071 (TMEM71), ENSG00000143515 (ATP8B2), ENSG00000119314 (PTBP3), ENSG00000126698 (DNAJC8), ENSG00000121879 (PIK3CA), ENSG00000174238 (PITPNA), ENSG00000084754 (HADHA), ENSG00000272369), ENSG00000073111 (MCM2), ENSG00000137073 (UBAP2), ENSG00000115866 (DARS), ENSG0000229474 (PATL2), ENSG00000086589 (RBM22), ENSG00000145675 (PIK3R1), ENSG00000088833 (NSFL1C), ENSG000000267243, ENSG00000260661, ENSG0000144747 (TMF1), ENSG00000158578 (ALAS2), ENSG00000083642 (PDS5B), ENSG00000142089 (IFITM3), ENSG00000107175 (CREB3), ENSG00000162585 (C1orf86), ENSG00000142687 (KIAA0319L), ENSG00000100796 (SMEK1), ENSG00000142856 (ITGB3BP), ENSG00000103479 (RBL2), ENSG00000048471 (SNX29), ENSG00000196233 (LCOR) and ENSG00000068120 (COASY); more preferably ENSG00000084234 (APLP2), ENSG00000165071 (TMEM71), ENSG00000143515 (ATP8B2), ENSG00000119314 (PTBP3), ENSG00000126698 (DNAJC8), ENSG00000121879 (PIK3CA), ENSG00000174238 (PITPNA), ENSG00000084754 (HADHA), ENSG00000272369), ENSG00000073111 (MCM2), ENSG00000137073 (UBAP2), ENSG00000115866 (DARS), ENSG00000229474 (PATL2), ENSG00000086589 (RBM22), ENSG00000145675 (PIK3R1), ENSG00000088833 (NSFL1C), ENSG00000267243, ENSG00000260661, ENSG00000144747 (TMF1), ENSG00000158578 (ALAS2), ENSG000000083642 (PDS5B), ENSG00000142089 (IFITM3), ENSG00000107175 (CREB3), ENSG00000162585 (C1orf86), ENSG000000142687 (KIAA0319L), ENSG00000100796 (SMEK1), ENSG00000142856 (ITGB3BP), ENSG00000103479 (RBL2), ENSG00000048471 (SNX29), ENSG00000196233 (LCOR), ENSG00000068120 (COASY), ENSG00000120868 (APAF1), ENSG00000198265 (HELZ), ENSG00000162688 (AGL), ENSG00000228215, ENSG00000147457 (CHMP7), ENSG00000129187 (DCTD), ENSG00000141644 (MBD1), ENSG00000172172 (MRPL13), ENSG0000011097 (PITPNM1) and ENSG00000102054 (RBBP7); more preferably ENSG00000084234 (APLP2), ENSG00000165071 (TMEM71), ENSG00000143515 (ATP8B2), ENSG00000119314 (PTBP3), ENSG00000126698 (DNAJC8), ENSG00000121879 (PIK3CA), ENSG00000174238 (PITPNA), ENSG0000084754 (HADHA), ENSG00000272369), ENSG00000073111 (MCM2), ENSG00000137073 (UBAP2), ENSG00000115866 (DARS), ENSG00000229474 (PATL2), ENSG00000086589 (RBM22), ENSG00000145675 (PIK3R1), ENSG0000088833 (NSFL1C), ENSG00000267243, ENSG00000260661, ENSG000000144747 (TMF1), ENSG00000158578 (ALAS2), ENSG00000083642 (PDS5B), ENSG00000142089 (IFITM3), ENSG00000107175 (CREB3), ENSG00000162585 (C1orf86), ENSG00000142687 (KIAA0319L), ENSG00000100796 (SMEK1), ENSG00000142856 (ITGB3BP), ENSG00000103479 (RBL2), ENSG00000048471 (SNX29), ENSG00000196233 (LCOR), ENSG00000068120 (COASY), ENSG00000120868 (APAF1), ENSG00000198265 (HELZ), ENSG00000162688 (AGL), ENSG00000228215, ENSG00000147457 (CHMP7), ENSG00000129187 (DCTD), ENSG00000141644 (MBD1), ENSG00000172172 (MRPL13), ENSG00000110697 (PITPNM1), ENSG00000102054 (RBBP7), ENSG000153214 (TMEM87B), ENSG0000150054 (MPP7), ENSG00000122008 (POLK), ENSG00000151150 (ANK3), ENSG00000165970 (SLC6A5), ENSG00000100811 (YY1), ENSG00000152127 (MGAT5), ENSG00000172493 (AFF1), ENSG00000213722 (DDAH2), ENSG00000177425 (PAWR), ENSG00000260017, ENSG0000141429 (GALNT1), ENSG00000119979 (FAM45A), ENSG00000136167 (LCP1), ENSG00000244734 (HBB), ENSG00000143569 (UBAP2L), ENSG00000079459 (FDFT1), ENSG00000197459 (HIST1H2BH) and ENSG00000080371 (RAB21).


In a most preferred embodiment, a set of at least four genes from Table 1 comprises ENSG00000164985 (PSIP1), ENSG00000114316 (USP4), ENSG00000103091 (WDR59) and ENSG00000140564 (FURIN), which resulted in an AUC-value of 0.70 (95%-CI: 0.47-0.94) and an classification accuracy of 73%.


(5) Typing Presence or Absence of a Cancer

The gene expression level for at least five genes listed in Table 2 can be used to type a sample from a subject for the presence or absence of a cancer in said subject.


For this, anucleated cells, preferably thrombocytes, are isolated from a subject not known to suffer from a cancer, such as a lung cancer. A sample comprising ribonucleic acid (RNA), preferably messenger RNA (mRNA), is isolated from said isolated anucleated cells. Following reverse transcription of the RNA into copy desoxyribonucleic acid (cDNA) using any method known to the skilled person, the resulting cDNA is labelled and gene expression levels are quantified, for example by next generation sequencing, for example on an Illumina sequencing platform.


Based on the sequencing results, the gene expression level for at least five genes listed in Table 2 is determined in the sample comprising ribonucleic acid (RNA), from said subject and preferably normalized. The normalized expression levels are compared to the level of expression of the same at least five genes in a reference sample. Said reference sample is obtained from one or more cancer patients, and/or obtained from one or more subjects that are known not to suffer from a cancer. From said comparison, said subject can be types for a likelihood of having a cancer such as a lung cancer, or not having a cancer.


In a preferred method according to the invention, a level of expression of at least five genes from Table 2 is determined, more preferred a level of expression of at least ten genes from Table 2, more preferred a level of expression of at least twenty genes from Table 2, more preferred a level of expression of at least thirty genes from Table 2, more preferred a level of expression of at least forty genes from Table 2, more preferred a level of expression of at least fifty genes from Table 2, more preferred a level of RNA expression of all thousand genes from Table 2.


It is further preferred that said at least five genes from Table 2 comprise the first five genes with the lowest P-value, as is indicated in Table 2, more preferred the first ten genes with the lowest P-value, as is indicated in Table 2, more preferred the first twenty genes with the lowest P-value, as is indicated in Table 2, more preferred the first thirty genes with the lowest P-value, as is indicated in Table 2, more preferred the first forty genes with the lowest P-value, as is indicated in Table 2, more preferred the first fifty genes with the lowest P-value, as is indicated in Table 2.


In a further preferred embodiment, said at least five genes from Table 2 comprise HBB, EIF1, CAPNS1, NDUFAF3 and OTUD5, more preferred HBB, EIF1, CAPNS1, NDUFAF3, OTUD5, SRSF2, ANP32B, KIFAP3, ATOX1 and BCAP31, more preferred HBB, EF1, CAPNS1, NDUFAF3, OTUD5, SRSF2, ANP32B, KIFAP3, ATOX1, BCAP31, NAP1L1, TIMP1, POLR2E, CD74, POLR2G, RPS5, GPI, GSTM4, IGHM and DSTN, more preferred HBB, EIF1, CAPNS1, NDUFAF3, OTUD5, SRSF2, ANP32B, KIFAP3, ATOX1, BCAP31, NAP1L1, TIMP1, POLR2E, CD74, POLR2G, RPS5, GPI, GSTM4, IGHM, DSTN, ALDH9A1, ZNF346, LMAN1, EEF1B2, AP2S1, HSPB1, HBQ1, HTATIP2, PTMS and TPM2, more preferred HBB, EIF1, CAPNS1, NDUFAF3, OTUD5, SRSF2, ANP32B, KIFAP3, ATOX1, BCAP31, NAP1L1, TIMP1, POLR2E, CD74, POLR2G, RPS5, GPI, GSTM4, IGHM, DSTN, ALDH9A1, ZNF346, LMAN1, EEF1B2, AP2S1, HSPB1, HBQ1, HTATIP2, PTMS, TPM2, DESI1, RHOC, YWHAH, CPQ, FMTPN, ISCU, MRPL37, MGST3, CMTM5 and ACTG1, more preferred HBB, EIF1, CAPNS1, NDUFAF3, OTUD5, SRSF2, ANP32B, KIFAP3, ATOX1, BCAP31, NAP1L1, TIMP1, POLR2E, CD74, POLR2G, RPS5, GPI, GSTM4, IGHM, DSTN, ALDH9A1, ZNF346, LMAN1, EEF1B2, AP2S1, HSPB1, HBQ1, HTATIP2, PTMS, TPM2, DESI1, RHOC, YWHAH, CPQ, MTPN, ISCU, MRPL37, MGST3, CMTM5, ACTG1, ITGA2B, HPSE, KLHDC8B, CDC37, HLA-DRA, KSR1, ACOT7, PRKAR1B, MAOB and ZDHHC12, more preferred HBB, EIF1, CAPNS1, NDUFAF3, OTUD5, SRSF2, ANP32B, KIFAP3, ATOX1, BCAP31, NAP1L1, TIMP1, POLR2E, CD74, POLR2G, RPS5, GPI, GSTM4, IGHM, DSTN, ALDH9A1, ZNF346, LMAN1, EEF1B2, AP2S1, HSPB1, HBQ1, HTATIP2, PTMS, TPM2, DESI1, RHOC, YWHAH, CPQ, MTPN, ISCU, MRPL37, MGST3, CMTM5, ACTG1, ITGA2B, HPSE, KLHDC8B, CDC37, HLA-DRA, KSR1, ACOT7, PRKAR1B, MAOB, ZDHHC12, SNX3, YIF1B, PRDX5, HDAC8, DDX5, TPM1, SVIP, PDAP1, CD79B and PRSS50, more preferred HBB, EIF1, CAPNS1, NDUFAF3, OTUD5, SRSF2, ANP32B, KIFAP3, ATOX1, BCAP31, NAP1L1, TIMP1, POLR2E, CD74, POLR2G, RPS5, GPI, GSTM4, IGHM, DSTN, ALDH9A1, ZNF346, LMAN1, EEF1B2, AP2S1, HSPB1, HBQ1, HTATIP2, PTMS, TPM2, DESI1, RHOC, YWLAH, CPQ, MTPN, ISCU, MRPL37, MGST3, CMTM5, ACTG1, ITGA2B, HPSE, KLHDC8B, CDC37, HLA-DRA, KSR1, ACOT7, PRKAR1B, MAOB, ZDHHC12, SNX3, YIF1B, PRDX5, HDAC8, DDX5, TPM1, SVIP, PDAP1, CD79B, PRSS50, GPX1, IFITM3, SAIMD14, FUNDC2, BRIX1, CFL1, AKIRIN2, NAPSB, GPAA1, TRIM28, CMTM3 and MMP1.


In a most preferred embodiment, said at least 10 genes from Table 2 comprise ENSG00000168765 (GSTM4), ENSG00000206549 (PRSS50), ENSG00000106211 (HSPB1), ENSG00000185909 (IKLHDC8B), ENSG00000097021 (ACOT7), ENSG00000105401 (CDC37), ENSG00000099817 (POLR2E), ENSG00000105220 (GPI), ENSG00000075945 (KIFAP3), ENSG00000100418 (DESI1). The 10 genes resulted in an AUC-value of 0.74 (95%-CI: 0.70-0.77) and a classification accuracy of 68%) in an independent, late stage validation set (n=518 samples). The AUC-value was 0.69 (95%-CI: 0.59-0.79), with a classification accuracy of 65% in an early stage validation set (n=106 samples).


In a most preferred embodiment, a set of at least 45 genes from Table 2 is used to type a sample from a subject for the presence or absence of a cancer, especially a lung cancer, in said subject. Said at least 45 genes comprise ENSG00000023191 (RNH1), ENSG00000142089 (IFITM3), ENSG00000097021 (ACOT7), ENSG00000172757 (CFL1), ENSG00000213465 (ARL2), ENSG00000136938 (ANP32B), ENSG00000067365 (METTL22), ENSG00000130429 (ARPC1B), ENSG00000116221 (MRPL37), ENSG00000177556 (ATOX1), ENSG00000074695 (LMAN1), ENSG00000198467 (TPM2), ENSG00000188191 (PRKAR1B), ENSG00000126247 (CAPNS1), ENSG00000159335 (PTMS), ENSG00000113761 (ZNF346), ENSG00000102265 (TIMP1), ENSG00000168002 (POLR2G), ENSG00000185825 (BCAP31), ENSG00000155366 (RHOC), ENSG00000099817 (POLR2E), ENSG00000125868 (DSTN), ENSG00000160446 (ZDHHC12), ENSG00000100418 (DESI1), ENSG00000109854 (HTATIP2), ENSG00000161547 (SRSF2), ENSG000068308 (OTUD5), ENSG00000206549 (PRSS50), ENSG00000178057 (NDUFAF3), ENSG00000042753 (AP2S1), ENSG00000168765 (GSTM4), ENSG00000075945 (KIFAP3), ENSG00000173812 (EIF1), ENSG00000086506 (HBQ1), ENSG00000106244 (PDAP1), ENSG00000187109 (NAP1L1), ENSG00000106211 (HSPB1), ENSG00000105220 (GPI), ENSG00000105401 (CDC37), ENSG00000128245 (YWHAH), ENSG00000173083 (HPSE), ENSG00000185909 (KLHDC8B), ENSG00000126432 (PRDX5), ENSG00000166091 (CMTM5) and ENSG00000069535 (MAOB). The 45 genes resulted in an AUC-value of 0.77 (95%-CI: 0.73-0.81) and a classification accuracy of 77%) in an independent, late stage validation set (n=518 samples). The AUC-value was 0.74 (95%-CI: 0.65-0.83), with a classification accuracy of 70% in an early stage validation set (n=106 samples)


(6) Additional P-Selectin Profile

P selectin protein (SELP, CD62) is stored in platelet alpha-granules and released upon platelet activation. P-selectin levels are enriched in younger, reticulated platelets. The platelet RNA gene panel selected for NSCLC diagnostics depicted in Table 2 contains genes that are co-regulated with p-selectin RNA expression in platelets. Hence, the NSCLC diagnostic signature may be enriched for reticulated platelets, expressing high levels of p-selectin RNA. Said P-selectin signature may have help in predicting therapy response, in case the platelet population of responding patients shifts during treatment from reticulated platelets to mature platelets. This shift might also be observed for other treatment modules including chemotherapy, targeted therapies, radiotherapy, surgery or immunotherapy.


Therefore, the gene expression level for at least five genes listed in Table 3 can be used to assist in predicting a response to immunotherapy that modulates an interaction between PD-1 and its ligand, to a cancer patient, prior to administering said therapy.


Hence, the invention provides a method of administering immunotherapy that modulates an interaction between PD-1 and its ligand, to a cancer patient, comprising the steps of providing a sample from the patient, the sample comprising mRNA products that are obtained from anucleated cells of said patient; determining a gene expression level for at least four genes listed in Table 1, more preferred at least five genes listed in Table 1, and at least five genes listed in Table 3; comparing said determined gene expression levels to reference expression levels of said genes in a reference sample; typing the patient as a positive responder to said immunotherapy, or as a not-positive responder, based on the comparison with the reference; and administering immunotherapy to a cancer patient that is typed as a positive responder.


For this, anucleated cells, preferably thrombocytes, are isolated from a patient known to suffer from a cancer, such as a lung cancer. A sample comprising ribonucleic acid (RNA), preferably messenger RNA (mRNA), is isolated from the isolated anucleated cells. Following reverse transcription of the RNA into copy desoxyribonucleic acid (cDNA) using any method known to the skilled person, the resulting cDNA is labelled and gene expression levels are quantified, for example by next generation sequencing, for example on an Illumina sequencing platform.


Based on the sequencing results, the gene expression level for at least five genes listed in Table 3 is determined in the sample comprising ribonucleic acid (RNA), from said cancer patient and preferably normalized. The normalized expression levels are compared to the level of expression of the same at least five genes in a reference sample. Said reference sample is obtained from one or more cancer patients with a known, positive response to immunotherapy that modulates an interaction between PD-1 and its ligand, and/or obtained from one or more cancer patients with a known, negative response to immunotherapy that modulates an interaction between PD-1 and its ligand. From said comparison, a predicted response efficacy to administration of immunotherapy that modulates an interaction between PD-1 and its ligand such as, for example, administration of nivolumab, is obtained.


In a preferred method according to the invention, a level of expression of at least five genes from Table 3 is determined, more preferred a level of expression of at least ten genes from Table 3, more preferred a level of expression of at least twenty genes from Table 3, more preferred a level of expression of at least thirty genes from Table 3, more preferred a level of expression of at least forty genes from Table 3, more preferred a level of expression of at least fifty genes from Table 3, more preferred a level of RNA expression of all thousand eight hundred twenty genes from Table 3.


It is further preferred that said at least five genes from Table 3 comprise the first five genes with the lowest P-value, as is indicated in Table 3, more preferred the first ten genes with the lowest P-value, as is indicated in Table 3, more preferred the first twenty genes with the lowest P-value, as is indicated in Table 3, more preferred the first thirty genes with the lowest P-value, as is indicated in Table 3, more preferred the first forty genes with the lowest P-value, as is indicated in Table 3, more preferred the first fifty genes with the lowest P-value, as is indicated in Table 3.


In a further preferred embodiment, said at least five genes from Table 3 comprise SELP, ITGA2B, AP2S1, OTUD5 and MAOB from Table 3, more preferred SELP, ITGA2B, AP2S1, OTUD5, MAOB, KIFAP3, HBQ1, ACOT7, POLR2E and DESI1, more preferred SELP, ITGA2B, AP2S, OTUD5, MAOB, KIFAP3, HBQ1, ACOT7, POLR2E, DESI1, TIMP1, CPQ, GPI, CDC37, MTPN, HSPB1, PDAP1, HTATIP2, SNX3 and ZNF346, more preferred SELP, ITGA2B, AP2S1, OTUD5, MAOB, KIFAP3, HBQ1, ACOT7, POLR2E, DESI1, TIMP1, CPQ, GPI, CDC37, MTPN, HSPB1, PDAP1, HTATIP2, SNX3, ZNF346, DSTN, CAPNS1, PRDX5, YWHAH, AKIRIN2, ISCU, TPM1, CMTM3, ALDH9A1 and RHOC, more preferred SELP, ITGA2B, AP2S1, OTUD5, MAOB, KIFAP3, HBQ1, ACOT7, POLR2E, DESI1, TIMP1, CPQ, GPI, CDC37, MTPN, HSPB1, PDAP1, HTATIP2, SNX3, ZNF346, DSTN, CAPNS1, PRDX5, YWHAH, AKIRIN2, ISCU, TPM1, CMTM3, ALDH9A1, RHOC, PTMS, ZDHHC12, SRSF2, FUNDC2, CMTM5, SAMD14, YIF1B, POLR2G, GSTM4 and CFL1, more preferred SELP, ITGA2B, AP2S1, OTUD5, MAOB, KIFAP3, HBQ1, ACOT7, POLR2E, DESI1, TIMP1, CPQ, GPI, CDC37, MTPN, HSPB1, PDAP1, HTATIP2, SNX3, ZNF346, DSTN, CAPNS1, PRDX5, YWHAH, AKIRIN2, ISCU, TPM1, CMTM3, ALDH9A1, RHOC, PTMS, ZDHHC12, SRSF2, FUNDC2, CMTM5, SAMD14, YIF1B, POLR2G, GSTM4, CFL1, HPSE, EIF1, NDUFAF3, ACTG1, BCAP31, KLHDC8B, NAP1L1, PRKAR1B, MMP1, GPAA1, SVIP, TPM2, PRSS50 and GPX1.


A most preferred set of at least five genes from Table 3 comprises ENSG00000161203 (AP2M1), ENSG00000204420 (C6orf25), ENSG00000204592 (HLA-E), ENSG00000064601 (CTSA), and ENSG00000005961 (ITGA2B). Use of this additional set of genes, besides the most preferred set of at least ten genes, resulted in classification of early-stage NSCLC with an AUC-value of 0.66 (95%-CI: 0.55-0.76) and an accuracy of 65% (n=106 samples).


(7) Definition Particle Swarm Optimization

Several bioinformatic optimization algorithms can be exploited for solving mathematical problems regarding parameter selection. These optimization processes iteratively seek most optimal parameter settings of parameters that determine the mathematical problem. This iterative process is guided by the optimization algorithm, effectively and efficiently. We claim the use of particle swarm intelligence optimization (PSO), the mathematical approach for parameter selection, including its subvariants and hybridization/combination with other mathematical optimization algorithms for gene panel selection in liquid biopsies. We define PSO as a meta-algorithm exploiting particle position and particle velocity using iterative repositioning in a high-dimensional space for efficient and optimized parameter selection, i.e. gene panel selection. PSO also includes other optimization meta-algorithms that can be applied for automated and enhanced gene panel selection. We tested the particle swarm optimization algorithm, and demonstrate that PSO-enhanced algorithms enable efficient selection of spliced RNA biomarker panels from platelet RNA-seq libraries (n=728). This resulted in accurate TEP-based detection of stage IV non-small cell lung cancer (NSCLC) (n=520 independent validation cohort, accuracy: 89%, AUC: 0.94, 95%-CI: 0.93-0.96, p<0.001), independent of age of the individuals, whole blood storage time, and various inflammatory conditions. In addition, we employed swarm intelligence to explore spliced RNA biomarker profiles for the blood-based therapeutic response prediction of stage IV NSCLC patients at moment of baseline for anti-PD-1 nivolumab immunotherapy (n=64). The nivolumab response prediction algorithm resulted in an accuracy of 88% (AUC 0.89, 95%-CI: 0.8-1.0, p<0.01). To our knowledge this is the first demonstration of PSO for selection of biomarker gene panels to diagnose cancer and predict therapy response from TEPs. The PSO-algorithm was exploited for optimization of four parameters that determined the gene panel used for support vector machine training. As aside analyzing RNA molecules from TEPs. PSO can also be applied for analysis of small RNAs, RNA rearrangements. DNA single nucleotide alterations, protein levels, metabolomic levels, which constituents are isolated from TEPs, plasma, serum, circulating tumor cells, or extracellular vesicles, by subjecting similar or combined data input to the PSO-algorithm.


For the purpose of clarity and a concise description, features are described herein as part of the same or separate embodiments, however, it will be appreciated that the scope of the invention may include embodiments having combinations of all or some of the features described.














TABLE 1







Ensembl_gene_id
hgnc_symbol
logFC
p-value





















ENSG00000084234
APLP2
−4.42
0.000



ENSG00000163359
COL6A3
1.93
0.001



ENSG00000147099
HDAC8
1.47
0.001



ENSG00000165970
SLC6A5
1.24
0.003



ENSG00000164068
RNF123
1.88
0.003



ENSG00000238683

1.12
0.004



ENSG00000248538

−2.46
0.004



ENSG00000110422
HIPK3
−1.19
0.006



ENSG00000005486
RHBDD2
0.99
0.007



ENSG00000065833
ME1
1.53
0.008



ENSG00000109790
KLHL5
−1.31
0.009



ENSG00000175634
RPS6KB2
−0.66
0.010



ENSG00000095319
NUP188
−1.50
0.013



ENSG00000112992
NNT
−0.97
0.013



ENSG00000166164
BRD7
−0.73
0.013



ENSG00000137075
RNF38
−1.38
0.014



ENSG00000100612
DHRS7
−0.72
0.014



ENSG00000198176
TFDP1
1.20
0.014



ENSG00000169967
MAP3K2
−1.06
0.015



ENSG00000233369

1.14
0.015



ENSG00000107937
GTPBP4
−1.16
0.017



ENSG00000035681
NSMAF
−1.46
0.018



ENSG00000111231
GPN3
−1.17
0.018



ENSG00000060688
SNRNP40
−0.81
0.019



ENSG00000206549
PRSS50
−2.05
0.020



ENSG00000172869
DMXL1
−0.88
0.021



ENSG00000070610
GBA2
0.78
0.021



ENSG00000143569
UBAP2L
0.73
0.022



ENSG00000136824
SMC2
1.04
0.022



ENSG00000163220
S100A9
−1.05
0.023



ENSG00000077380
DYNC1I2
0.62
0.023



ENSG00000151465
CDC123
−0.86
0.025



ENSG00000182463
TSHZ2
0.82
0.025



ENSG00000106211
HSPB1
0.61
0.025



ENSG00000122299
ZC3H7A
−0.67
0.026



ENSG00000112118
MCM3
−1.22
0.027



ENSG00000092964
DPYSL2
−1.70
0.027



ENSG00000144283
PKP4
1.04
0.028



ENSG00000134242
PTPN22
1.23
0.028



ENSG00000198467
TPM2
0.87
0.028



ENSG00000067704
IARS2
1.29
0.030



ENSG00000198502
HLA-DRB5
−1.52
0.030



ENSG00000114383
TUSC2
0.79
0.031



ENSG00000167414
GNG8
0.90
0.031



ENSG00000138029
HADHB
0.71
0.031



ENSG00000168944
CEP120
1.32
0.031



ENSG00000183401
CCDC159
−0.80
0.031



ENSG00000132950
ZMYM5
0.99
0.031



ENSG00000072518
MARK2
−0.85
0.032



ENSG00000060138
YBX3
0.71
0.032



ENSG00000231389
HLA-DPA1
−0.62
0.032



ENSG00000180370
PAK2
−0.67
0.033



ENSG00000165113
GKAP1
1.10
0.034



ENSG00000205744
DENND1C
−0.85
0.034



ENSG00000166938
DIS3L
−1.39
0.035



ENSG00000114316
USP4
−0.48
0.035



ENSG00000104660
LEPROTL1
−0.71
0.035



ENSG00000148248
SURF4
−0.81
0.036



ENSG00000213889
PPM1N
0.87
0.037



ENSG00000007168
PAFAH1B1
−0.63
0.037



ENSG00000185187
SIGIRR
−0.76
0.039



ENSG00000082397
EPB41L3
−0.99
0.039



ENSG00000083937
CHMP2B
−0.78
0.040



ENSG00000141644
MBD1
−0.79
0.040



ENSG00000198873
GRK5
0.54
0.041



ENSG00000049860
HEXB
−0.89
0.042



ENSG00000129071
MBD4
−0.63
0.043



ENSG00000138085
ATRAID
−0.56
0.043



ENSG00000131467
PSME3
−1.02
0.044



ENSG00000120688
WBP4
−0.55
0.045



ENSG00000118260
CREB1
−0.91
0.047



ENSG00000103544
C16orf62
−0.76
0.047



ENSG00000114867
EIF4G1
−0.51
0.047



ENSG00000106012
IQCE
1.06
0.048



ENSG00000117475
BLZF1
−0.97
0.048



ENSG00000075856
SART3
−0.69
0.049



ENSG00000107874
CUEDC2
−0.65
0.049



ENSG00000170525
PFKFB3
0.98
0.049



ENSG00000051382
PIK3CB
−0.73
0.050



ENSG00000131508
UBE2D2
−0.42
0.050



ENSG00000196975
ANXA4
0.64
0.051



ENSG00000196396
PTPN1
0.63
0.051



ENSG00000155729
KCTD18
−1.15
0.052



ENSG00000153066
TXNDC11
0.78
0.052



ENSG00000132305
IMMT
0.72
0.052



ENSG00000107077
KDM4C
−1.07
0.052



ENSG00000143546
S100A8
−0.85
0.053



ENSG00000163513
TGFBR2
−0.68
0.053



ENSG00000108344
PSMD3
−0.89
0.054



ENSG00000129103
SUMF2
0.81
0.054



ENSG00000179912
R3HDM2
−0.61
0.054



ENSG00000138767
CNOT6L
−0.65
0.054



ENSG00000076513
ANKRD13A
0.80
0.055



ENSG00000128708
HAT1
−0.69
0.055



ENSG00000101161
PRPF6
−0.70
0.055



ENSG00000140612
SEC11A
−0.69
0.055



ENSG00000138802
SEC24B
1.16
0.056



ENSG00000068028
RASSF1
−0.79
0.056



ENSG00000167996
FTH1
0.62
0.057



ENSG00000198336
MYL4
−1.50
0.057



ENSG00000160551
TAOK1
0.61
0.057



ENSG00000165949
IFI27
1.24
0.057



ENSG00000163221
S100A12
−0.98
0.057



ENSG00000103811
CTSH
−1.01
0.058



ENSG00000113240
CLK4
−0.82
0.059



ENSG00000126217
MCF2L
0.75
0.059



ENSG00000115020
PIKFYVE
−0.95
0.059



ENSG00000264538

−0.66
0.060



ENSG00000113312
TTC1
0.65
0.060



ENSG00000171206
TRIM8
−0.84
0.061



ENSG00000163781
TOPBP1
1.02
0.062



ENSG00000112234
FBXL4
0.85
0.063



ENSG00000178425
NT5DC1
−0.89
0.063



ENSG00000137100
DCTN3
0.67
0.064



ENSG00000109854
HTATIP2
0.68
0.064



ENSG00000179115
FARSA
−0.75
0.065



ENSG00000138434
SSFA2
0.54
0.065



ENSG00000101220
C20orf27
−0.60
0.065



ENSG00000135040
NAA35
−0.96
0.065



ENSG00000184203
PPP1R2
−0.51
0.066



ENSG00000182093
WRB
0.71
0.066



ENSG00000161813
LARP4
0.74
0.067



ENSG00000012124
CD22
−0.90
0.068



ENSG00000196407
THEM5
0.78
0.069



ENSG00000102145
GATA1
0.46
0.069



ENSG00000260017

0.75
0.070



ENSG00000172922
RNASEH2C
0.57
0.070



ENSG00000027075
PRKCH
−0.93
0.070



ENSG00000103005
USB1
0.62
0.071



ENSG00000138449
SLC40A1
−0.76
0.072



ENSG00000204428
LY6G5C
0.67
0.072



ENSG00000067334
DNTTIP2
−0.75
0.072



ENSG00000104133
SPG11
−0.76
0.073



ENSG00000125977
EIF2S2
0.47
0.073



ENSG00000171566
PLRG1
0.75
0.073



ENSG00000173852
DPY19L1
−1.19
0.074



ENSG00000109272
PF4V1
0.63
0.074



ENSG00000167261
DPEP2
−0.84
0.075



ENSG00000143553
SNAPIN
0.67
0.075



ENSG00000119900
OGFRL1
−0.61
0.075



ENSG00000132676
DAP3
−0.59
0.076



ENSG00000136044
APPL2
0.85
0.076



ENSG00000086189
DIMT1
−1.03
0.077



ENSG00000042493
CAPG
−0.78
0.077



ENSG00000130313
PGLS
−0.69
0.077



ENSG00000204209
DAXX
−0.49
0.077



ENSG00000055070
SZRD1
0.58
0.078



ENSG00000065518
NDUFB4
−0.47
0.078



ENSG00000102531
FNDC3A
−0.80
0.079



ENSG00000121879
PIK3CA
0.98
0.080



ENSG00000113387
SUB1
−0.40
0.080



ENSG00000141968
VAV1
0.71
0.081



ENSG00000109536
FRG1
−0.52
0.081



ENSG00000128915
NARG2
0.96
0.082



ENSG00000144802
NFKBIZ
1.20
0.082



ENSG00000089154
GCN1L1
−1.06
0.082



ENSG00000148481
FAM188A
1.07
0.083



ENSG00000023228
NDUFS1
−0.79
0.083



ENSG00000165629
ATP5C1
−0.35
0.084



ENSG00000135506
OS9
−0.56
0.084



ENSG00000109919
MTCH2
−0.52
0.085



ENSG00000026297
RNASET2
−0.57
0.086



ENSG00000166508
MCM7
−0.54
0.086



ENSG00000109113
RAB34
−0.68
0.086



ENSG00000102103
PQBP1
−0.61
0.086



ENSG00000184205
TSPYL2
0.70
0.087



ENSG00000105185
PDCD5
−0.66
0.087



ENSG00000109736
MFSD10
−0.65
0.087



ENSG00000161204
ABCF3
−0.79
0.087



ENSG00000159335
PTMS
0.47
0.087



ENSG00000145996
CDKAL1
0.88
0.087



ENSG00000100811
YY1
0.45
0.088



ENSG00000115234
SNX17
−0.36
0.088



ENSG00000151136
BTBD11
−1.63
0.088



ENSG00000169621
APLF
1.02
0.088



ENSG00000180190
TDRP
−0.80
0.089



ENSG00000100079
LGALS2
−1.06
0.089



ENSG00000167085
PHB
−0.71
0.089



ENSG00000013275
PSMC4
−0.46
0.091



ENSG00000159658
EFCAB14
−0.60
0.091



ENSG00000155366
RHOC
0.59
0.092



ENSG00000113013
HSPA9
−0.60
0.092



ENSG00000168090
COPS6
−0.45
0.092



ENSG00000133742
CA1
1.38
0.093



ENSG00000064687
ABCA7
−0.73
0.093



ENSG00000181704
YIPF6
0.62
0.093



ENSG00000169891
REPS2
−0.63
0.093



ENSG00000175567
UCP2
−0.44
0.093



ENSG00000223553
SMPD4P1
−1.25
0.093



ENSG00000164031
DNAJB14
−0.73
0.095



ENSG00000257261

0.80
0.095



ENSG00000036257
CUL3
−0.52
0.095



ENSG00000170315
UBB
0.60
0.095



ENSG00000143515
ATP8B2
−0.76
0.095



ENSG00000151893
CACUL1
−0.90
0.096



ENSG00000135930
EIF4E2
−0.64
0.096



ENSG00000100299
ARSA
0.55
0.097



ENSG00000127084
FGD3
−0.48
0.098



ENSG00000132842
AP3B1
0.58
0.098



ENSG00000109466
KLHL2
−0.97
0.099



ENSG00000167986
DDB1
0.67
0.099



ENSG00000108523
RNF167
−0.35
0.100



ENSG00000143149
ALDH9A1
−0.60
0.100



ENSG00000197555
SIPA1L1
−0.84
0.100



ENSG00000101335
MYL9
0.56
0.100



ENSG00000138757
G3BP2
−0.51
0.100



ENSG00000104960
PTOV1
0.52
0.100



ENSG00000130402
ACTN4
−0.65
0.101



ENSG00000163444
TMEM183A
0.48
0.101



ENSG00000136709
WDR33
−0.72
0.101



ENSG00000103342
GSPT1
0.75
0.102



ENSG00000115520
COQ10B
−0.75
0.102



ENSG00000237854
LINC00674
0.41
0.102



ENSG00000064225
ST3GAL6
−0.70
0.102



ENSG00000108582
CPD
−1.33
0.103



ENSG00000105404
RABAC1
0.44
0.103



ENSG00000113318
MSH3
0.65
0.103



ENSG00000196683
TOMM7
−0.56
0.103



ENSG00000092199
HNRNPC
−0.31
0.104



ENSG00000021574
SPAST
0.71
0.104



ENSG00000110711
AIP
−0.56
0.105



ENSG00000022277
RTFDC1
0.35
0.105



ENSG00000114439
BBX
0.38
0.106



ENSG00000035687
ADSS
−0.65
0.106



ENSG00000100353
EIF3D
−0.50
0.106



ENSG00000103202
NME4
0.53
0.107



ENSG00000183386
FHL3
0.70
0.107



ENSG00000240356
RPL23AP7
0.89
0.107



ENSG00000113269
RNF130
−0.33
0.107



ENSG00000130638
ATXN10
−0.51
0.107



ENSG00000215302

0.61
0.107



ENSG00000179051
RCC2
−0.76
0.108



ENSG00000236397
DDX11L2
0.76
0.108



ENSG00000183258
DDX41
0.49
0.109



ENSG00000122257
RBBP6
0.50
0.109



ENSG00000113638
TTC33
−0.61
0.110



ENSG00000141068
KSR1
0.60
0.110



ENSG00000110768
GTF2H1
0.73
0.110



ENSG00000070413
DGCR2
−0.63
0.111



ENSG00000033050
ABCF2
−0.91
0.111



ENSG00000111667
USP5
−0.72
0.111



ENSG00000163703
CRELD1
0.60
0.112



ENSG00000138031
ADCY3
−0.77
0.113



ENSG00000078747
ITCH
−0.63
0.113



ENSG00000160221
C21orf33
0.60
0.113



ENSG00000197386
HTT
0.46
0.113



ENSG00000085719
CPNE3
−0.66
0.114



ENSG00000185909
KLHDC8B
0.78
0.115



ENSG00000015133
CCDC88C
−0.47
0.115



ENSG00000184319
RPL23AP82
0.80
0.115



ENSG00000090905
TNRC6A
0.57
0.116



ENSG00000165169
DYNLT3
0.61
0.116



ENSG00000102908
NFAT5
−0.52
0.116



ENSG00000145685
LHFPL2
−0.96
0.116



ENSG00000108179
PPIF
0.51
0.117



ENSG00000102226
USP11
−0.46
0.117



ENSG00000178537
SLC25A20
−0.69
0.117



ENSG00000109685
WHSC1
0.66
0.118



ENSG00000112159
MDN1
−0.79
0.118



ENSG00000165119
HNRNPK
−0.41
0.119



ENSG00000054523
KIF1B
−0.78
0.119



ENSG00000107262
BAG1
0.38
0.120



ENSG00000034053
APBA2
−0.96
0.120



ENSG00000080189
SLC35C2
0.50
0.120



ENSG00000143033
MTF2
−0.63
0.121



ENSG00000053900
ANAPC4
−0.84
0.121



ENSG00000130706
ADRM1
0.42
0.121



ENSG00000172046
USP19
−0.72
0.121



ENSG00000133302
ANKRD32
−0.45
0.122



ENSG00000100997
ABHD12
0.57
0.122



ENSG00000139168
ZCRB1
−0.46
0.123



ENSG00000136527
TRA2B
0.37
0.123



ENSG00000067208
EVI5
0.79
0.123



ENSG00000239839
DEFA3
1.07
0.123



ENSG00000140264
SERF2
0.54
0.123



ENSG00000226824

0.98
0.124



ENSG00000160710
ADAR
−0.62
0.124



ENSG00000117450
PRDX1
−0.51
0.124



ENSG00000164975
SNAPC3
−0.74
0.124



ENSG00000147874
HAUS6
−0.73
0.125



ENSG00000106245
BUD31
0.44
0.125



ENSG00000130935
NOL11
0.85
0.125



ENSG00000008018
PSMB1
−0.51
0.125



ENSG00000124491
F13A1
−0.67
0.126



ENSG00000136732
GYPC
0.70
0.126



ENSG00000107959
PITRM1
−0.61
0.127



ENSG00000198833
UBE2J1
−0.54
0.127



ENSG00000135387
CAPRIN1
0.69
0.128



ENSG00000136381
IREB2
1.01
0.128



ENSG00000111796
KLRB1
−0.52
0.128



ENSG00000175582
RAB6A
−0.58
0.128



ENSG00000006712
PAF1
−0.57
0.129



ENSG00000137804
NUSAP1
0.78
0.129



ENSG00000140368
PSTPIP1
−0.64
0.129



ENSG00000131652
THOC6
−0.73
0.129



ENSG00000132970
WASF3
−0.64
0.130



ENSG00000079277
MKNK1
0.55
0.132



ENSG00000047249
ATP6V1H
−0.64
0.132



ENSG00000119314
PTBP3
−0.69
0.133



ENSG00000066027
PPP2R5A
−0.40
0.134



ENSG00000106605
BLVRA
−0.70
0.134



ENSG00000107175
CREB3
0.70
0.134



ENSG00000166979
EVA1C
0.54
0.135



ENSG00000112303
VNN2
−0.89
0.136



ENSG00000136819
C9orf78
0.45
0.136



ENSG00000138663
COPS4
0.51
0.137



ENSG00000090487
SPG21
−0.43
0.137



ENSG00000155508
CNOT8
0.53
0.137



ENSG00000167522
ANKRD11
−0.34
0.137



ENSG00000117528
ABCD3
1.03
0.138



ENSG00000003402
CFLAR
0.34
0.138



ENSG00000166266
CUL5
−0.60
0.139



ENSG00000175193
PARL
−0.60
0.139



ENSG00000169727
GPS1
0.57
0.139



ENSG00000211456
SACM1L
−0.56
0.139



ENSG00000176542
KIAA2018
0.54
0.140



ENSG00000135723
FHOD1
−0.62
0.140



ENSG00000125351
UPF3B
0.66
0.140



ENSG00000135269
TES
−0.55
0.140



ENSG00000131373
HACL1
0.75
0.141



ENSG00000105438
KDELR1
−0.47
0.141



ENSG00000135913
USP37
0.93
0.141



ENSG00000131748
STARD3
−0.49
0.143



ENSG00000183576
SETD3
−0.40
0.143



ENSG00000164961
KIAA0196
−0.94
0.143



ENSG00000151779
NBAS
−0.37
0.143



ENSG00000118507
AKAP7
−0.53
0.143



ENSG00000136522
MRPL47
−0.53
0.144



ENSG00000136631
VPS45
0.70
0.144



ENSG00000102786
INTS6
−0.60
0.145



ENSG00000137947
GTF2B
0.45
0.145



ENSG00000197858
GPAA1
−0.41
0.145



ENSG00000147535
PPAPDC1B
0.48
0.145



ENSG00000157601
MX1
0.74
0.145



ENSG00000100596
SPTLC2
0.62
0.146



ENSG00000170004
CHD3
−0.41
0.146



ENSG00000153250
RBMS1
−0.45
0.146



ENSG00000164307
ERAP1
−0.77
0.146



ENSG00000131725
WDR44
−0.57
0.146



ENSG00000166128
RAB8B
−0.47
0.147



ENSG00000140694
PARN
−0.68
0.147



ENSG00000170581
STAT2
0.84
0.148



ENSG00000104522
TSTA3
0.42
0.149



ENSG00000108349
CASC3
−0.65
0.149



ENSG00000132965
ALOX5AP
−0.54
0.150



ENSG00000156587
UBE2L6
−0.44
0.150



ENSG00000100100
PIK3IP1
0.87
0.151



ENSG00000126934
MAP2K2
−0.33
0.151



ENSG00000135940
COX5B
−0.35
0.151



ENSG00000178950
GAK
0.45
0.151



ENSG00000018699
TTC27
−0.92
0.151



ENSG00000087502
ERGIC2
−0.53
0.152



ENSG00000143545
RAB13
0.44
0.152



ENSG00000103657
HERC1
−0.35
0.152



ENSG00000074842
C19orf10
−0.58
0.152



ENSG00000079616
KIF22
−0.55
0.152



ENSG00000169826
CSGALNACT2
0.67
0.152



ENSG00000172661
FAM21C
0.48
0.153



ENSG00000161638
ITGA5
0.80
0.153



ENSG00000134294
SLC38A2
−0.81
0.153



ENSG00000172572
PDE3A
−0.95
0.153



ENSG00000174442
ZWILCH
1.10
0.153



ENSG00000106537
TSPAN13
−0.73
0.153



ENSG00000168785
TSPAN5
0.69
0.153



ENSG00000108384
RAD51C
−0.66
0.153



ENSG00000196230
TUBB
−0.55
0.155



ENSG00000101294
HM13
−0.65
0.155



ENSG00000135624
CCT7
−0.43
0.155



ENSG00000177030
DEAF1
0.66
0.155



ENSG00000110321
EIF4G2
−0.46
0.155



ENSG00000132300
PTCD3
−0.78
0.155



ENSG00000114446
IFT57
−0.70
0.155



ENSG00000102710
SUPT20H
−0.58
0.156



ENSG00000115919
KYNU
0.79
0.156



ENSG00000138378
STAT4
0.65
0.156



ENSG00000152234
ATP5A1
−0.38
0.156



ENSG00000182923
CEP63
−0.52
0.156



ENSG00000198130
HIBCH
−0.67
0.156



ENSG00000124302
CHST8
−0.72
0.157



ENSG00000130734
ATG4D
0.58
0.157



ENSG00000008952
SEC62
0.29
0.157



ENSG00000111906
HDDC2
−0.59
0.158



ENSG00000176986
SEC24C
−0.73
0.158



ENSG00000160446
ZDHHC12
0.39
0.159



ENSG00000198055
GRK6
−0.34
0.159



ENSG00000142694
EVA1B
0.58
0.159



ENSG00000144579
CTDSP1
0.46
0.159



ENSG00000013306
SLC25A39
0.63
0.159



ENSG00000253819
LINC01151
0.46
0.160



ENSG00000133193
FAM104A
0.45
0.160



ENSG00000126698
DNAJC8
−0.29
0.160



ENSG00000198814
GK
0.48
0.161



ENSG00000171055
FEZ2
0.45
0.161



ENSG00000122986
HVCN1
−0.67
0.161



ENSG00000185507
IRF7
0.59
0.161



ENSG00000204472
AIF1
−0.53
0.161



ENSG00000149187
CELF1
0.72
0.162



ENSG00000013364
MVP
−0.54
0.162



ENSG00000112893
MAN2A1
0.43
0.162



ENSG00000162688
AGL
0.87
0.164



ENSG00000131100
ATP6V1E1
0.36
0.164



ENSG00000158552
ZFAND2B
0.35
0.165



ENSG00000011260
UTP18
−0.44
0.165



ENSG00000160190
SLC37A1
−0.58
0.165



ENSG00000164032
H2AFZ
0.41
0.165



ENSG00000136807
CDK9
0.52
0.165



ENSG00000125844
RRBP1
−0.60
0.166



ENSG00000159023
EPB41
0.42
0.166



ENSG00000116678
LEPR
−0.60
0.166



ENSG00000133318
RTN3
−0.48
0.167



ENSG00000077097
TOP2B
−0.36
0.167



ENSG00000107890
ANKRD26
0.75
0.167



ENSG00000197771
MCMBP
−0.60
0.167



ENSG00000129562
DAD1
0.39
0.169



ENSG00000116717
GADD45A
0.55
0.169



ENSG00000125779
PANK2
−0.43
0.169



ENSG00000211899
IGHM
−0.51
0.169



ENSG00000150316
CWC15
−0.48
0.169



ENSG00000125970
RALY
0.28
0.169



ENSG00000175756
AURKAIP1
−0.41
0.169



ENSG00000180776
ZDHHC20
−0.70
0.170



ENSG00000125124
BBS2
−0.69
0.170



ENSG00000033170
FUT8
−0.48
0.170



ENSG00000134265
NAPG
0.54
0.170



ENSG00000144381
HSPD1
−0.50
0.171



ENSG00000137628
DDX60
0.64
0.171



ENSG00000088992
TESC
−0.46
0.173



ENSG00000131795
RBM8A
−0.42
0.173



ENSG00000134516
DOCK2
−0.45
0.173



ENSG00000198301
SDAD1
−0.59
0.173



ENSG00000116962
NID1
−1.01
0.173



ENSG00000170471
RALGAPB
0.71
0.173



ENSG00000164934
DCAF13
−0.67
0.174



ENSG00000124784
RIOK1
−0.68
0.174



ENSG00000175471
MCTP1
−0.47
0.174



ENSG00000167641
PPP1R14A
0.47
0.174



ENSG00000165732
DDX21
0.42
0.175



ENSG00000173692
PSMD1
−0.38
0.175



ENSG00000101079
NDRG3
−0.72
0.176



ENSG00000082805
ERC1
0.65
0.176



ENSG00000120063
GNA13
−0.61
0.176



ENSG00000104998
IL27RA
−0.51
0.176



ENSG00000132589
FLOT2
0.41
0.176



ENSG00000086666
ZFAND6
0.41
0.176



ENSG00000117360
PRPF3
0.59
0.176



ENSG00000140455
USP3
−0.51
0.176



ENSG00000136319
TTC5
−0.75
0.177



ENSG00000133246
PRAM1
−0.62
0.177



ENSG00000120129
DUSP1
0.76
0.177



ENSG00000197969
VPS13A
−0.41
0.178



ENSG00000100097
LGALS1
−0.44
0.178



ENSG00000083457
ITGAE
0.51
0.179



ENSG00000172965
MIR4435-1HG
0.35
0.179



ENSG00000135605
TEC
0.74
0.179



ENSG00000108604
SMARCD2
−0.48
0.179



ENSG00000115966
ATF2
−0.57
0.180



ENSG00000106028
SSBP1
−0.45
0.180



ENSG00000030582
GRN
−0.48
0.180



ENSG00000125868
DSTN
0.40
0.180



ENSG00000116586
LAMTOR2
−0.37
0.180



ENSG00000118564
FBXL5
0.47
0.181



ENSG00000177370
TIMM22
0.52
0.181



ENSG00000142794
NBPF3
0.78
0.182



ENSG00000101940
WDR13
0.32
0.182



ENSG00000117748
RPA2
0.50
0.182



ENSG00000139083
ETV6
0.43
0.183



ENSG00000023287
RB1CC1
0.44
0.183



ENSG00000143641
GALNT2
0.60
0.183



ENSG00000102897
LYRM1
0.55
0.183



ENSG00000114331
ACAP2
−0.37
0.183



ENSG00000115875
SRSF7
−0.49
0.183



ENSG00000092439
TRPM7
−0.57
0.184



ENSG00000015153
YAF2
0.58
0.185



ENSG00000092203
TOX4
−0.40
0.186



ENSG00000135070
ISCA1
0.50
0.186



ENSG00000101158
NELFCD
0.41
0.186



ENSG00000136490
LIMD2
−0.45
0.187



ENSG00000138834
MAPK8IP3
−0.64
0.187



ENSG00000164543
STK17A
0.39
0.187



ENSG00000068400
GRIPAP1
−0.32
0.187



ENSG00000140395
WDR61
−0.55
0.187



ENSG00000166311
SMPD1
0.51
0.188



ENSG00000086758
HUWE1
−0.42
0.188



ENSG00000196591
HDAC2
0.38
0.188



ENSG00000114861
FOXP1
0.37
0.189



ENSG00000197111
PCBP2
0.30
0.189



ENSG00000081087
OSTM1
−0.59
0.189



ENSG00000080371
RAB21
−0.57
0.189



ENSG00000116984
MTR
−0.47
0.189



ENSG00000151651
ADAM8
−0.60
0.189



ENSG00000103051
COG4
−0.62
0.189



ENSG00000100359
SGSM3
−0.38
0.189



ENSG00000081377
CDC14B
−0.54
0.190



ENSG00000129925
TMEM8A
0.44
0.190



ENSG00000106771
TMEM245
0.77
0.190



ENSG00000255079

−0.57
0.191



ENSG00000182551
ADI1
−0.42
0.191



ENSG00000119203
CPSF3
−0.64
0.191



ENSG00000078596
ITM2A
−0.41
0.191



ENSG00000074706
IPCEF1
0.52
0.192



ENSG00000198356
ASNA1
0.36
0.192



ENSG00000117505
DR1
−0.47
0.192



ENSG00000146918
NCAPG2
−0.73
0.193



ENSG00000234456
MAGI2-AS3
0.70
0.193



ENSG00000163931
TKT
−0.51
0.193



ENSG00000153786
ZDHHC7
−0.67
0.194



ENSG00000156170
NDUFAF6
−0.53
0.194



ENSG00000229474
PATL2
−0.50
0.195



ENSG00000170776
AKAP13
−0.37
0.195



ENSG00000092847
AGO1
−0.83
0.195



ENSG00000160703
NLRX1
−0.67
0.195



ENSG00000101162
TUBB1
−0.52
0.196



ENSG00000186314
PRELID2
0.69
0.196



ENSG00000133106
EPSTI1
0.36
0.197



ENSG00000260032
LINC00657
0.52
0.197



ENSG00000100365
NCF4
−0.49
0.197



ENSG00000080815
PSEN1
0.75
0.198



ENSG00000167210
LOXHD1
−0.61
0.198



ENSG00000104946
TBC1D17
−0.49
0.198



ENSG00000117676
RPS6KA1
−0.57
0.199



ENSG00000090054
SPTLC1
0.71
0.199



ENSG00000074054
CLASP1
0.68
0.199



ENSG00000084090
STARD7
−0.63
0.200



ENSG00000188906
LRRK2
0.75
0.200



ENSG00000130826
DKC1
−0.61
0.200



ENSG00000091640
SPAG7
−0.45
0.201



ENSG00000163412
EIF4E3
−0.57
0.201



ENSG00000138073
PREB
−0.53
0.201



ENSG00000138768
USO1
−0.50
0.202



ENSG00000012223
LTF
−0.98
0.202



ENSG00000136167
LCP1
−0.41
0.202



ENSG00000138709
LARP1B
−0.39
0.203






















TABLE 2







Ensembl_gene_id
hgnc_symbol
logFC
FDR





















ENSG00000023191
RNH1
0.73
0.000



ENSG00000172757
CFL1
0.79
0.000



ENSG00000097021
ACOT7
1.10
0.000



ENSG00000147099
HDAC8
−1.14
0.000



ENSG00000142089
IFITM3
1.61
0.000



ENSG00000130429
ARPC1B
0.85
0.000



ENSG00000156738
MS4A1
−2.57
0.000



ENSG00000213465
ARL2
1.10
0.000



ENSG00000067365
METTL22
1.10
0.000



ENSG00000116221
MRPL37
1.06
0.000



ENSG00000141068
KSR1
−1.66
0.000



ENSG00000188191
PRKAR1B
1.06
0.000



ENSG00000185825
BCAP31
0.65
0.000



ENSG00000109854
HTATIP2
1.00
0.000



ENSG00000211899
IGHM
−1.92
0.000



ENSG00000074695
LMAN1
0.84
0.000



ENSG00000102265
TIMP1
0.87
0.000



ENSG00000125868
DSTN
0.71
0.000



ENSG00000168002
POLR2G
0.70
0.000



ENSG00000161547
SRSF2
0.88
0.000



ENSG00000068308
OTUD5
0.62
0.000



ENSG00000126247
CAPNS1
0.75
0.000



ENSG00000173812
EIF1
0.73
0.000



ENSG00000244734
HBB
−2.45
0.000



ENSG00000136938
ANP32B
0.91
0.000



ENSG00000075945
KIFAP3
0.84
0.000



ENSG00000178057
NDUFAF3
0.74
0.000



ENSG00000177556
ATOX1
1.09
0.000



ENSG00000099817
POLR2E
0.69
0.000



ENSG00000019582
CD74
−1.28
0.000



ENSG00000159335
PTMS
0.89
0.000



ENSG00000113761
ZNF346
1.59
0.000



ENSG00000155366
RHOC
0.73
0.000



ENSG00000114942
EEF1B2
−1.01
0.000



ENSG00000198467
TPM2
1.35
0.000



ENSG00000105220
GPI
0.66
0.000



ENSG00000168765
GSTM4
0.82
0.000



ENSG00000128245
YWHAH
0.65
0.000



ENSG00000143149
ALDH9A1
0.66
0.000



ENSG00000042753
AP2S1
0.67
0.000



ENSG00000187109
NAP1L1
0.70
0.000



ENSG00000083845
RPS5
−1.26
0.000



ENSG00000100418
DESI1
0.87
0.000



ENSG00000173083
HPSE
1.23
0.000



ENSG00000143198
MGST3
0.64
0.000



ENSG00000069535
MAOB
1.47
0.000



ENSG00000104324
CPQ
0.72
0.000



ENSG00000166091
CMTM5
0.75
0.000



ENSG00000184009
ACTG1
0.53
0.000



ENSG00000185909
KLHDC8B
1.15
0.000



ENSG00000136003
ISCU
0.64
0.000



ENSG00000105401
CDC37
0.58
0.000



ENSG00000108654
DDX5
−1.06
0.000



ENSG00000106211
HSPB1
0.88
0.000



ENSG00000086506
HBQ1
0.99
0.000



ENSG00000105887
MTPN
0.65
0.000



ENSG00000140416
TPM1
0.63
0.000



ENSG00000204287
HLA-DRA
−1.38
0.000



ENSG00000160446
ZDHHC12
0.61
0.000



ENSG00000126432
PRDX5
0.53
0.000



ENSG00000005961
ITGA2B
0.70
0.000



ENSG00000105711
SCN1B
0.73
0.000



ENSG00000206549
PRSS50
1.80
0.000



ENSG00000112335
SNX3
0.49
0.000



ENSG00000198168
SVIP
0.71
0.000



ENSG00000171159
C9orf16
0.68
0.000



ENSG00000143226
FCGR2A
0.82
0.000



ENSG00000106537
TSPAN13
0.91
0.000



ENSG00000167100
SAMD14
0.89
0.000



ENSG00000111348
ARHGDIB
0.47
0.000



ENSG00000095585
BLNK
−1.68
0.000



ENSG00000128272
ATF4
0.57
0.000



ENSG00000165775
FUNDC2
0.53
0.000



ENSG00000106244
PDAP1
0.54
0.000



ENSG00000124486
USP9X
−1.08
0.000



ENSG00000135334
AKIRIN2
0.58
0.000



ENSG00000233276
GPX1
0.57
0.000



ENSG00000167645
YIF1B
0.59
0.000



ENSG00000102172
SMS
0.52
0.000



ENSG00000013306
SLC25A39
−1.34
0.000



ENSG00000163041
H3F3A
0.73
0.000



ENSG00000162894
FAIM3
−1.64
0.000



ENSG00000112977
DAP
0.68
0.000



ENSG00000106565
TMEM176B
−2.34
0.000



ENSG00000053371
AKR7A2
0.86
0.000



ENSG00000087237
CETP
0.70
0.000



ENSG00000163466
ARPC2
0.32
0.000



ENSG00000166848
TERF2IP
0.46
0.000



ENSG00000100906
NFKBIA
−1.30
0.000



ENSG00000101940
WDR13
0.44
0.000



ENSG00000176407
KCMF1
0.55
0.000



ENSG00000144381
HSPD1
−1.00
0.000



ENSG00000131401
NAPSB
−1.53
0.000



ENSG00000197858
GPAA1
0.63
0.001



ENSG00000160789
LMNA
0.48
0.001



ENSG00000144560
VGLL4
0.59
0.001



ENSG00000147454
SLC25A37
−1.35
0.001



ENSG00000101439
CST3
0.47
0.001



ENSG00000096384
HSP90AB1
−0.81
0.001



ENSG00000006125
AP2B1
0.54
0.001



ENSG00000101460
MAP1LC3A
0.86
0.001



ENSG00000168374
ARF4
0.47
0.001



ENSG00000168918
INPP5D
−1.31
0.001



ENSG00000007312
CD79B
−1.75
0.001



ENSG00000147206
NXF3
1.11
0.001



ENSG00000152952
PLOD2
0.61
0.001



ENSG00000174915
PTDSS2
0.76
0.001



ENSG00000104341
LAPTM4B
0.66
0.001



ENSG00000196154
S100A4
−0.97
0.001



ENSG00000145088
EAF2
−0.75
0.001



ENSG00000126267
COX6B1
0.46
0.001



ENSG00000198034
RPS4X
−0.76
0.001



ENSG00000143761
ARF1
0.41
0.001



ENSG00000105193
RPS16
−0.85
0.001



ENSG00000249684

0.87
0.001



ENSG00000158062
UBXN11
0.61
0.001



ENSG00000107341
UBE2R2
0.47
0.001



ENSG00000116288
PARK7
0.48
0.001



ENSG00000021776
AQR
−1.31
0.001



ENSG00000064601
CTSA
0.46
0.001



ENSG00000161911
TREML1
0.48
0.001



ENSG00000188404
SELL
−1.09
0.002



ENSG00000111640
GAPDH
0.40
0.002



ENSG00000180596
HIST1H2BC
0.60
0.002



ENSG00000130592
LSP1
−0.80
0.002



ENSG00000198668
CALM1
0.42
0.002



ENSG00000244509
APOBEC3C
0.39
0.002



ENSG00000113732
ATP6V0E1
0.40
0.002



ENSG00000196531
NACA
−0.61
0.002



ENSG00000149476
DAK
0.67
0.002



ENSG00000214941
ZSWIM7
0.48
0.002



ENSG00000119705
SLIRP
−1.10
0.002



ENSG00000255002

1.36
0.002



ENSG00000125354
SEPT6
0.37
0.002



ENSG00000169100
SLC25A6
−0.67
0.002



ENSG00000166311
SMPD1
0.83
0.002



ENSG00000117691
NENF
0.51
0.002



ENSG00000112799
LY86
−1.01
0.003



ENSG00000146247
PHIP
−0.48
0.003



ENSG00000142168
SOD1
0.37
0.003



ENSG00000117118
SDHB
−0.90
0.003



ENSG00000084207
GSTP1
−0.60
0.003



ENSG00000178980
SEPW1
0.44
0.003



ENSG00000148346
LCN2
0.59
0.003



ENSG00000107816
LZTS2
0.63
0.003



ENSG00000102901
CENPT
0.40
0.003



ENSG00000172795
DCP2
0.58
0.003



ENSG00000206503
HLA-A
0.64
0.003



ENSG00000167674

0.64
0.003



ENSG00000067082
KLF6
−0.61
0.003



ENSG00000160991
ORAI2
0.49
0.003



ENSG00000204308
RNF5
0.39
0.004



ENSG00000125870
SNRPB2
−0.67
0.004



ENSG00000159363
ATP13A2
0.70
0.004



ENSG00000169057
MECP2
0.49
0.004



ENSG00000145979
TBC1D7
0.75
0.004



ENSG00000109971
HSPA8
−0.66
0.004



ENSG00000140968
IRF8
−1.23
0.004



ENSG00000073009
IKBKG
0.47
0.004



ENSG00000211895
IGHA1
−1.25
0.004



ENSG00000102898
NUTF2
0.42
0.004



ENSG00000140854
KATNB1
0.45
0.004



ENSG00000136490
LIMD2
−0.72
0.004



ENSG00000128731
HERC2
0.58
0.005



ENSG00000167460
TPM4
0.40
0.005



ENSG00000180879
SSR4
0.40
0.005



ENSG00000134297
PLEKHA8P1
0.51
0.005



ENSG00000213445
SIPA1
−0.72
0.005



ENSG00000118508
RAB32
0.38
0.005



ENSG00000100280
AP1B1
0.63
0.005



ENSG00000145287
PLAC8
−0.78
0.005



ENSG00000147526
TACC1
0.40
0.005



ENSG00000123908
AGO2
0.83
0.005



ENSG00000105677
TMEM147
−1.00
0.005



ENSG00000100453
GZMB
−1.07
0.005



ENSG00000100353
EIF3D
−0.69
0.005



ENSG00000149100
EIF3M
−0.73
0.006



ENSG00000152795
HNRNPDL
−0.85
0.006



ENSG00000102781
KATNAL1
0.86
0.006



ENSG00000138376
BARD1
0.63
0.006



ENSG00000182087
TMEM259
−0.77
0.006



ENSG00000141030
COPS3
0.39
0.006



ENSG00000101412
E2F1
0.84
0.006



ENSG00000156639
ZFAND3
0.57
0.006



ENSG00000143110
C1orf162
−0.89
0.006



ENSG00000196405
EVL
0.41
0.006



ENSG00000236875
DDX11L5
−0.69
0.007



ENSG00000126457
PRMT1
−0.63
0.007



ENSG00000084093
REST
−0.35
0.007



ENSG00000134440
NARS
−0.69
0.007



ENSG00000125107
CNOT1
−0.76
0.007



ENSG00000156256
USP16
−0.78
0.007



ENSG00000171700
RGS19
−0.81
0.007



ENSG00000163344
PMVK
0.52
0.007



ENSG00000149925
ALDOA
0.42
0.007



ENSG00000142634
EFHD2
−0.79
0.007



ENSG00000129083
COPB1
−0.69
0.007



ENSG00000181704
YIPF6
0.45
0.007



ENSG00000070182
SPTB
0.54
0.008



ENSG00000089327
FXYD5
0.37
0.008



ENSG00000091140
DLD
−0.93
0.008



ENSG00000114383
TUSC2
0.47
0.008



ENSG00000163479
SSR2
−0.77
0.008



ENSG00000107099
DOCK8
−0.80
0.008



ENSG00000127084
FGD3
−0.66
0.008



ENSG00000133030
MPRIP
0.58
0.008



ENSG00000089693
MLF2
−0.64
0.008



ENSG00000158019
BRE
0.37
0.008



ENSG00000163110
PDLIM5
0.46
0.008



ENSG00000154146
NRGN
0.49
0.008



ENSG00000123338
NCKAP1L
−1.06
0.009



ENSG00000131795
RBM8A
−0.55
0.009



ENSG00000104805
NUCB1
0.43
0.009



ENSG00000069493
CLEC2D
−1.13
0.009



ENSG00000125347
IRF1
−0.94
0.009



ENSG00000172057
ORMDL3
0.47
0.009



ENSG00000166452
AKIP1
0.43
0.009



ENSG00000072778
ACADVL
0.37
0.009



ENSG00000125503
PPP1R12C
0.54
0.009



ENSG00000196565
HBG2
1.49
0.009



ENSG00000198791
CNOT7
−0.52
0.009



ENSG00000247774
PCED1B-AS1
−0.92
0.010



ENSG00000044574
HSPA5
−1.11
0.010



ENSG00000104522
TSTA3
0.59
0.010



ENSG00000110852
CLEC2B
−1.02
0.010



ENSG00000088726
TMEM40
0.39
0.010



ENSG00000103769
RAB11A
0.42
0.010



ENSG00000149806
FAU
−0.48
0.010



ENSG00000138468
SENP7
−0.60
0.010



ENSG00000077984
CST7
0.88
0.010



ENSG00000154518
ATP5G3
−0.65
0.010



ENSG00000162819
BROX
0.57
0.010



ENSG00000220804

0.51
0.011



ENSG00000165494
PCF11
−0.96
0.011



ENSG00000143549
TPM3
0.29
0.011



ENSG00000103148
NPRL3
0.52
0.011



ENSG00000130726
TRIM28
−0.52
0.011



ENSG00000196954
CASP4
0.37
0.011



ENSG00000185507
IRF7
−0.86
0.011



ENSG00000113460
BRIX1
−1.08
0.011



ENSG00000140931
CMTM3
0.36
0.011



ENSG00000127527
EPS15L1
0.37
0.011



ENSG00000196396
PTPN1
0.47
0.011



ENSG00000196611
MMP1
0.90
0.011



ENSG00000173221
GLRX
−0.90
0.012



ENSG00000111581
NUP107
−0.93
0.012



ENSG00000156110
ADK
−0.89
0.012



ENSG00000140022
STON2
0.42
0.012



ENSG00000159753
RLTPR
−1.36
0.012



ENSG00000132965
ALOX5AP
−1.06
0.012



ENSG00000175221
MED16
0.52
0.012



ENSG00000185624
P4HB
0.40
0.012



ENSG00000152127
MGAT5
0.75
0.012



ENSG00000129292
PHF20L1
0.32
0.012



ENSG00000172322
CLEC12A
−1.45
0.012



ENSG00000117289
TXNIP
−0.58
0.012



ENSG00000106635
BCL7B
0.34
0.012



ENSG00000163359
COL6A3
0.83
0.012



ENSG00000169230
PRELID1
−0.67
0.013



ENSG00000102879
CORO1A
−0.57
0.013



ENSG00000013441
CLK1
−0.77
0.013



ENSG00000100129
EIF3L
−0.65
0.013



ENSG00000167996
FTH1
0.49
0.013



ENSG00000156304
SCAF4
−0.77
0.013



ENSG00000104903
LYL1
0.38
0.013



ENSG00000147162
OGT
−1.28
0.014



ENSG00000137710
RDX
0.46
0.014



ENSG00000011198
ABHD5
0.50
0.014



ENSG00000107438
PDLIM1
0.34
0.014



ENSG00000214026
MRPL23
−0.70
0.014



ENSG00000134516
DOCK2
−0.95
0.014



ENSG00000169718
DUS1L
−0.79
0.014



ENSG00000107021
TBC1D13
0.53
0.014



ENSG00000130638
ATXN10
−0.48
0.015



ENSG00000075142
SRI
−0.72
0.015



ENSG00000129968
ABHD17A
0.33
0.015



ENSG00000130303
BST2
−0.90
0.015



ENSG00000134480
CCNH
−0.60
0.015



ENSG00000233093
LINC00892
0.56
0.015



ENSG00000163660
CCNL1
−1.04
0.015



ENSG00000003436
TFPI
0.42
0.015



ENSG00000114784
EIF1B
0.37
0.015



ENSG00000204482
LST1
−0.64
0.015



ENSG00000167110
GOLGA2
0.37
0.015



ENSG00000197766
CFD
−1.37
0.015



ENSG00000160255
ITGB2
−0.97
0.015



ENSG00000143977
SNRPG
−0.69
0.016



ENSG00000117091
CD48
−0.88
0.016



ENSG00000141027
NCOR1
0.28
0.016



ENSG00000087206
UIMC1
0.30
0.016



ENSG00000163382
APOA1BP
−0.86
0.016



ENSG00000163930
BAP1
0.51
0.016



ENSG00000101161
PRPF6
−0.68
0.016



ENSG00000147471
PROSC
−0.67
0.016



ENSG00000139278
GLIPR1
−1.28
0.016



ENSG00000034152
MAP2K3
0.35
0.016



ENSG00000158856
DMTN
0.53
0.017



ENSG00000113328
CCNG1
0.37
0.017



ENSG00000162191
UBXN1
−0.50
0.017



ENSG00000136167
LCP1
−0.69
0.017



ENSG00000057663
ATG5
−0.82
0.017



ENSG00000034713
GABARAPL2
0.34
0.017



ENSG00000176783
RUFY1
0.45
0.017



ENSG00000234745
HLA-B
0.44
0.017



ENSG00000206560
ANKRD28
−0.57
0.017



ENSG00000132824
SERINC3
0.29
0.018



ENSG00000100664
EIF5
0.31
0.018



ENSG00000116670
MAD2L2
−0.98
0.018



ENSG00000134758
RNF138
−0.64
0.018



ENSG00000154473
BUB3
−0.53
0.018



ENSG00000104915
STX10
−0.53
0.018



ENSG00000164754
RAD21
0.41
0.018



ENSG00000141401
IMPA2
0.72
0.018



ENSG00000084463
WBP11
−0.40
0.018



ENSG00000248636

0.49
0.018



ENSG00000272168
CASC15
0.52
0.019



ENSG00000113384
GOLPH3
−0.50
0.019



ENSG00000158710
TAGLN2
0.35
0.019



ENSG00000235162
C12orf75
0.44
0.019



ENSG00000143621
ILF2
−0.78
0.019



ENSG00000178105
DDX10
−0.67
0.019



ENSG00000163875
MEAF6
−0.46
0.019



ENSG00000074800
ENO1
0.27
0.019



ENSG00000197956
S100A6
−0.66
0.019



ENSG00000089009
RPL6
−0.57
0.019



ENSG00000140307
GTF2A2
0.50
0.019



ENSG00000161999
JMJD8
0.51
0.019



ENSG00000198821
CD247
−0.95
0.019



ENSG00000198160
MIER1
0.44
0.019



ENSG00000154001
PPP2R5E
−0.62
0.019



ENSG00000005022
SLC25A5
−0.38
0.020



ENSG00000157045
NTAN1
0.33
0.020



ENSG00000184014
DENND5A
−0.95
0.020



ENSG00000143933
CALM2
0.29
0.020



ENSG00000055163
CYFIP2
−0.68
0.020



ENSG00000172183
ISG20
−0.70
0.020



ENSG00000130024
PHF10
−0.70
0.020



ENSG00000023902
PLEKHO1
0.34
0.020



ENSG00000102145
GATA1
0.39
0.020



ENSG00000140386
SCAPER
−0.78
0.020



ENSG00000180353
HCLS1
−0.59
0.020



ENSG00000143924
EML4
−0.70
0.020



ENSG00000144677
CTDSPL
0.33
0.020



ENSG00000110077
MS4A6A
−1.31
0.020



ENSG00000113269
RNF130
−0.26
0.020



ENSG00000144283
PKP4
0.61
0.021



ENSG00000026508
CD44
−0.74
0.021



ENSG00000176986
SEC24C
−1.07
0.021



ENSG00000163931
TKT
−0.67
0.021



ENSG00000085117
CD82
0.36
0.021



ENSG00000189403
HMGB1
0.33
0.021



ENSG00000124383
MPHOSPH10
−0.90
0.021



ENSG00000132334
PTPRE
−0.94
0.021



ENSG00000150316
CWC15
−0.57
0.021



ENSG00000101236
RNF24
0.33
0.022



ENSG00000072818
ACAP1
−0.82
0.022



ENSG00000147274
RBMX
−0.60
0.022



ENSG00000178982
EIF3K
−0.54
0.022



ENSG00000065809
FAM107B
−0.32
0.023



ENSG00000134444
KIAA1468
−0.82
0.023



ENSG00000143537
ADAM15
−1.41
0.023



ENSG00000196914
ARHGEF12
0.44
0.023



ENSG00000101361
NOP56
−0.80
0.023



ENSG00000167699
GLOD4
−0.74
0.023



ENSG00000105926
MPP6
0.50
0.023



ENSG00000168028
RPSA
−0.55
0.024



ENSG00000119004
CYP20A1
−0.81
0.024



ENSG00000124784
RIOK1
−1.15
0.024



ENSG00000144028
SNRNP200
−0.77
0.024



ENSG00000162231
NXF1
−1.02
0.024



ENSG00000107551
RASSF4
−1.02
0.024



ENSG00000148180
GSN
0.33
0.024



ENSG00000150867
PIP4K2A
0.31
0.025



ENSG00000132153
DHX30
−0.87
0.025



ENSG00000172922
RNASEH2C
0.50
0.025



ENSG00000027075
PRKCH
−0.94
0.025



ENSG00000115875
SRSF7
−0.71
0.025



ENSG00000142694
EVA1B
0.56
0.025



ENSG00000090382
LYZ
−1.13
0.025



ENSG00000112367
FIG4
−1.03
0.026



ENSG00000182866
LCK
−0.79
0.026



ENSG00000164163
ABCE1
−0.99
0.026



ENSG00000187097
ENTPD5
0.63
0.026



ENSG00000108798
ABI3
−0.63
0.026



ENSG00000247627
MTND4P12
0.67
0.026



ENSG00000105355
PLIN3
0.29
0.026



ENSG00000118260
CREB1
−0.52
0.026



ENSG00000127920
GNG11
0.36
0.027



ENSG00000178741
COX5A
−0.57
0.027



ENSG00000203747
FCGR3A
−0.87
0.027



ENSG00000197070
ARRDC1
−0.52
0.027



ENSG00000111666
CHPT1
−0.81
0.027



ENSG00000079257
LXN
0.64
0.028



ENSG00000127252
HRASLS
0.42
0.028



ENSG00000168904
LRRC28
0.37
0.028



ENSG00000197601
FAR1
−0.72
0.028



ENSG00000163191
S100A11
−0.63
0.028



ENSG00000121680
PEX16
−0.85
0.028



ENSG00000139644
TMBIM6
0.21
0.029



ENSG00000052841
TTC17
−0.93
0.029



ENSG00000163516
ANKZF1
−0.98
0.029



ENSG00000151092
NGLY1
−0.74
0.029



ENSG00000164022
AIMP1
−0.56
0.029



ENSG00000120656
TAF12
−0.54
0.029



ENSG00000206341
HLA-H
0.71
0.030



ENSG00000119535
CSF3R
−1.18
0.030



ENSG00000011638
TMEM159
0.50
0.030



ENSG00000140612
SEC11A
−0.48
0.030



ENSG00000183137
CEP57L1
0.53
0.030



ENSG00000244038
DDOST
−0.57
0.030



ENSG00000115652
UXS1
0.34
0.030



ENSG00000198837
DENND4B
−1.02
0.030



ENSG00000102096
PIM2
−0.85
0.031



ENSG00000158417
EIF5B
−0.53
0.031



ENSG00000114902
SPCS1
0.33
0.031



ENSG00000091164
TXNL1
0.26
0.031



ENSG00000100351
GRAP2
0.30
0.031



ENSG00000110799
VWF
0.45
0.031



ENSG00000177575
CD163
−1.44
0.031



ENSG00000156171
DRAM2
−0.64
0.032



ENSG00000136104
RNASEH2B
−0.61
0.032



ENSG00000145649
GZMA
−0.93
0.032



ENSG00000116871
MAP7D1
−0.51
0.033



ENSG00000124126
PREX1
−0.81
0.033



ENSG00000122882
ECD
−0.78
0.033



ENSG00000184634
MED12
−0.62
0.033



ENSG00000101605
MYOM1
0.47
0.034



ENSG00000168256
NKIRAS2
0.39
0.034



ENSG00000176390
CRLF3
−0.59
0.034



ENSG00000239900
ADSL
−0.73
0.034



ENSG00000139436
GIT2
−0.52
0.035



ENSG00000140575
IQGAP1
−0.81
0.035



ENSG00000051620
HEBP2
−0.65
0.035



ENSG00000134602

−0.37
0.035



ENSG00000227165
WDR11-AS1
−0.41
0.035



ENSG00000135905
DOCK10
−0.63
0.035



ENSG00000110719
TCIRG1
−0.91
0.035



ENSG00000138430
OLA1
−0.65
0.035



ENSG00000164961
KIAA0196
−1.09
0.036



ENSG00000155465
SLC7A7
−1.00
0.036



ENSG00000205302
SNX2
−0.41
0.036



ENSG00000023734
STRAP
0.31
0.036



ENSG00000163956
LRPAP1
−0.68
0.036



ENSG00000142192
APP
0.45
0.036



ENSG00000064102
ASUN
−0.99
0.036



ENSG00000240065
PSMB9
−0.29
0.037



ENSG00000147548
WHSC1L1
−0.31
0.037



ENSG00000107077
KDM4C
−0.89
0.037



ENSG00000121774
KHDRBS1
−0.44
0.038



ENSG00000100612
DHRS7
−0.50
0.038



ENSG00000266714
MYO15B
−0.95
0.038



ENSG00000095564
BTAF1
−0.97
0.038



ENSG00000188313
PLSCR1
−0.69
0.038



ENSG00000126759
CFP
−1.06
0.039



ENSG00000155561
NUP205
−0.95
0.039



ENSG00000020922
MRE11A
−0.78
0.039



ENSG00000070831
CDC42
0.30
0.039



ENSG00000151665
PIGF
0.38
0.039



ENSG00000006114
SYNRG
−0.63
0.040



ENSG00000077232
DNAJC10
−0.94
0.040



ENSG00000144895
EIF2A
−0.70
0.040



ENSG00000108270
AATF
−0.60
0.040



ENSG00000164896
FASTK
−0.62
0.040



ENSG00000115233
PSMD14
−0.81
0.040



ENSG00000142227
EMP3
0.31
0.040



ENSG00000163513
TGFBR2
−0.44
0.040



ENSG00000140105
WARS
−0.63
0.040



ENSG00000102699
PARP4
−0.67
0.040



ENSG00000168894
RNF181
0.39
0.041



ENSG00000140740
UQCRC2
−0.49
0.041



ENSG00000105669
COPE
0.22
0.041



ENSG00000138964
PARVG
−0.67
0.042



ENSG00000150045
KLRF1
−0.84
0.042



ENSG00000117868
ESYT2
−0.62
0.042



ENSG00000055332
EIF2AK2
−0.65
0.042



ENSG00000145833
DDX46
−0.60
0.043



ENSG00000008988
RPS20
−0.41
0.043



ENSG00000068831
RASGRP2
0.23
0.043



ENSG00000084070
SMAP2
−0.51
0.043



ENSG00000129071
MBD4
−0.41
0.043



ENSG00000107262
BAG1
−0.39
0.044



ENSG00000138798
EGF
0.37
0.044



ENSG00000030066
NUP160
−1.11
0.044



ENSG00000138385
SSB
−0.46
0.044



ENSG00000250878
METTL21EP
0.53
0.044



ENSG00000125257
ABCC4
0.38
0.044



ENSG00000100028
SNRPD3
−0.38
0.044



ENSG00000111424
VDR
−0.59
0.044



ENSG00000140943
MBTPS1
−0.92
0.044



ENSG00000108671
PSMD11
0.31
0.044



ENSG00000071994
PDCD2
−0.77
0.044



ENSG00000093072
CECR1
−1.22
0.045



ENSG00000004534
RBM6
−0.71
0.045



ENSG00000136286
MYO1G
−0.64
0.045



ENSG00000060688
SNRNP40
−0.53
0.045



ENSG00000115368
WDR75
−1.05
0.045



ENSG00000103502
CDIPT
0.31
0.045



ENSG00000112245
PTP4A1
−0.38
0.045



ENSG00000119950
MXI1
−0.62
0.046



ENSG00000147601
TERF1
−0.57
0.046



ENSG00000113558
SKP1
0.27
0.046



ENSG00000100242
SUN2
−0.98
0.046



ENSG00000014123
UFL1
−0.86
0.046



ENSG00000123146
CD97
−0.55
0.046



ENSG00000065978
YBX1
0.33
0.046



ENSG00000089022
MAPKAPK5
−0.92
0.046



ENSG00000172992
DCAKD
0.37
0.046



ENSG00000133789
SWAP70
−0.70
0.046



ENSG00000205133
TRIQK
0.40
0.046



ENSG00000161638
ITGA5
−0.82
0.047



ENSG00000092108
SCFD1
−0.35
0.047



ENSG00000135269
TES
−0.75
0.047



ENSG00000104517
UBR5
−0.48
0.047



ENSG00000265148
BZRAP1-AS1
0.32
0.047



ENSG00000134308
YWHAQ
0.26
0.047



ENSG00000067955
CBFB
−0.68
0.047



ENSG00000198301
SDAD1
−0.66
0.047



ENSG00000165168
CYBB
−0.68
0.048



ENSG00000167895
TMC8
−1.06
0.048



ENSG00000172164
SNTB1
−0.47
0.048



ENSG00000130176
CNN1
0.55
0.049



ENSG00000166165
CKB
0.58
0.049



ENSG00000070610
GBA2
−0.53
0.049



ENSG00000010610
CD4
−1.28
0.049



ENSG00000076108
BAZ2A
−0.49
0.049



ENSG00000122786
CALD1
0.34
0.050



ENSG00000139343
SNRPF
−0.66
0.050



ENSG00000141524
TMC6
−0.94
0.050



ENSG00000100325
ASCC2
−0.93
0.050



ENSG00000102908
NFAT5
0.45
0.050



ENSG00000151651
ADAM8
−1.10
0.050



ENSG00000135317
SNX14
−0.70
0.050



ENSG00000076662
ICAM3
−0.69
0.051



ENSG00000116754
SRSF11
−0.37
0.051



ENSG00000078124
ACER3
0.36
0.051



ENSG00000147202
DIAPH2
−1.02
0.051



ENSG00000149499
EML3
−0.63
0.052



ENSG00000162924
REL
−0.63
0.052



ENSG00000157216
SSBP3
0.39
0.052



ENSG00000167261
DPEP2
−0.91
0.052



ENSG00000162517
PEF1
0.32
0.052



ENSG00000171735
CAMTA1
0.32
0.053



ENSG00000134333
LDHA
−0.44
0.054



ENSG00000108559
NUP88
−0.72
0.054



ENSG00000249307
LINC01088
−0.59
0.054



ENSG00000197872
FAM49A
−1.09
0.054



ENSG00000056097
ZFR
−0.22
0.055



ENSG00000110090
CPT1A
0.42
0.055



ENSG00000013374
NUB1
−0.53
0.055



ENSG00000186166
CCDC84
−0.85
0.055



ENSG00000093167
LRRFIP2
0.29
0.055



ENSG00000204592
HLA-E
0.26
0.055



ENSG00000176170
SPHK1
0.31
0.055



ENSG00000138834
MAPK8IP3
−0.73
0.055



ENSG00000119396
RAB14
0.31
0.055



ENSG00000142507
PSMB6
−0.47
0.055



ENSG00000091592
NLRP1
−0.99
0.056



ENSG00000130560
UBAC1
0.31
0.056



ENSG00000014641
MDH1
−0.48
0.056



ENSG00000110697
PITPNM1
−0.51
0.056



ENSG00000174720
LARP7
−0.45
0.056



ENSG00000168488
ATXN2L
−0.45
0.056



ENSG00000115935
WIPF1
0.27
0.056



ENSG00000138378
STAT4
−0.97
0.056



ENSG00000166012
TAF1D
−0.47
0.056



ENSG00000163219
ARHGAP25
−0.59
0.056



ENSG00000177868
CCDC23
0.37
0.056



ENSG00000000938
FGR
−0.61
0.056



ENSG00000148672
GLUD1
−0.55
0.056



ENSG00000182473
EXOC7
−0.47
0.057



ENSG00000176124
DLEU1
0.41
0.058



ENSG00000143995
MEIS1
−0.36
0.058



ENSG00000131473
ACLY
−0.69
0.058



ENSG00000105971
CAV2
0.49
0.058



ENSG00000150593
PDCD4
−0.36
0.059



ENSG00000160948
VPS28
0.26
0.059



ENSG00000141543
EIF4A3
−0.70
0.059



ENSG00000105185
PDCD5
−0.69
0.059



ENSG00000134186
PRPF38B
−0.64
0.059



ENSG00000239713
APOBEC3G
−0.59
0.059



ENSG00000099337
KCNK6
0.31
0.059



ENSG00000178952
TUFM
−0.58
0.059



ENSG00000131781
FMO5
0.41
0.059



ENSG00000109046
WSB1
−0.65
0.059



ENSG00000129518
EAPP
−0.44
0.060



ENSG00000179950
PUF60
−0.65
0.060



ENSG00000159128
IFNGR2
−0.88
0.060



ENSG00000121064
SCPEP1
−0.86
0.061



ENSG00000004700
RECQL
−0.41
0.061



ENSG00000189091
SF3B3
−0.70
0.061



ENSG00000183486
MX2
−0.86
0.061



ENSG00000059758
CDK17
−0.38
0.061



ENSG00000143486
EIF2D
−0.80
0.061



ENSG00000168538
TRAPPC11
−0.94
0.062



ENSG00000011485
PPP5C
−0.62
0.062



ENSG00000005007
UPF1
−0.46
0.063



ENSG00000166986
MARS
−0.64
0.063



ENSG00000151422
FER
0.51
0.063



ENSG00000118873
RAB3GAP2
−0.48
0.064



ENSG00000065000
AP3D1
0.35
0.064



ENSG00000134759
ELP2
−0.88
0.065



ENSG00000089127
OAS1
−0.82
0.066



ENSG00000169583
CLIC3
−0.69
0.067



ENSG00000117139
KDM5B
−0.67
0.067



ENSG00000120129
DUSP1
−1.06
0.067



ENSG00000164483
SAMD3
−0.72
0.067



ENSG00000101347
SAMHD1
−0.67
0.068



ENSG00000163960
UBXN7
0.54
0.068



ENSG00000126524
SBDS
−0.38
0.068



ENSG00000124588
NQO2
0.29
0.068



ENSG00000123124
WWP1
−0.36
0.068



ENSG00000041357
PSMA4
−0.58
0.068



ENSG00000101367
MAPRE1
0.25
0.068



ENSG00000109320
NFKB1
−0.86
0.068



ENSG00000091640
SPAG7
−0.49
0.068



ENSG00000112308
C6orf62
−0.43
0.069



ENSG00000155660
PDIA4
−0.84
0.069



ENSG00000152332
UHMK1
0.44
0.069



ENSG00000115828
QPCT
−1.30
0.070



ENSG00000175166
PSMD2
0.23
0.070



ENSG00000090487
SPG21
−0.42
0.070



ENSG00000080608
KIAA0020
−0.62
0.071



ENSG00000102119
EMD
0.32
0.071



ENSG00000224805
LINC00853
0.35
0.071



ENSG00000135899
SP110
−0.51
0.071



ENSG00000204420
C6orf25
0.33
0.072



ENSG00000162613
FUBP1
−0.37
0.072



ENSG00000158552
ZFAND2B
0.23
0.073



ENSG00000204406
MBD5
0.35
0.073



ENSG00000112118
MCM3
−0.80
0.073



ENSG00000163781
TOPBP1
−0.62
0.073



ENSG00000131876
SNRPA1
−0.78
0.074



ENSG00000164880
INTS1
−0.68
0.074



ENSG00000177981
ASB8
0.28
0.074



ENSG00000005700
IBTK
−0.65
0.074



ENSG00000136247
ZDHHC4
0.26
0.074



ENSG00000151465
CDC123
−0.49
0.074



ENSG00000089154
GCN1L1
−1.03
0.074



ENSG00000174788
PCP2
0.35
0.075



ENSG00000165233
C9orf89
0.27
0.075



ENSG00000065154
OAT
−0.78
0.075



ENSG00000205744
DENND1C
−0.73
0.075



ENSG00000134539
KLRD1
−0.78
0.075



ENSG00000122257
RBBP6
−0.26
0.075



ENSG00000196924
FLNA
0.36
0.075



ENSG00000148229
POLE3
0.32
0.075



ENSG00000162645
GBP2
−0.57
0.075



ENSG00000103275
UBE2I
0.30
0.076



ENSG00000175826
CTDNEP1
0.31
0.076



ENSG00000198382
UVRAG
−0.60
0.076



ENSG00000143321
HDGF
0.26
0.076



ENSG00000145495
MARCH6
0.25
0.076



ENSG00000197102
DYNC1H1
−0.52
0.076



ENSG00000056586
RC3H2
0.30
0.077



ENSG00000025293
PHF20
−0.29
0.078



ENSG00000167705
RILP
0.29
0.079



ENSG00000111596
CNOT2
−0.40
0.079



ENSG00000111726
CMAS
0.26
0.079



ENSG00000161526
SAP30BP
−0.51
0.079



ENSG00000173542
MOB1B
0.34
0.079



ENSG00000170860
LSM3
−0.36
0.081



ENSG00000173598
NUDT4
0.42
0.081



ENSG00000110324
IL10RA
−0.85
0.082



ENSG00000196576
PLXNB2
−0.77
0.082



ENSG00000186470
BTN3A2
0.31
0.082



ENSG00000197081
IGF2R
−0.91
0.082



ENSG00000125304
TM9SF2
−0.37
0.083



ENSG00000110031
LPXN
−0.60
0.083



ENSG00000143207
RFWD2
−0.46
0.083



ENSG00000134548
C12orf39
0.33
0.083



ENSG00000103507
BCKDK
0.30
0.084



ENSG00000038274
MAT2B
−0.24
0.084



ENSG00000196199
MPHOSPH8
−0.55
0.085



ENSG00000122565
CBX3
−0.21
0.085



ENSG00000101365
IDH3B
−0.48
0.086



ENSG00000124214
STAU1
0.20
0.086



ENSG00000215039
CD27-AS1
0.28
0.087



ENSG00000105717
PBX4
0.39
0.087



ENSG00000154582
TCEB1
0.30
0.087



ENSG00000177885
GRB2
0.18
0.088



ENSG00000107742
SPOCK2
−1.03
0.088



ENSG00000119707
RBM25
−0.46
0.088



ENSG00000100412
ACO2
−0.48
0.088



ENSG00000138767
CNOT6L
0.37
0.088



ENSG00000113649
TCERG1
−0.65
0.088



ENSG00000123933
MXD4
−0.45
0.088



ENSG00000134884
ARGLU1
−0.55
0.088



ENSG00000116815
CD58
−0.53
0.089



ENSG00000159840
ZYX
0.29
0.089



ENSG00000162909
CAPN2
0.29
0.089



ENSG00000070540
WIPI1
0.25
0.090



ENSG00000198876
DCAF12
−0.45
0.090



ENSG00000116701
NCF2
−0.60
0.090



ENSG00000145725
PPIP5K2
−0.76
0.090



ENSG00000131375
CAPN7
−0.69
0.090



ENSG00000138795
LEF1
−0.80
0.090



ENSG00000108846
ABCC3
0.29
0.090



ENSG00000185359
HGS
−0.48
0.091



ENSG00000253819
LINC01151
0.35
0.091



ENSG00000111716
LDHB
−0.22
0.091



ENSG00000161203
AP2M1
0.24
0.091



ENSG00000152256
PDK1
0.36
0.091



ENSG00000132906
CASP9
0.40
0.092



ENSG00000162777
DENND2D
−0.36
0.092



ENSG00000118680
MYL12B
0.21
0.092



ENSG00000117676
RPS6KA1
−0.70
0.093



ENSG00000164808
SPIDR
−0.72
0.093



ENSG00000149311
ATM
−0.67
0.094



ENSG00000023892
DEF6
−0.63
0.094



ENSG00000185340
GAS2L1
0.31
0.094



ENSG00000119596
YLPM1
−0.60
0.095



ENSG00000125652
ALKBH7
−0.44
0.096



ENSG00000182173
TSEN54
−0.63
0.096



ENSG00000141380
SS18
−0.41
0.097



ENSG00000164329
PAPD4
−0.39
0.098



ENSG00000151779
NBAS
0.35
0.098



ENSG00000234810

0.35
0.098



ENSG00000197170
PSMD12
−0.49
0.098



ENSG00000111670
GNPTAB
−0.41
0.098



ENSG00000114861
FOXP1
−0.30
0.098



ENSG00000154359
LONRF1
−0.34
0.099



ENSG00000010256
UQCRC1
−0.45
0.100



ENSG00000158864
NDUFS2
−0.46
0.100



ENSG00000072422
RHOBTB1
0.26
0.101



ENSG00000162598
C1orf87
−1.46
0.101



ENSG00000166747
AP1G1
−0.52
0.102



ENSG00000180182
MED14
−0.61
0.102



ENSG00000161570
CCL5
0.28
0.102



ENSG00000111906
HDDC2
−0.57
0.102



ENSG00000120903
CHRNA2
−0.55
0.102



ENSG00000130177
CDC16
0.27
0.103



ENSG00000113712
CSNK1A1
0.18
0.103



ENSG00000263563
UBBP4
0.28
0.104



ENSG00000170638
TRABD
−0.70
0.104



ENSG00000145819
ARHGAP26
−0.77
0.105



ENSG00000079134
THOC1
−0.88
0.105



ENSG00000135596
MICAL1
−0.68
0.105



ENSG00000110934
BIN2
0.21
0.105



ENSG00000072401
UBE2D1
−0.72
0.106



ENSG00000172172
MRPL13
−0.56
0.107



ENSG00000172053
QARS
−0.56
0.107



ENSG00000139350
NEDD1
−0.41
0.107



ENSG00000170113
NIPA1
0.51
0.107



ENSG00000179344
HLA-DQB1
−0.92
0.108



ENSG00000114626
ABTB1
0.21
0.108



ENSG00000033050
ABCF2
−0.81
0.108



ENSG00000204371
EHMT2
−0.63
0.108



ENSG00000128463
EMC4
−0.41
0.109



ENSG00000146834
MEPCE
0.26
0.109



ENSG00000080815
PSEN1
−0.81
0.109



ENSG00000054523
KIF1B
0.50
0.109



ENSG00000060237
WNK1
0.35
0.110



ENSG00000122705
CLTA
0.20
0.110



ENSG00000067829
IDH3G
0.22
0.110



ENSG00000046651
OFD1
−0.26
0.111



ENSG00000103335
PIEZO1
−0.95
0.111



ENSG00000125450
NUP85
−0.78
0.112



ENSG00000146416
AIG1
0.25
0.113



ENSG00000163399
ATP1A1
0.36
0.113



ENSG00000125734
GPR108
0.23
0.113



ENSG00000196562
SULF2
−1.05
0.114



ENSG00000128159
TUBGCP6
−0.83
0.114



ENSG00000198851
CD3E
−0.70
0.114



ENSG00000131378
RFTN1
−0.64
0.115



ENSG00000048707
VPS13D
−0.53
0.117



ENSG00000168056
LTBP3
−0.82
0.117



ENSG00000148688
RPP30
−0.66
0.117



ENSG00000183011
LSMD1
0.27
0.117



ENSG00000133872
TMEM66
−0.16
0.118



ENSG00000026297
RNASET2
−0.37
0.118



ENSG00000152942
RAD17
−0.67
0.118



ENSG00000164332
UBLCP1
−0.58
0.118



ENSG00000071189
SNX13
−0.44
0.119



ENSG00000179115
FARSA
−0.62
0.119



ENSG00000136040
PLXNC1
−0.96
0.119



ENSG00000105835
NAMPT
−0.53
0.121



ENSG00000164096
C4orf3
0.23
0.121



ENSG00000047644
WWC3
0.30
0.122



ENSG00000141298
SSH2
−0.29
0.123



ENSG00000143156
NME7
0.60
0.123



ENSG00000197321
SVIL
0.24
0.124



ENSG00000092330
TINF2
−0.30
0.124



ENSG00000103740
ACSBG1
0.30
0.125



ENSG00000159210
SNF8
−0.40
0.126



ENSG00000100461
RBM23
−0.33
0.127



ENSG00000039123
SKIV2L2
−0.57
0.127



ENSG00000188976
NOC2L
−0.77
0.127



ENSG00000106803
SEC61B
−0.35
0.127



ENSG00000106628
POLD2
−0.68
0.127



ENSG00000125875
TBC1D20
0.23
0.128



ENSG00000156875
HIAT1
−0.35
0.128



ENSG00000135968
GCC2
−0.33
0.128



ENSG00000145241
CENPC
−0.47
0.128



ENSG00000075539
FRYL
−0.40
0.128



ENSG00000126709
IFI6
−0.64
0.129



ENSG00000106153
CHCHD2
0.19
0.130



ENSG00000170873
MTSS1
0.23
0.130



ENSG00000197622
CDC42SE1
−0.42
0.131



ENSG00000147036
LANCL3
0.35
0.132



ENSG00000135976
ANKRD36
−0.46
0.132



ENSG00000143799
PARP1
−0.45
0.133



ENSG00000163444
TMEM183A
−0.22
0.133



ENSG00000110395
CBL
−0.36
0.133



ENSG00000064419
TNPO3
−0.52
0.134



ENSG00000163655
GMPS
0.24
0.135



ENSG00000226777
KIAA0125
0.31
0.135



ENSG00000111669
TPI1
0.14
0.135



ENSG00000005175
RPAP3
−0.25
0.135



ENSG00000107679
PLEKHA1
−0.57
0.135



ENSG00000189067
LITAF
−0.46
0.136



ENSG00000144674
GOLGA4
−0.36
0.137



ENSG00000189136
UBE2Q2P1
0.43
0.137



ENSG00000117592
PRDX6
0.21
0.137



ENSG00000138279
ANXA7
0.18
0.137



ENSG00000136754
ABI1
−0.22
0.137



ENSG00000147457
CHMP7
−0.73
0.137



ENSG00000162402
USP24
−0.68
0.138



ENSG00000099246
RAB18
−0.27
0.138



ENSG00000150681
RGS18
−0.28
0.139



ENSG00000104907
TRMT1
−0.35
0.140



ENSG00000197555
SIPA1L1
−0.73
0.140



ENSG00000108094
CUL2
−0.57
0.140



ENSG00000116688
MFN2
0.42
0.140



ENSG00000090060
PAPOLA
0.19
0.141



ENSG00000054654
SYNE2
−0.65
0.141



ENSG00000140750
ARHGAP17
−0.48
0.141



ENSG00000140853
NLRC5
−0.40
0.141



ENSG00000115808
STRN
0.32
0.143



ENSG00000139083
ETV6
0.24
0.144



ENSG00000086589
RBM22
−0.53
0.144



ENSG00000169129
AFAP1L2
0.41
0.146



ENSG00000118900
UBN1
0.22
0.146



ENSG00000148634
HERC4
−0.43
0.146



ENSG00000205531
NAP1L4
0.22
0.146



ENSG00000164830
OXR1
−0.45
0.147



ENSG00000139505
MTMR6
−0.69
0.147



ENSG00000147050
KDM6A
−0.46
0.147



ENSG00000138496
PARP9
−0.55
0.148



ENSG00000130935
NOL11
−0.83
0.149



ENSG00000197969
VPS13A
0.26
0.149



ENSG00000105698
USF2
0.32
0.149



ENSG00000132466
ANKRD17
−0.41
0.150



ENSG00000178685
PARP10
−0.68
0.150



ENSG00000137076
TLN1
0.29
0.150



ENSG00000152620
NADK2
−0.41
0.150



ENSG00000198858
R3HDM4
0.22
0.150



ENSG00000163104
SMARCAD1
−0.53
0.151



ENSG00000167286
CD3D
−0.61
0.151



ENSG00000114573
ATP6V1A
−0.33
0.152



ENSG00000078596
ITM2A
0.23
0.153



ENSG00000136560
TANK
−0.33
0.153



ENSG00000174695
TMEM167A
0.23
0.154



ENSG00000065150
IPO5
−0.50
0.154



ENSG00000112031
MTRF1L
0.28
0.155



ENSG00000182220
ATP6AP2
0.20
0.155



ENSG00000183172
SMDT1
0.19
0.155



ENSG00000103197
TSC2
−0.60
0.155



ENSG00000103512
NOMO1
−0.39
0.156



ENSG00000183291

−0.21
0.158



ENSG00000115641
FHL2
0.29
0.158



ENSG00000162852
CNST
−0.26
0.159



ENSG00000110958
PTGES3
−0.17
0.159



ENSG00000163947
ARHGEF3
−0.39
0.160



ENSG00000168291
PDHB
−0.28
0.160



ENSG00000214078
CPNE1
0.24
0.160



ENSG00000087152
ATXN7L3
0.32
0.160



ENSG00000100297
MCM5
−0.48
0.160



ENSG00000139626
ITGB7
−0.78
0.160



ENSG00000140848
CPNE2
0.29
0.162



ENSG00000116514
RNF19B
−0.46
0.162



ENSG00000154122
ANKH
−0.28
0.162



ENSG00000134242
PTPN22
−0.71
0.162



ENSG00000134779
TPGS2
0.19
0.164



ENSG00000101997
CCDC22
−0.62
0.165



ENSG00000011243
AKAP8L
−0.31
0.165



ENSG00000079277
MKNK1
0.28
0.165



ENSG00000092929
UNC13D
0.26
0.165



ENSG00000114416
FXR1
−0.36
0.167



ENSG00000147872
PLIN2
−0.41
0.167



ENSG00000002822
MAD1L1
−0.56
0.167



ENSG00000169738
DCXR
−0.45
0.167



ENSG00000143643
TTC13
−0.88
0.167



ENSG00000174837
EMR1
−0.34
0.167



ENSG00000099995
SF3A1
−0.24
0.168



ENSG00000131042
LILRB2
−0.81
0.168



ENSG00000142208
AKT1
0.25
0.169



ENSG00000141959
PFKL
0.22
0.169



ENSG00000119203
CPSF3
−0.63
0.170



ENSG00000142546
NOSIP
−0.29
0.170



ENSG00000150347
ARID5B
−0.56
0.171



ENSG00000126261
UBA2
−0.34
0.172



ENSG00000146463
ZMYM4
0.32
0.173



ENSG00000127511
SIN3B
0.23
0.174



ENSG00000107625
DDX50
−0.51
0.174



ENSG00000131165
CHMP1A
0.26
0.174



ENSG00000103249
CLCN7
−0.53
0.175



ENSG00000182732
RGS6
0.20
0.175



ENSG00000123064
DDX54
−0.62
0.176



ENSG00000173113
TRMT112
−0.32
0.177



ENSG00000100401
RANGAP1
0.45
0.179



ENSG00000111912
NCOA7
0.21
0.180



ENSG00000134824
FADS2
0.39
0.180



ENSG00000168439
STIP1
−0.28
0.181



ENSG00000139624
CERS5
−0.34
0.182



ENSG00000114388
NPRL2
−0.61
0.182



ENSG00000101849
TBL1X
0.57
0.182



ENSG00000145247
OCIAD2
−0.42
0.182



ENSG00000198624
CCDC69
−0.46
0.183



ENSG00000129933
MAU2
−0.60
0.184



ENSG00000154217
PITPNC1
−0.36
0.184



ENSG00000185418
TARSL2
0.27
0.185



ENSG00000124226
RNF114
−0.44
0.185



ENSG00000073050
XRCC1
0.23
0.186



ENSG00000167978
SRRM2
−0.46
0.186



ENSG00000122417
ODF2L
−0.37
0.186



ENSG00000102144
PGK1
0.14
0.187



ENSG00000160013
PTGIR
0.23
0.187



ENSG00000166181
API5
−0.42
0.188



ENSG00000182481
KPNA2
−0.50
0.189



ENSG00000132792
CTNNBL1
−0.28
0.190



ENSG00000171314
PGAM1
0.18
0.191



ENSG00000175054
ATR
−0.75
0.192



ENSG00000144649
FAM198A
0.29
0.192



ENSG00000166888
STAT6
−0.33
0.192



ENSG00000134748
PRPF38A
−0.50
0.192



ENSG00000092201
SUPT16H
−0.37
0.193



ENSG00000015153
YAF2
0.30
0.194



ENSG00000159625
CCDC135
0.33
0.194



ENSG00000166200
COPS2
−0.30
0.194



ENSG00000116489
CAPZA1
0.19
0.195



ENSG00000116337
AMPD2
−0.28
0.195



ENSG00000175416
CLTB
0.19
0.195



ENSG00000018280
SLC11A1
−0.66
0.195



ENSG00000272888

−0.20
0.195



ENSG00000114446
IFT57
−0.41
0.195



ENSG00000215845
TSTD1
−0.32
0.197



ENSG00000119541
VPS4B
−0.26
0.197



ENSG00000062716
VMP1
−0.44
0.197



ENSG00000151500
THYN1
−0.39
0.197



ENSG00000205629
LCMT1
−0.40
0.197



ENSG00000148362
C9orf142
−0.48
0.197



ENSG00000204323
SMIM5
0.27
0.198



ENSG00000187257
RSBN1L
−0.28
0.198



ENSG00000134909
ARHGAP32
0.24
0.198



ENSG00000159176
CSRP1
0.28
0.198



ENSG00000120837
NFYB
−0.39
0.200



ENSG00000184602
SNN
0.23
0.200



ENSG00000065357
DGKA
−0.39
0.200



ENSG00000237473

0.30
0.200



ENSG00000101158
NELFCD
0.18
0.201



ENSG00000108651
UTP6
−0.62
0.201



ENSG00000143641
GALNT2
0.28
0.203



ENSG00000102024
PLS3
−0.57
0.204



ENSG00000104133
SPG11
−0.44
0.205



ENSG00000069329
VPS35
−0.23
0.205



ENSG00000125356
NDUFA1
0.20
0.205



ENSG00000120705
ETF1
−0.38
0.205



ENSG00000103051
COG4
−0.59
0.205



ENSG00000034053
APBA2
−0.39
0.206



ENSG00000101040
ZMYND8
−0.24
0.207



ENSG00000198162
MAN1A2
0.25
0.207



ENSG00000121892
PDS5A
−0.26
0.208



ENSG00000211896
IGHG1
−0.53
0.208



ENSG00000175220
ARHGAP1
−0.34
0.208



ENSG00000137210
TMEM14B
−0.27
0.208



ENSG00000166197
NOLC1
−0.47
0.210



ENSG00000047365
ARAP2
−0.62
0.210



ENSG00000148700
ADD3
0.16
0.211



ENSG00000124562
SNRPC
−0.26
0.213



ENSG00000033800
PIAS1
−0.25
0.213



ENSG00000174953
DHX36
−0.36
0.213



ENSG00000103415
HMOX2
−0.44
0.215



ENSG00000136718
IMP4
−0.44
0.215



ENSG00000197747
S100A10
0.37
0.216



ENSG00000138794
CASP6
0.19
0.216



ENSG00000204209
DAXX
−0.23
0.216



ENSG00000122223
CD244
−0.47
0.216



ENSG00000149823
VPS51
−0.47
0.217



ENSG00000166086
JAM3
0.27
0.218



ENSG00000132376
INPP5K
0.20
0.218



ENSG00000151498
ACAD8
−0.29
0.219



ENSG00000023318
ERP44
−0.34
0.219



ENSG00000143183
TMCO1
−0.48
0.219



ENSG00000125944
HNRNPR
−0.16
0.219



ENSG00000135604
STX11
−0.22
0.221



ENSG00000128789
PSMG2
−0.27
0.225



ENSG00000108349
CASC3
−0.29
0.225



ENSG00000134294
SLC38A2
−0.35
0.226



ENSG00000184319
RPL23AP82
0.54
0.227



ENSG00000185946
RNPC3
−0.36
0.227



ENSG00000079246
XRCC5
−0.23
0.228



ENSG00000104518
GSDMD
−0.49
0.228



ENSG00000089597
GANAB
−0.34
0.229



ENSG00000205250
E2F4
−0.47
0.230



ENSG00000100938
GMPR2
0.20
0.231



ENSG00000157106
SMG1
−0.41
0.235



ENSG00000006712
PAF1
−0.41
0.237



ENSG00000123104
ITPR2
0.23
0.240



ENSG00000011405
PIK3C2A
−0.46
0.242



ENSG00000110330
BIRC2
−0.18
0.244






















TABLE 3







Gene
Gene_name
cor
FDR









ENSG00000001461
NIPAL3
0.31
0.0000



ENSG00000002330
BAD
0.37
0.0000



ENSG00000002586
CD99
0.52
0.0000



ENSG00000002834
LASP1
0.31
0.0000



ENSG00000003436
TFPI
0.39
0.0000



ENSG00000004059
ARF5
0.46
0.0000



ENSG00000004866
ST7
0.65
0.0000



ENSG00000005007
UPF1
0.29
0.0000



ENSG00000005020
SKAP2
0.62
0.0000



ENSG00000005238
FAM214B
0.62
0.0000



ENSG00000005249
PRKAR2B
0.74
0.0000



ENSG00000005486
RHBDD2
0.21
0.0005



ENSG00000005812
FBXL3
0.24
0.0001



ENSG00000005882
PDK2
0.42
0.0000



ENSG00000005893
LAMP2
0.22
0.0004



ENSG00000005961
ITGA2B
0.83
0.0000



ENSG00000006007
GDE1
0.69
0.0000



ENSG00000006125
AP2B1
0.47
0.0000



ENSG00000006459
KDM7A
0.25
0.0000



ENSG00000006576
PHTF2
0.39
0.0000



ENSG00000006638
TBXA2R
0.70
0.0000



ENSG00000006652
IFRD1
0.55
0.0000



ENSG00000006715
VPS41
0.53
0.0000



ENSG00000008083
JARID2
0.51
0.0000



ENSG00000008513
ST3GAL1
0.31
0.0000



ENSG00000009307
CSDE1
0.65
0.0000



ENSG00000010017
RANBP9
0.41
0.0000



ENSG00000010270
STARD3NL
0.62
0.0000



ENSG00000010278
CD9
0.65
0.0000



ENSG00000010404
IDS
0.57
0.0000



ENSG00000010671
BTK
0.44
0.0000



ENSG00000010810
FYN
0.52
0.0000



ENSG00000011105
TSPAN9
0.61
0.0000



ENSG00000011198
ABHD5
0.21
0.0008



ENSG00000011258
MBTD1
0.30
0.0000



ENSG00000011304
PTBP1
0.56
0.0000



ENSG00000011454
RABGAP1
0.19
0.0018



ENSG00000011523
CEP68
0.23
0.0002



ENSG00000011638
TMEM159
0.36
0.0000



ENSG00000012822
CALCOCO1
0.65
0.0000



ENSG00000012983
MAP4K5
0.54
0.0000



ENSG00000013016
EHD3
0.77
0.0000



ENSG00000013561
RNF14
0.30
0.0000



ENSG00000014216
CAPN1
0.84
0.0000



ENSG00000015171
ZMYND11
0.21
0.0008



ENSG00000015479
MATR3
0.26
0.0000



ENSG00000015532
XYLT2
0.39
0.0000



ENSG00000017260
ATP2C1
0.67
0.0000



ENSG00000021355
SERPINB1
0.44
0.0000



ENSG00000022267
FHL1
0.83
0.0000



ENSG00000022840
RNF10
0.71
0.0000



ENSG00000023191
RNH1
0.30
0.0000



ENSG00000023697
DERA
0.61
0.0000



ENSG00000023734
STRAP
0.64
0.0000



ENSG00000023902
PLEKHO1
0.54
0.0000



ENSG00000023909
GCLM
0.68
0.0000



ENSG00000028116
VRK2
0.17
0.0046



ENSG00000028203
VEZT
0.28
0.0000



ENSG00000028528
SNX1
0.34
0.0000



ENSG00000028839
TBPL1
0.40
0.0000



ENSG00000029534
ANK1
0.67
0.0000



ENSG00000033170
FUT8
0.39
0.0000



ENSG00000033627
ATP6V0A1
0.25
0.0000



ENSG00000034053
APBA2
0.17
0.0056



ENSG00000034152
MAP2K3
0.72
0.0000



ENSG00000034713
GABARAPL2
0.42
0.0000



ENSG00000035403
VCL
0.74
0.0000



ENSG00000036054
TBC1D23
0.35
0.0000



ENSG00000040341
STAU2
0.36
0.0000



ENSG00000040531
CTNS
0.54
0.0000



ENSG00000041353
RAB27B
0.49
0.0000



ENSG00000042062
FAM65C
0.36
0.0000



ENSG00000042753
AP2S1
0.37
0.0000



ENSG00000043093
DCUN1D1
0.22
0.0003



ENSG00000044115
CTNNA1
0.54
0.0000



ENSG00000047597
XK
0.58
0.0000



ENSG00000047617
ANO2
0.36
0.0000



ENSG00000047644
WWC3
0.31
0.0000



ENSG00000047648
ARHGAP6
0.44
0.0000



ENSG00000048740
CELF2
0.56
0.0000



ENSG00000048828
FAM120A
0.43
0.0000



ENSG00000049245
VAMP3
0.18
0.0042



ENSG00000049323
LTBP1
0.81
0.0000



ENSG00000049541
RFC2
0.22
0.0003



ENSG00000049618
ARID1B
0.21
0.0006



ENSG00000049656
CLPTM1L
0.24
0.0001



ENSG00000050393
MCUR1
0.37
0.0000



ENSG00000051382
PIK3CB
0.61
0.0000



ENSG00000052126
PLEKHA5
0.27
0.0000



ENSG00000053108
FSTL4
0.22
0.0003



ENSG00000053371
AKR7A2
0.46
0.0000



ENSG00000054356
PTPRN
0.50
0.0000



ENSG00000055070
SZRD1
0.42
0.0000



ENSG00000055208
TAB2
0.38
0.0000



ENSG00000056586
RC3H2
0.60
0.0000



ENSG00000058091
CDK14
0.31
0.0000



ENSG00000058673
ZC3H11A
0.17
0.0050



ENSG00000058866
DGKG
0.52
0.0000



ENSG00000059377
TBXAS1
0.47
0.0000



ENSG00000059758
CDK17
0.19
0.0019



ENSG00000059804
SLC2A3
0.53
0.0000



ENSG00000060138
YBX3
0.67
0.0000



ENSG00000060558
GNA15
0.69
0.0000



ENSG00000061676
NCKAP1
0.71
0.0000



ENSG00000061918
GUCY1B3
0.72
0.0000



ENSG00000062598
ELMO2
0.26
0.0000



ENSG00000063245
EPN1
0.38
0.0000



ENSG00000064115
TM7SF3
0.51
0.0000



ENSG00000064201
TSPAN32
0.37
0.0000



ENSG00000064225
ST3GAL6
0.26
0.0000



ENSG00000064393
HIPK2
0.38
0.0000



ENSG00000064601
CTSA
0.84
0.0000



ENSG00000064652
SNX24
0.23
0.0002



ENSG00000064666
CNN2
0.36
0.0000



ENSG00000064726
BTBD1
0.46
0.0000



ENSG00000064961
HMG20B
0.59
0.0000



ENSG00000064999
ANKS1A
0.21
0.0006



ENSG00000065060
UHRF1BP1
0.30
0.0000



ENSG00000065457
ADAT1
0.29
0.0000



ENSG00000065534
MYLK
0.71
0.0000



ENSG00000065615
CYB5R4
0.33
0.0000



ENSG00000065675
PRKCQ
0.46
0.0000



ENSG00000065833
ME1
0.29
0.0000



ENSG00000065911
MTHFD2
0.50
0.0000



ENSG00000065970
FOXJ2
0.31
0.0000



ENSG00000066027
PPP2R5A
0.42
0.0000



ENSG00000066044
ELAVL1
0.58
0.0000



ENSG00000066136
NFYC
0.23
0.0002



ENSG00000066185
ZMYND12
0.23
0.0001



ENSG00000066294
CD84
0.57
0.0000



ENSG00000066697
MSANTD3
0.49
0.0000



ENSG00000067057
PFKP
0.38
0.0000



ENSG00000067167
TRAM1
0.48
0.0000



ENSG00000067225
PKM
0.80
0.0000



ENSG00000067365
METTL22
0.23
0.0002



ENSG00000067560
RHOA
0.78
0.0000



ENSG00000067836
ROGDI
0.33
0.0000



ENSG00000067992
PDK3
0.45
0.0000



ENSG00000068308
OTUD5
0.56
0.0000



ENSG00000068354
TBC1D25
0.46
0.0000



ENSG00000068383
INPP5A
0.66
0.0000



ENSG00000068400
GRIPAP1
0.18
0.0032



ENSG00000068650
ATP11A
0.22
0.0003



ENSG00000068793
CYFIP1
0.40
0.0000



ENSG00000068796
KIF2A
0.34
0.0000



ENSG00000068831
RASGRP2
0.42
0.0000



ENSG00000068903
SIRT2
0.59
0.0000



ENSG00000069020
MAST4
0.35
0.0000



ENSG00000069535
MAOB
0.60
0.0000



ENSG00000069966
GNB5
0.83
0.0000



ENSG00000070010
UFD1L
0.25
0.0000



ENSG00000070182
SPTB
0.59
0.0000



ENSG00000070190
DAPP1
0.38
0.0000



ENSG00000070214
SLC44A1
0.74
0.0000



ENSG00000070413
DGCR2
0.50
0.0000



ENSG00000070540
WIPI1
0.70
0.0000



ENSG00000070614
NDST1
0.63
0.0000



ENSG00000071051
NCK2
0.74
0.0000



ENSG00000071127
WDR1
0.86
0.0000



ENSG00000071553
ATP6AP1
0.67
0.0000



ENSG00000071889
FAM3A
0.42
0.0000



ENSG00000071909
MYO3B
0.22
0.0004



ENSG00000072042
RDH11
0.74
0.0000



ENSG00000072110
ACTN1
0.87
0.0000



ENSG00000072135
PTPN18
0.70
0.0000



ENSG00000072422
RHOBTB1
0.62
0.0000



ENSG00000072778
ACADVL
0.19
0.0022



ENSG00000072803
FBXW11
0.33
0.0000



ENSG00000072858
SIDT1
0.39
0.0000



ENSG00000072952
MRVI1
0.46
0.0000



ENSG00000073009
IKBKG
0.67
0.0000



ENSG00000073111
MCM2
0.18
0.0030



ENSG00000073464
CLCN4
0.46
0.0000



ENSG00000073578
SDHA
0.49
0.0000



ENSG00000073792
IGF2BP2
0.53
0.0000



ENSG00000073849
ST6GAL1
0.39
0.0000



ENSG00000074054
CLASP1
0.25
0.0001



ENSG00000074370
ATP2A3
0.69
0.0000



ENSG00000074416
MGLL
0.66
0.0000



ENSG00000074603
DPP8
0.28
0.0000



ENSG00000074800
ENO1
0.63
0.0000



ENSG00000075151
EIF4G3
0.62
0.0000



ENSG00000075413
MARK3
0.24
0.0001



ENSG00000075624
ACTB
0.82
0.0000



ENSG00000075711
DLG1
0.20
0.0011



ENSG00000075785
RAB7A
0.38
0.0000



ENSG00000075790
BCAP29
0.33
0.0000



ENSG00000075945
KIFAP3
0.43
0.0000



ENSG00000076003
MCM6
0.31
0.0000



ENSG00000076043
REXO2
0.19
0.0023



ENSG00000076685
NT5C2
0.41
0.0000



ENSG00000076770
MBNL3
0.27
0.0000



ENSG00000076944
STXBP2
0.61
0.0000



ENSG00000077044
DGKD
0.49
0.0000



ENSG00000077254
USP33
0.44
0.0000



ENSG00000077549
CAPZB
0.61
0.0000



ENSG00000077585
GPR137B
0.39
0.0000



ENSG00000077713
SLC25A43
0.39
0.0000



ENSG00000077809
GTF2I
0.19
0.0019



ENSG00000078061
ARAF
0.53
0.0000



ENSG00000078124
ACER3
0.46
0.0000



ENSG00000078369
GNB1
0.75
0.0000



ENSG00000078596
ITM2A
0.30
0.0000



ENSG00000078618
NRD1
0.81
0.0000



ENSG00000078668
VDAC3
0.38
0.0000



ENSG00000078902
TOLLIP
0.54
0.0000



ENSG00000079257
LXN
0.24
0.0001



ENSG00000079277
MKNK1
0.22
0.0003



ENSG00000079308
TNS1
0.29
0.0000



ENSG00000079387
SENP1
0.23
0.0002



ENSG00000079482
OPHN1
0.29
0.0000



ENSG00000079739
PGM1
0.28
0.0000



ENSG00000079950
STX7
0.22
0.0003



ENSG00000080371
RAB21
0.23
0.0002



ENSG00000080503
SMARCA2
0.34
0.0000



ENSG00000081087
OSTM1
0.43
0.0000



ENSG00000081154
PCNP
0.43
0.0000



ENSG00000081181
ARG2
0.51
0.0000



ENSG00000081377
CDC14B
0.77
0.0000



ENSG00000082074
FYB
0.33
0.0000



ENSG00000082146
STRADB
0.30
0.0000



ENSG00000082397
EPB41L3
0.38
0.0000



ENSG00000082701
GSK3B
0.21
0.0008



ENSG00000082781
ITGB5
0.86
0.0000



ENSG00000083312
TNPO1
0.52
0.0000



ENSG00000083444
PLOD1
0.24
0.0001



ENSG00000084072
PPIE
0.23
0.0001



ENSG00000084073
ZMPSTE24
0.18
0.0029



ENSG00000084112
SSH1
0.48
0.0000



ENSG00000084676
NCOA1
0.50
0.0000



ENSG00000084693
AGBL5
0.76
0.0000



ENSG00000084731
KIF3C
0.69
0.0000



ENSG00000084733
RAB10
0.44
0.0000



ENSG00000085117
CD82
0.61
0.0000



ENSG00000085449
WDFY1
0.22
0.0004



ENSG00000085733
CTTN
0.69
0.0000



ENSG00000085832
EPS15
0.27
0.0000



ENSG00000086065
CHMP5
0.26
0.0000



ENSG00000086200
IPO11
0.19
0.0015



ENSG00000086232
EIF2AK1
0.74
0.0000



ENSG00000086506
HBQ1
0.19
0.0019



ENSG00000086666
ZFAND6
0.19
0.0019



ENSG00000087053
MTMR2
0.68
0.0000



ENSG00000087086
FTL
0.22
0.0003



ENSG00000087095
NLK
0.40
0.0000



ENSG00000087152
ATXN7L3
0.37
0.0000



ENSG00000087157
PGS1
0.19
0.0018



ENSG00000087206
UIMC1
0.67
0.0000



ENSG00000087237
CETP
0.63
0.0000



ENSG00000087258
GNAO1
0.38
0.0000



ENSG00000087274
ADD1
0.48
0.0000



ENSG00000087303
NID2
0.38
0.0000



ENSG00000087460
GNAS
0.63
0.0000



ENSG00000087470
DNM1L
0.49
0.0000



ENSG00000088053
GP6
0.84
0.0000



ENSG00000088448
ANKRD10
0.19
0.0021



ENSG00000088726
TMEM40
0.39
0.0000



ENSG00000088766
CRLS1
0.42
0.0000



ENSG00000088826
SMOX
0.72
0.0000



ENSG00000088832
FKBP1A
0.59
0.0000



ENSG00000088888
MAVS
0.68
0.0000



ENSG00000089006
SNX5
0.17
0.0058



ENSG00000089053
ANAPC5
0.65
0.0000



ENSG00000089063
TMEM230
0.32
0.0000



ENSG00000089327
FXYD5
0.34
0.0000



ENSG00000089351
GRAMD1A
0.35
0.0000



ENSG00000089486
CDIP1
0.58
0.0000



ENSG00000089639
GMIP
0.24
0.0001



ENSG00000090020
SLC9A1
0.48
0.0000



ENSG00000090372
STRN4
0.80
0.0000



ENSG00000090565
RAB11FIP3
0.44
0.0000



ENSG00000090975
PITPNM2
0.66
0.0000



ENSG00000091317
CMTM6
0.41
0.0000



ENSG00000091409
ITGA6
0.23
0.0002



ENSG00000091490
SEL1L3
0.23
0.0002



ENSG00000091542
ALKBH5
0.37
0.0000



ENSG00000092531
SNAP23
0.75
0.0000



ENSG00000092621
PHGDH
0.22
0.0002



ENSG00000092841
MYL6
0.32
0.0000



ENSG00000092847
AGO1
0.44
0.0000



ENSG00000092929
UNC13D
0.77
0.0000



ENSG00000092931
MFSD11
0.17
0.0057



ENSG00000093010
COMT
0.23
0.0001



ENSG00000093167
LRRFIP2
0.40
0.0000



ENSG00000094631
HDAC6
0.26
0.0000



ENSG00000095303
PTGS1
0.87
0.0000



ENSG00000095321
CRAT
0.81
0.0000



ENSG00000095794
CREM
0.28
0.0000



ENSG00000096968
JAK2
0.43
0.0000



ENSG00000097021
ACOT7
0.60
0.0000



ENSG00000097033
SH3GLB1
0.19
0.0024



ENSG00000099204
ABLIM1
0.50
0.0000



ENSG00000099256
PRTFDC1
0.60
0.0000



ENSG00000099337
KCNK6
0.50
0.0000



ENSG00000099785
MARCH2
0.74
0.0000



ENSG00000099817
POLR2E
0.64
0.0000



ENSG00000099940
SNAP29
0.58
0.0000



ENSG00000099942
CRKL
0.49
0.0000



ENSG00000099995
SF3A1
0.29
0.0000



ENSG00000100030
MAPK1
0.54
0.0000



ENSG00000100060
MFNG
0.64
0.0000



ENSG00000100075
SLC25A1
0.26
0.0000



ENSG00000100077
ADRBK2
0.60
0.0000



ENSG00000100181
TPTEP1
0.48
0.0000



ENSG00000100225
FBXO7
0.70
0.0000



ENSG00000100243
CYB5R3
0.84
0.0000



ENSG00000100266
PACSIN2
0.71
0.0000



ENSG00000100280
AP1B1
0.58
0.0000



ENSG00000100299
ARSA
0.30
0.0000



ENSG00000100345
MYH9
0.69
0.0000



ENSG00000100351
GRAP2
0.72
0.0000



ENSG00000100359
SGSM3
0.32
0.0000



ENSG00000100418
DESI1
0.24
0.0001



ENSG00000100427
MLC1
0.34
0.0000



ENSG00000100439
ABHD4
0.64
0.0000



ENSG00000100490
CDKL1
0.31
0.0000



ENSG00000100503
NIN
0.28
0.0000



ENSG00000100504
PYGL
0.57
0.0000



ENSG00000100532
CGRRF1
0.49
0.0000



ENSG00000100554
ATP6V1D
0.23
0.0002



ENSG00000100568
VTI1B
0.50
0.0000



ENSG00000100592
DAAM1
0.32
0.0000



ENSG00000100600
LGMN
0.46
0.0000



ENSG00000100614
PPM1A
0.63
0.0000



ENSG00000100711
ZFYVE21
0.54
0.0000



ENSG00000100811
YY1
0.17
0.0068



ENSG00000100897
DCAF11
0.26
0.0000



ENSG00000100934
SEC23A
0.42
0.0000



ENSG00000100979
PLTP
0.41
0.0000



ENSG00000100982
PCIF1
0.40
0.0000



ENSG00000100983
GSS
0.18
0.0043



ENSG00000100994
PYGB
0.75
0.0000



ENSG00000101017
CD40
0.17
0.0048



ENSG00000101079
NDRG3
0.26
0.0000



ENSG00000101082
SLA2
0.77
0.0000



ENSG00000101109
STK4
0.24
0.0001



ENSG00000101150
TPD52L2
0.25
0.0000



ENSG00000101158
NELFCD
0.45
0.0000



ENSG00000101162
TUBB1
0.69
0.0000



ENSG00000101236
RNF24
0.65
0.0000



ENSG00000101246
ARFRP1
0.27
0.0000



ENSG00000101290
CDS2
0.50
0.0000



ENSG00000101333
PLCB4
0.24
0.0001



ENSG00000101335
MYL9
0.65
0.0000



ENSG00000101367
MAPRE1
0.65
0.0000



ENSG00000101412
E2F1
0.49
0.0000



ENSG00000101439
CST3
0.38
0.0000



ENSG00000101460
MAP1LC3A
0.38
0.0000



ENSG00000101473
ACOT8
0.26
0.0000



ENSG00000101558
VAPA
0.41
0.0000



ENSG00000101605
MYOM1
0.53
0.0000



ENSG00000101608
MYL12A
0.28
0.0000



ENSG00000101782
RIOK3
0.55
0.0000



ENSG00000101856
PGRMC1
0.64
0.0000



ENSG00000101940
WDR13
0.53
0.0000



ENSG00000102054
RBBP7
0.25
0.0000



ENSG00000102119
EMD
0.52
0.0000



ENSG00000102144
PGK1
0.56
0.0000



ENSG00000102145
GATA1
0.61
0.0000



ENSG00000102172
SMS
0.52
0.0000



ENSG00000102178
UBL4A
0.73
0.0000



ENSG00000102225
CDK16
0.64
0.0000



ENSG00000102226
USP11
0.17
0.0068



ENSG00000102230
PCYT1B
0.45
0.0000



ENSG00000102265
TIMP1
0.39
0.0000



ENSG00000102316
MAGED2
0.83
0.0000



ENSG00000102362
SYTL4
0.55
0.0000



ENSG00000102393
GLA
0.42
0.0000



ENSG00000102401
ARMCX3
0.55
0.0000



ENSG00000102409
BEX4
0.20
0.0015



ENSG00000102572
STK24
0.78
0.0000



ENSG00000102753
KPNA3
0.17
0.0067



ENSG00000102781
KATNAL1
0.36
0.0000



ENSG00000102804
TSC22D1
0.38
0.0000



ENSG00000102893
PHKB
0.80
0.0000



ENSG00000102897
LYRM1
0.25
0.0000



ENSG00000102898
NUTF2
0.44
0.0000



ENSG00000102901
CENPT
0.46
0.0000



ENSG00000102908
NFAT5
0.29
0.0000



ENSG00000103148
NPRL3
0.56
0.0000



ENSG00000103160
HSDL1
0.28
0.0000



ENSG00000103184
SEC14L5
0.49
0.0000



ENSG00000103187
COTL1
0.65
0.0000



ENSG00000103194
USP10
0.28
0.0000



ENSG00000103202
NME4
0.43
0.0000



ENSG00000103222
ABCC1
0.18
0.0037



ENSG00000103266
STUB1
0.25
0.0001



ENSG00000103316
CRYM
0.28
0.0000



ENSG00000103404
USP31
0.54
0.0000



ENSG00000103495
MAZ
0.49
0.0000



ENSG00000103502
CDIPT
0.48
0.0000



ENSG00000103507
BCKDK
0.27
0.0000



ENSG00000103591
AAGAB
0.23
0.0002



ENSG00000103657
HERC1
0.23
0.0002



ENSG00000103740
ACSBG1
0.43
0.0000



ENSG00000103769
RAB11A
0.32
0.0000



ENSG00000103876
FAH
0.64
0.0000



ENSG00000103942
HOMER2
0.74
0.0000



ENSG00000104164
BLOC1S6
0.44
0.0000



ENSG00000104219
ZDHHC2
0.50
0.0000



ENSG00000104231
ZFAND1
0.22
0.0003



ENSG00000104267
CA2
0.25
0.0000



ENSG00000104324
CPQ
0.51
0.0000



ENSG00000104341
LAPTM4B
0.60
0.0000



ENSG00000104687
GSR
0.41
0.0000



ENSG00000104695
PPP2CB
0.25
0.0000



ENSG00000104763
ASAH1
0.58
0.0000



ENSG00000104765
BNIP3L
0.44
0.0000



ENSG00000104805
NUCB1
0.69
0.0000



ENSG00000104897
SF3A2
0.36
0.0000



ENSG00000104903
LYL1
0.59
0.0000



ENSG00000104904
OAZ1
0.55
0.0000



ENSG00000104946
TBC1D17
0.39
0.0000



ENSG00000105058
FAM32A
0.43
0.0000



ENSG00000105063
PPP6R1
0.71
0.0000



ENSG00000105186
ANKRD27
0.21
0.0005



ENSG00000105220
GPI
0.66
0.0000



ENSG00000105229
PIAS4
0.25
0.0000



ENSG00000105254
TBCB
0.22
0.0004



ENSG00000105323
HNRNPUL1
0.33
0.0000



ENSG00000105329
TGFB1
0.54
0.0000



ENSG00000105355
PLIN3
0.67
0.0000



ENSG00000105401
CDC37
0.41
0.0000



ENSG00000105402
NAPA
0.72
0.0000



ENSG00000105404
RABAC1
0.35
0.0000



ENSG00000105443
CYTH2
0.42
0.0000



ENSG00000105499
PLA2G4C
0.39
0.0000



ENSG00000105507
CABP5
0.35
0.0000



ENSG00000105639
JAK3
0.29
0.0000



ENSG00000105698
USF2
0.24
0.0001



ENSG00000105700
KXD1
0.39
0.0000



ENSG00000105701
FKBP8
0.57
0.0000



ENSG00000105711
SCN1B
0.51
0.0000



ENSG00000105717
PBX4
0.31
0.0000



ENSG00000105829
BET1
0.27
0.0000



ENSG00000105851
PIK3CG
0.20
0.0011



ENSG00000105887
MTPN
0.27
0.0000



ENSG00000105953
OGDH
0.17
0.0050



ENSG00000105971
CAV2
0.51
0.0000



ENSG00000105993
DNAJB6
0.55
0.0000



ENSG00000106012
IQCE
0.22
0.0003



ENSG00000106034
CPED1
0.31
0.0000



ENSG00000106070
GRB10
0.42
0.0000



ENSG00000106086
PLEKHA8
0.38
0.0000



ENSG00000106089
STX1A
0.58
0.0000



ENSG00000106144
CASP2
0.17
0.0070



ENSG00000106211
HSPB1
0.25
0.0000



ENSG00000106244
PDAP1
0.18
0.0035



ENSG00000106290
TAF6
0.25
0.0001



ENSG00000106366
SERPINE1
0.50
0.0000



ENSG00000106392
C1GALT1
0.32
0.0000



ENSG00000106477
CEP41
0.24
0.0001



ENSG00000106484
MEST
0.41
0.0000



ENSG00000106537
TSPAN13
0.45
0.0000



ENSG00000106609
TMEM248
0.44
0.0000



ENSG00000106615
RHEB
0.50
0.0000



ENSG00000106635
BCL7B
0.60
0.0000



ENSG00000106665
CLIP2
0.57
0.0000



ENSG00000106733
NMRK1
0.21
0.0008



ENSG00000106868
SUSD1
0.83
0.0000



ENSG00000106976
DNM1
0.56
0.0000



ENSG00000107021
TBC1D13
0.57
0.0000



ENSG00000107438
PDLIM1
0.65
0.0000



ENSG00000107521
HPS1
0.54
0.0000



ENSG00000107669
ATE1
0.41
0.0000



ENSG00000107738
C10orf54
0.38
0.0000



ENSG00000107745
MICU1
0.69
0.0000



ENSG00000107798
LIPA
0.65
0.0000



ENSG00000107816
LZTS2
0.52
0.0000



ENSG00000107819
SFXN3
0.57
0.0000



ENSG00000107863
ARHGAP21
0.48
0.0000



ENSG00000108039
XPNPEP1
0.80
0.0000



ENSG00000108061
SHOC2
0.25
0.0000



ENSG00000108100
CCNY
0.79
0.0000



ENSG00000108179
PPIF
0.49
0.0000



ENSG00000108187
PBLD
0.47
0.0000



ENSG00000108219
TSPAN14
0.28
0.0000



ENSG00000108370
RGS9
0.27
0.0000



ENSG00000108387
SEPT4
0.52
0.0000



ENSG00000108405
P2RX1
0.83
0.0000



ENSG00000108469
RECQL5
0.30
0.0000



ENSG00000108509
CAMTA2
0.58
0.0000



ENSG00000108523
RNF167
0.18
0.0039



ENSG00000108576
SLC6A4
0.54
0.0000



ENSG00000108622
ICAM2
0.42
0.0000



ENSG00000108679
LGALS3BP
0.39
0.0000



ENSG00000108839
ALOX12
0.83
0.0000



ENSG00000108840
HDAC5
0.64
0.0000



ENSG00000108846
ABCC3
0.79
0.0000



ENSG00000108861
DUSP3
0.44
0.0000



ENSG00000108883
EFTUD2
0.28
0.0000



ENSG00000108946
PRKAR1A
0.66
0.0000



ENSG00000108953
YWHAE
0.57
0.0000



ENSG00000108960
MMD
0.62
0.0000



ENSG00000109062
SLC9A3R1
0.59
0.0000



ENSG00000109066
TMEM104
0.36
0.0000



ENSG00000109171
SLAIN2
0.18
0.0033



ENSG00000109272
PF4V1
0.29
0.0000



ENSG00000109339
MAPK10
0.27
0.0000



ENSG00000109572
CLCN3
0.55
0.0000



ENSG00000109787
KLF3
0.40
0.0000



ENSG00000109854
HTATIP2
0.36
0.0000



ENSG00000110002
VWA5A
0.42
0.0000



ENSG00000110011
DNAJC4
0.49
0.0000



ENSG00000110013
SIAE
0.77
0.0000



ENSG00000110047
EHD1
0.70
0.0000



ENSG00000110080
ST3GAL4
0.43
0.0000



ENSG00000110090
CPT1A
0.33
0.0000



ENSG00000110218
PANX1
0.32
0.0000



ENSG00000110321
EIF4G2
0.78
0.0000



ENSG00000110395
CBL
0.26
0.0000



ENSG00000110422
HIPK3
0.35
0.0000



ENSG00000110455
ACCS
0.30
0.0000



ENSG00000110514
MADD
0.65
0.0000



ENSG00000110665
C11orf21
0.29
0.0000



ENSG00000110799
VWF
0.64
0.0000



ENSG00000110851
PRDM4
0.24
0.0001



ENSG00000110880
CORO1C
0.69
0.0000



ENSG00000110906
KCTD10
0.27
0.0000



ENSG00000110917
MLEC
0.33
0.0000



ENSG00000110934
BIN2
0.82
0.0000



ENSG00000111145
ELK3
0.70
0.0000



ENSG00000111252
SH2B3
0.46
0.0000



ENSG00000111269
CREBL2
0.32
0.0000



ENSG00000111328
CDK2AP1
0.66
0.0000



ENSG00000111348
ARHGDIB
0.56
0.0000



ENSG00000111424
VDR
0.43
0.0000



ENSG00000111481
COPZ1
0.29
0.0000



ENSG00000111540
RAB5B
0.52
0.0000



ENSG00000111554
MDM1
0.49
0.0000



ENSG00000111640
GAPDH
0.64
0.0000



ENSG00000111644
ACRBP
0.33
0.0000



ENSG00000111653
ING4
0.28
0.0000



ENSG00000111669
TPI1
0.48
0.0000



ENSG00000111674
ENO2
0.61
0.0000



ENSG00000111684
LPCAT3
0.29
0.0000



ENSG00000111711
GOLT1B
0.18
0.0034



ENSG00000111726
CMAS
0.31
0.0000



ENSG00000111790
FGFR1OP2
0.24
0.0001



ENSG00000111817
DSE
0.53
0.0000



ENSG00000111885
MAN1A1
0.38
0.0000



ENSG00000111912
NCOA7
0.25
0.0000



ENSG00000112031
MTRF1L
0.61
0.0000



ENSG00000112062
MAPK14
0.48
0.0000



ENSG00000112078
KCTD20
0.70
0.0000



ENSG00000112079
STK38
0.18
0.0032



ENSG00000112096
SOD2
0.42
0.0000



ENSG00000112146
FBXO9
0.55
0.0000



ENSG00000112234
FBXL4
0.27
0.0000



ENSG00000112242
E2F3
0.28
0.0000



ENSG00000112245
PTP4A1
0.20
0.0014



ENSG00000112290
WASF1
0.48
0.0000



ENSG00000112308
C6orf62
0.54
0.0000



ENSG00000112335
SNX3
0.63
0.0000



ENSG00000112531
QKI
0.29
0.0000



ENSG00000112576
CCND3
0.82
0.0000



ENSG00000112655
PTK7
0.40
0.0000



ENSG00000112679
DUSP22
0.48
0.0000



ENSG00000112851
ERBB2IP
0.18
0.0030



ENSG00000112893
MAN2A1
0.22
0.0004



ENSG00000112977
DAP
0.75
0.0000



ENSG00000112992
NNT
0.57
0.0000



ENSG00000113140
SPARC
0.81
0.0000



ENSG00000113328
CCNG1
0.80
0.0000



ENSG00000113441
LNPEP
0.24
0.0001



ENSG00000113558
SKP1
0.31
0.0000



ENSG00000113638
TTC33
0.39
0.0000



ENSG00000113712
CSNK1A1
0.37
0.0000



ENSG00000113732
ATP6V0E1
0.36
0.0000



ENSG00000113742
CPEB4
0.31
0.0000



ENSG00000113758
DBN1
0.75
0.0000



ENSG00000113761
ZNF346
0.20
0.0013



ENSG00000113851
CRBN
0.29
0.0000



ENSG00000114098
ARMC8
0.71
0.0000



ENSG00000114166
KAT2B
0.23
0.0001



ENSG00000114316
USP4
0.21
0.0005



ENSG00000114353
GNAI2
0.62
0.0000



ENSG00000114354
TFG
0.19
0.0026



ENSG00000114383
TUSC2
0.19
0.0015



ENSG00000114541
FRMD4B
0.31
0.0000



ENSG00000114573
ATP6V1A
0.26
0.0000



ENSG00000114626
ABTB1
0.68
0.0000



ENSG00000114770
ABCC5
0.24
0.0001



ENSG00000114784
EIF1B
0.17
0.0050



ENSG00000114805
PLCH1
0.17
0.0048



ENSG00000114904
NEK4
0.58
0.0000



ENSG00000114978
MOB1A
0.55
0.0000



ENSG00000114982
KANSL3
0.50
0.0000



ENSG00000115159
GPD2
0.50
0.0000



ENSG00000115170
ACVR1
0.75
0.0000



ENSG00000115216
NRBP1
0.46
0.0000



ENSG00000115234
SNX17
0.24
0.0001



ENSG00000115290
GRB14
0.26
0.0000



ENSG00000115310
RTN4
0.42
0.0000



ENSG00000115318
LOXL3
0.73
0.0000



ENSG00000115457
IGFBP2
0.36
0.0000



ENSG00000115464
USP34
0.18
0.0026



ENSG00000115504
EHBP1
0.19
0.0022



ENSG00000115641
FHL2
0.48
0.0000



ENSG00000115649
CNPPD1
0.31
0.0000



ENSG00000115652
UXS1
0.68
0.0000



ENSG00000115677
HDLBP
0.32
0.0000



ENSG00000115756
HPCAL1
0.66
0.0000



ENSG00000115758
ODC1
0.66
0.0000



ENSG00000115762
PLEKHB2
0.46
0.0000



ENSG00000115839
RAB3GAP1
0.22
0.0002



ENSG00000115935
WIPF1
0.77
0.0000



ENSG00000115956
PLEK
0.56
0.0000



ENSG00000115966
ATF2
0.27
0.0000



ENSG00000115993
TRAK2
0.19
0.0017



ENSG00000116001
TIA1
0.44
0.0000



ENSG00000116171
SCP2
0.43
0.0000



ENSG00000116199
FAM20B
0.40
0.0000



ENSG00000116260
QSOX1
0.46
0.0000



ENSG00000116288
PARK7
0.34
0.0000



ENSG00000116337
AMPD2
0.34
0.0000



ENSG00000116604
MEF2D
0.24
0.0001



ENSG00000116678
LEPR
0.54
0.0000



ENSG00000116679
IVNS1ABP
0.43
0.0000



ENSG00000116685
KIAA2013
0.28
0.0000



ENSG00000116688
MFN2
0.39
0.0000



ENSG00000116711
PLA2G4A
0.25
0.0000



ENSG00000116747
TROVE2
0.41
0.0000



ENSG00000116793
PHTF1
0.65
0.0000



ENSG00000116857
TMEM9
0.24
0.0001



ENSG00000116962
NID1
0.50
0.0000



ENSG00000116977
LGALS8
0.49
0.0000



ENSG00000116984
MTR
0.17
0.0062



ENSG00000117153
KLHL12
0.24
0.0001



ENSG00000117155
SSX2IP
0.56
0.0000



ENSG00000117298
ECE1
0.64
0.0000



ENSG00000117305
HMGCL
0.23
0.0002



ENSG00000117362
APH1A
0.22
0.0002



ENSG00000117400
MPL
0.47
0.0000



ENSG00000117475
BLZF1
0.19
0.0024



ENSG00000117505
DR1
0.37
0.0000



ENSG00000117533
VAMP4
0.32
0.0000



ENSG00000117586
TNFSF4
0.38
0.0000



ENSG00000117592
PRDX6
0.55
0.0000



ENSG00000117625
RCOR3
0.30
0.0000



ENSG00000117640
MTFR1L
0.71
0.0000



ENSG00000117691
NENF
0.38
0.0000



ENSG00000117984
CTSD
0.53
0.0000



ENSG00000118308
LRMP
0.25
0.0001



ENSG00000118508
RAB32
0.56
0.0000



ENSG00000118705
RPN2
0.22
0.0002



ENSG00000118816
CCNI
0.39
0.0000



ENSG00000118855
MFSD1
0.79
0.0000



ENSG00000118900
UBN1
0.30
0.0000



ENSG00000119139
TJP2
0.64
0.0000



ENSG00000119242
CCDC92
0.70
0.0000



ENSG00000119280
C1orf198
0.69
0.0000



ENSG00000119326
CTNNAL1
0.45
0.0000



ENSG00000119383
PPP2R4
0.55
0.0000



ENSG00000119402
FBXW2
0.20
0.0010



ENSG00000119632
IFI27L2
0.26
0.0000



ENSG00000119718
EIF2B2
0.39
0.0000



ENSG00000119801
YPEL5
0.24
0.0001



ENSG00000119862
LGALSL
0.57
0.0000



ENSG00000119899
SLC17A5
0.45
0.0000



ENSG00000120008
WDR11
0.29
0.0000



ENSG00000120063
GNA13
0.50
0.0000



ENSG00000120159
CAAP1
0.18
0.0037



ENSG00000120265
PCMT1
0.64
0.0000



ENSG00000120594
PLXDC2
0.70
0.0000



ENSG00000120727
PAIP2
0.32
0.0000



ENSG00000120885
CLU
0.74
0.0000



ENSG00000120903
CHRNA2
0.43
0.0000



ENSG00000120915
EPHX2
0.25
0.0000



ENSG00000120992
LYPLA1
0.58
0.0000



ENSG00000121579
NAA50
0.27
0.0000



ENSG00000121749
TBC1D15
0.27
0.0000



ENSG00000121766
ZCCHC17
0.32
0.0000



ENSG00000121848
RNF115
0.40
0.0000



ENSG00000121964
GTDC1
0.58
0.0000



ENSG00000122203
KIAA1191
0.65
0.0000



ENSG00000122218
COPA
0.54
0.0000



ENSG00000122299
ZC3H7A
0.18
0.0033



ENSG00000122359
ANXA11
0.67
0.0000



ENSG00000122490
PQLC1
0.37
0.0000



ENSG00000122515
ZMIZ2
0.37
0.0000



ENSG00000122545
SEPT7
0.21
0.0006



ENSG00000122566
HNRNPA2B1
0.19
0.0018



ENSG00000122643
NT5C3A
0.32
0.0000



ENSG00000122786
CALD1
0.51
0.0000



ENSG00000122862
SRGN
0.48
0.0000



ENSG00000123091
RNF11
0.72
0.0000



ENSG00000123104
ITPR2
0.30
0.0000



ENSG00000123124
WWP1
0.41
0.0000



ENSG00000123159
GIPC1
0.38
0.0000



ENSG00000123405
NFE2
0.56
0.0000



ENSG00000123416
TUBA1B
0.69
0.0000



ENSG00000123472
ATPAF1
0.47
0.0000



ENSG00000123505
AMD1
0.30
0.0000



ENSG00000123739
PLA2G12A
0.72
0.0000



ENSG00000123908
AGO2
0.23
0.0002



ENSG00000124151
NCOA3
0.20
0.0014



ENSG00000124164
VAPB
0.44
0.0000



ENSG00000124193
SRSF6
0.42
0.0000



ENSG00000124209
RAB22A
0.17
0.0053



ENSG00000124214
STAU1
0.32
0.0000



ENSG00000124302
CHST8
0.27
0.0000



ENSG00000124333
VAMP7
0.63
0.0000



ENSG00000124406
ATP8A1
0.21
0.0008



ENSG00000124422
USP22
0.42
0.0000



ENSG00000124486
USP9X
0.40
0.0000



ENSG00000124491
F13A1
0.74
0.0000



ENSG00000124532
MRS2
0.26
0.0000



ENSG00000124535
WRNIP1
0.73
0.0000



ENSG00000124570
SERPINB6
0.44
0.0000



ENSG00000124588
NQO2
0.21
0.0006



ENSG00000124635
HIST1H2BJ
0.30
0.0000



ENSG00000124702
KLHDC3
0.29
0.0000



ENSG00000124733
MEA1
0.47
0.0000



ENSG00000124762
CDKN1A
0.66
0.0000



ENSG00000124772
CPNE5
0.66
0.0000



ENSG00000124831
LRRFIP1
0.19
0.0019



ENSG00000125257
ABCC4
0.62
0.0000



ENSG00000125354
SEPT6
0.66
0.0000



ENSG00000125375
ATP5S
0.30
0.0000



ENSG00000125388
GRK4
0.23
0.0002



ENSG00000125457
MIF4GD
0.59
0.0000



ENSG00000125534
PPDPF
0.46
0.0000



ENSG00000125676
THOC2
0.22
0.0003



ENSG00000125733
TRIP10
0.39
0.0000



ENSG00000125734
GPR108
0.59
0.0000



ENSG00000125744
RTN2
0.57
0.0000



ENSG00000125753
VASP
0.37
0.0000



ENSG00000125779
PANK2
0.40
0.0000



ENSG00000125814
NAPB
0.27
0.0000



ENSG00000125827
TMX4
0.24
0.0001



ENSG00000125863
MKKS
0.20
0.0012



ENSG00000125868
DSTN
0.45
0.0000



ENSG00000125869
LAMP5
0.32
0.0000



ENSG00000125875
TBC1D20
0.56
0.0000



ENSG00000125898
FAM110A
0.36
0.0000



ENSG00000125952
MAX
0.61
0.0000



ENSG00000125970
RALY
0.62
0.0000



ENSG00000126088
UROD
0.20
0.0012



ENSG00000126091
ST3GAL3
0.75
0.0000



ENSG00000126217
MCF2L
0.26
0.0000



ENSG00000126247
CAPNS1
0.44
0.0000



ENSG00000126391
FRMD8
0.25
0.0000



ENSG00000126432
PRDX5
0.26
0.0000



ENSG00000126458
RRAS
0.46
0.0000



ENSG00000126581
BECN1
0.65
0.0000



ENSG00000126903
SLC10A3
0.72
0.0000



ENSG00000127249
ATP13A4
0.25
0.0000



ENSG00000127252
HRASLS
0.41
0.0000



ENSG00000127314
RAP1B
0.53
0.0000



ENSG00000127511
SIN3B
0.29
0.0000



ENSG00000127526
SLC35E1
0.61
0.0000



ENSG00000127527
EPS15L1
0.56
0.0000



ENSG00000127824
TUBA4A
0.69
0.0000



ENSG00000127831
VIL1
0.74
0.0000



ENSG00000127838
PNKD
0.60
0.0000



ENSG00000127870
RNF6
0.37
0.0000



ENSG00000127920
GNG11
0.30
0.0000



ENSG00000127947
PTPN12
0.47
0.0000



ENSG00000128245
YWHAH
0.48
0.0000



ENSG00000128266
GNAZ
0.72
0.0000



ENSG00000128272
ATF4
0.44
0.0000



ENSG00000128294
TPST2
0.81
0.0000



ENSG00000128309
MPST
0.57
0.0000



ENSG00000128311
TST
0.25
0.0000



ENSG00000128578
STRIP2
0.39
0.0000



ENSG00000128595
CALU
0.61
0.0000



ENSG00000128609
NDUFA5
0.22
0.0003



ENSG00000128731
HERC2
0.18
0.0041



ENSG00000128791
TWSG1
0.37
0.0000



ENSG00000128923
FAM63B
0.25
0.0000



ENSG00000128989
ARPP19
0.24
0.0001



ENSG00000129187
DCTD
0.21
0.0008



ENSG00000129292
PHF20L1
0.51
0.0000



ENSG00000129353
SLC44A2
0.86
0.0000



ENSG00000129354
AP1M2
0.50
0.0000



ENSG00000129355
CDKN2D
0.59
0.0000



ENSG00000129521
EGLN3
0.49
0.0000



ENSG00000129636
ITFG1
0.72
0.0000



ENSG00000129657
SEC14L1
0.60
0.0000



ENSG00000129691
ASH2L
0.34
0.0000



ENSG00000129925
TMEM8A
0.41
0.0000



ENSG00000129968
ABHD17A
0.68
0.0000



ENSG00000130066
SAT1
0.40
0.0000



ENSG00000130119
GNL3L
0.25
0.0000



ENSG00000130176
CNN1
0.46
0.0000



ENSG00000130177
CDC16
0.18
0.0038



ENSG00000130201
EXOC3L2
0.36
0.0000



ENSG00000130227
XPO7
0.64
0.0000



ENSG00000130340
SNX9
0.49
0.0000



ENSG00000130402
ACTN4
0.20
0.0010



ENSG00000130429
ARPC1B
0.64
0.0000



ENSG00000130703
OSBPL2
0.28
0.0000



ENSG00000130734
ATG4D
0.17
0.0072



ENSG00000130779
CLIP1
0.23
0.0002



ENSG00000130830
MPP1
0.74
0.0000



ENSG00000130958
SLC35D2
0.65
0.0000



ENSG00000130985
UBA1
0.24
0.0001



ENSG00000131069
ACSS2
0.34
0.0000



ENSG00000131100
ATP6V1E1
0.46
0.0000



ENSG00000131165
CHMP1A
0.43
0.0000



ENSG00000131171
SH3BGRL
0.31
0.0000



ENSG00000131188
PRR7
0.54
0.0000



ENSG00000131196
NFATC1
0.38
0.0000



ENSG00000131236
CAP1
0.76
0.0000



ENSG00000131374
TBC1D5
0.19
0.0019



ENSG00000131389
SLC6A6
0.41
0.0000



ENSG00000131408
NR1H2
0.63
0.0000



ENSG00000131504
DIAPH1
0.62
0.0000



ENSG00000131634
TMEM204
0.38
0.0000



ENSG00000131653
TRAF7
0.43
0.0000



ENSG00000131711
MAP1B
0.30
0.0000



ENSG00000131725
WDR44
0.41
0.0000



ENSG00000131778
CHD1L
0.71
0.0000



ENSG00000131781
FMO5
0.37
0.0000



ENSG00000131791
PRKAB2
0.32
0.0000



ENSG00000131966
ACTR10
0.49
0.0000



ENSG00000132128
LRRC41
0.23
0.0002



ENSG00000132155
RAF1
0.31
0.0000



ENSG00000132376
INPP5K
0.51
0.0000



ENSG00000132471
WBP2
0.81
0.0000



ENSG00000132478
UNK
0.23
0.0002



ENSG00000132670
PTPRA
0.74
0.0000



ENSG00000132819
RBM38
0.51
0.0000



ENSG00000132824
SERINC3
0.61
0.0000



ENSG00000132906
CASP9
0.49
0.0000



ENSG00000132912
DCTN4
0.29
0.0000



ENSG00000132970
WASF3
0.32
0.0000



ENSG00000133030
MPRIP
0.17
0.0046



ENSG00000133069
TMCC2
0.56
0.0000



ENSG00000133193
FAM104A
0.34
0.0000



ENSG00000133243
BTBD2
0.49
0.0000



ENSG00000133275
CSNK1G2
0.17
0.0058



ENSG00000133317
LGALS12
0.59
0.0000



ENSG00000133318
RTN3
0.67
0.0000



ENSG00000133393
FOPNL
0.42
0.0000



ENSG00000133606
MKRN1
0.70
0.0000



ENSG00000133627
ACTR3B
0.57
0.0000



ENSG00000133872
TMEM66
0.25
0.0001



ENSG00000134070
IRAK2
0.31
0.0000



ENSG00000134108
ARL8B
0.23
0.0002



ENSG00000134198
TSPAN2
0.43
0.0000



ENSG00000134202
GSTM3
0.39
0.0000



ENSG00000134243
SORT1
0.41
0.0000



ENSG00000134278
SPIRE1
0.33
0.0000



ENSG00000134291
TMEM106C
0.43
0.0000



ENSG00000134297
PLEKHA8P1
0.35
0.0000



ENSG00000134308
YWHAQ
0.64
0.0000



ENSG00000134313
KIDINS220
0.35
0.0000



ENSG00000134318
ROCK2
0.43
0.0000



ENSG00000134352
IL6ST
0.53
0.0000



ENSG00000134452
FBXO18
0.27
0.0000



ENSG00000134548
C12orf39
0.64
0.0000



ENSG00000134602

0.39
0.0000



ENSG00000134668
SPOCD1
0.51
0.0000



ENSG00000134779
TPGS2
0.58
0.0000



ENSG00000134824
FADS2
0.40
0.0000



ENSG00000134882
UBAC2
0.72
0.0000



ENSG00000134900
TPP2
0.21
0.0006



ENSG00000134909
ARHGAP32
0.47
0.0000



ENSG00000134986
NREP
0.52
0.0000



ENSG00000134996
OSTF1
0.22
0.0004



ENSG00000135070
ISCA1
0.44
0.0000



ENSG00000135083
CCNJL
0.51
0.0000



ENSG00000135090
TAOK3
0.46
0.0000



ENSG00000135148
TRAFD1
0.18
0.0040



ENSG00000135218
CD36
0.66
0.0000



ENSG00000135334
AKIRIN2
0.37
0.0000



ENSG00000135404
CD63
0.22
0.0004



ENSG00000135604
STX11
0.40
0.0000



ENSG00000135709
KIAA0513
0.66
0.0000



ENSG00000135776
ABCB10
0.31
0.0000



ENSG00000135821
GLUL
0.61
0.0000



ENSG00000135838
NPL
0.43
0.0000



ENSG00000135862
LAMC1
0.28
0.0000



ENSG00000135919
SERPINE2
0.39
0.0000



ENSG00000135926
TMBIM1
0.79
0.0000



ENSG00000135932
CAB39
0.52
0.0000



ENSG00000136003
ISCU
0.30
0.0000



ENSG00000136021
SCYL2
0.60
0.0000



ENSG00000136048
DRAM1
0.27
0.0000



ENSG00000136156
ITM2B
0.58
0.0000



ENSG00000136205
TNS3
0.18
0.0041



ENSG00000136231
IGF2BP3
0.25
0.0000



ENSG00000136238
RAC1
0.25
0.0000



ENSG00000136247
ZDHHC4
0.52
0.0000



ENSG00000136279
DBNL
0.81
0.0000



ENSG00000136280
CCM2
0.36
0.0000



ENSG00000136295
TTYH3
0.54
0.0000



ENSG00000136404
TM6SF1
0.43
0.0000



ENSG00000136478
TEX2
0.35
0.0000



ENSG00000136731
UGGT1
0.20
0.0009



ENSG00000136754
ABI1
0.43
0.0000



ENSG00000136758
YME1L1
0.17
0.0055



ENSG00000136811
ODF2
0.20
0.0008



ENSG00000136854
STXBP1
0.34
0.0000



ENSG00000136856
SLC2A8
0.31
0.0000



ENSG00000136861
CDK5RAP2
0.18
0.0029



ENSG00000136878
USP20
0.24
0.0001



ENSG00000137075
RNF38
0.30
0.0000



ENSG00000137076
TLN1
0.62
0.0000



ENSG00000137145
DENND4C
0.49
0.0000



ENSG00000137198
GMPR
0.75
0.0000



ENSG00000137207
YIPF3
0.46
0.0000



ENSG00000137225
CAPN11
0.48
0.0000



ENSG00000137266
SLC22A23
0.50
0.0000



ENSG00000137312
FLOT1
0.19
0.0018



ENSG00000137449
CPEB2
0.31
0.0000



ENSG00000137486
ARRB1
0.73
0.0000



ENSG00000137672
TRPC6
0.42
0.0000



ENSG00000137801
THBS1
0.73
0.0000



ENSG00000137817
PARP6
0.25
0.0000



ENSG00000137822
TUBGCP4
0.46
0.0000



ENSG00000137831
UACA
0.24
0.0001



ENSG00000137845
ADAM10
0.35
0.0000



ENSG00000137941
TTLL7
0.44
0.0000



ENSG00000137942
FNBP1L
0.40
0.0000



ENSG00000138031
ADCY3
0.60
0.0000



ENSG00000138071
ACTR2
0.19
0.0018



ENSG00000138107
ACTR1A
0.25
0.0000



ENSG00000138279
ANXA7
0.62
0.0000



ENSG00000138293
NCOA4
0.55
0.0000



ENSG00000138434
SSFA2
0.58
0.0000



ENSG00000138443
ABI2
0.64
0.0000



ENSG00000138449
SLC40A1
0.49
0.0000



ENSG00000138594
TMOD3
0.42
0.0000



ENSG00000138642
HERC6
0.18
0.0036



ENSG00000138698
RAP1GDS1
0.41
0.0000



ENSG00000138722
MMRN1
0.71
0.0000



ENSG00000138735
PDE5A
0.50
0.0000



ENSG00000138756
BMP2K
0.31
0.0000



ENSG00000138757
G3BP2
0.47
0.0000



ENSG00000138758
SEPT11
0.33
0.0000



ENSG00000138794
CASP6
0.43
0.0000



ENSG00000138796
HADH
0.45
0.0000



ENSG00000138798
EGF
0.78
0.0000



ENSG00000138801
PAPSS1
0.41
0.0000



ENSG00000138821
SLC39A8
0.23
0.0002



ENSG00000138835
RGS3
0.21
0.0007



ENSG00000138867
GUCD1
0.47
0.0000



ENSG00000139083
ETV6
0.46
0.0000



ENSG00000139323
POC1B
0.42
0.0000



ENSG00000139433
GLTP
0.20
0.0008



ENSG00000139597
N4BP2L1
0.40
0.0000



ENSG00000139644
TMBIM6
0.48
0.0000



ENSG00000139722
VPS37B
0.39
0.0000



ENSG00000139835
GRTP1
0.36
0.0000



ENSG00000139946
PELI2
0.53
0.0000



ENSG00000139970
RTN1
0.58
0.0000



ENSG00000139990
DCAF5
0.46
0.0000



ENSG00000140022
STON2
0.53
0.0000



ENSG00000140299
BNIP2
0.35
0.0000



ENSG00000140374
ETFA
0.48
0.0000



ENSG00000140416
TPM1
0.60
0.0000



ENSG00000140443
IGF1R
0.33
0.0000



ENSG00000140474
ULK3
0.19
0.0019



ENSG00000140479
PCSK6
0.84
0.0000



ENSG00000140497
SCAMP2
0.23
0.0002



ENSG00000140553
UNC45A
0.76
0.0000



ENSG00000140564
FURIN
0.59
0.0000



ENSG00000140632
GLYR1
0.40
0.0000



ENSG00000140682
TGFB1I1
0.76
0.0000



ENSG00000140830
TXNL4B
0.47
0.0000



ENSG00000140848
CPNE2
0.52
0.0000



ENSG00000140854
KATNB1
0.57
0.0000



ENSG00000140859
KIFC3
0.71
0.0000



ENSG00000140931
CMTM3
0.41
0.0000



ENSG00000140932
CMTM2
0.30
0.0000



ENSG00000140941
MAP1LC3B
0.35
0.0000



ENSG00000141027
NCOR1
0.43
0.0000



ENSG00000141030
COPS3
0.27
0.0000



ENSG00000141179
PCTP
0.46
0.0000



ENSG00000141198
TOM1L1
0.45
0.0000



ENSG00000141279
NPEPPS
0.49
0.0000



ENSG00000141429
GALNT1
0.32
0.0000



ENSG00000141452
C18orf8
0.52
0.0000



ENSG00000141503
MINK1
0.65
0.0000



ENSG00000141580
WDR45B
0.50
0.0000



ENSG00000141759
TXNL4A
0.32
0.0000



ENSG00000141854

0.18
0.0034



ENSG00000141959
PFKL
0.54
0.0000



ENSG00000142002
DPP9
0.27
0.0000



ENSG00000142046
TMEM91
0.24
0.0001



ENSG00000142192
APP
0.53
0.0000



ENSG00000142208
AKT1
0.40
0.0000



ENSG00000142327
RNPEPL1
0.63
0.0000



ENSG00000142657
PGD
0.74
0.0000



ENSG00000142669
SH3BGRL3
0.45
0.0000



ENSG00000142694
EVA1B
0.34
0.0000



ENSG00000142794
NBPF3
0.30
0.0000



ENSG00000142875
PRKACB
0.45
0.0000



ENSG00000142892
PIGK
0.24
0.0001



ENSG00000142949
PTPRF
0.33
0.0000



ENSG00000142961
MOB3C
0.46
0.0000



ENSG00000143149
ALDH9A1
0.32
0.0000



ENSG00000143158
MPC2
0.27
0.0000



ENSG00000143162
CREG1
0.55
0.0000



ENSG00000143164
DCAF6
0.49
0.0000



ENSG00000143226
FCGR2A
0.47
0.0000



ENSG00000143321
HDGF
0.59
0.0000



ENSG00000143324
XPR1
0.25
0.0000



ENSG00000143353
LYPLAL1
0.23
0.0002



ENSG00000143363
PRUNE
0.76
0.0000



ENSG00000143409
FAM63A
0.79
0.0000



ENSG00000143418
CERS2
0.81
0.0000



ENSG00000143437
ARNT
0.27
0.0000



ENSG00000143499
SMYD2
0.67
0.0000



ENSG00000143545
RAB13
0.51
0.0000



ENSG00000143549
TPM3
0.64
0.0000



ENSG00000143595
AQP10
0.68
0.0000



ENSG00000143612
C1orf43
0.53
0.0000



ENSG00000143622
RIT1
0.37
0.0000



ENSG00000143641
GALNT2
0.34
0.0000



ENSG00000143727
ACP1
0.26
0.0000



ENSG00000143761
ARF1
0.76
0.0000



ENSG00000143776
CDC42BPA
0.34
0.0000



ENSG00000143797
MBOAT2
0.66
0.0000



ENSG00000143889
HNRNPLL
0.45
0.0000



ENSG00000143891
GALM
0.49
0.0000



ENSG00000143952
VPS54
0.22
0.0003



ENSG00000143995
MEIS1
0.44
0.0000



ENSG00000144118
RALB
0.23
0.0001



ENSG00000144455
SUMF1
0.23
0.0002



ENSG00000144468
RHBDD1
0.61
0.0000



ENSG00000144560
VGLL4
0.59
0.0000



ENSG00000144567
FAM134A
0.40
0.0000



ENSG00000144579
CTDSP1
0.25
0.0001



ENSG00000144677
CTDSPL
0.66
0.0000



ENSG00000144746
ARL6IP5
0.27
0.0000



ENSG00000144893
MED12L
0.47
0.0000



ENSG00000145022
TCTA
0.70
0.0000



ENSG00000145335
SNCA
0.60
0.0000



ENSG00000145431
PDGFC
0.50
0.0000



ENSG00000145685
LHFPL2
0.46
0.0000



ENSG00000145687
SSBP2
0.41
0.0000



ENSG00000145703
IQGAP2
0.43
0.0000



ENSG00000145730
PAM
0.35
0.0000



ENSG00000145740
SLC30A5
0.52
0.0000



ENSG00000145916
RMND5B
0.18
0.0042



ENSG00000145982
FARS2
0.21
0.0005



ENSG00000146094
DOK3
0.44
0.0000



ENSG00000146112
PPP1R18
0.43
0.0000



ENSG00000146376
ARHGAP18
0.52
0.0000



ENSG00000146416
AIG1
0.50
0.0000



ENSG00000146535
GNA12
0.60
0.0000



ENSG00000146540
C7orf50
0.36
0.0000



ENSG00000146834
MEPCE
0.49
0.0000



ENSG00000146858
ZC3HAV1L
0.27
0.0000



ENSG00000146859
TMEM140
0.41
0.0000



ENSG00000146963
C7orf55-LUC7L2
0.37
0.0000



ENSG00000147036
LANCL3
0.54
0.0000



ENSG00000147065
MSN
0.68
0.0000



ENSG00000147394
ZNF185
0.83
0.0000



ENSG00000147400
CETN2
0.38
0.0000



ENSG00000147443
DOK2
0.72
0.0000



ENSG00000147526
TACC1
0.47
0.0000



ENSG00000147535
PPAPDC1B
0.19
0.0022



ENSG00000147650
LRP12
0.45
0.0000



ENSG00000147804
SLC39A4
0.24
0.0001



ENSG00000147853
AK3
0.54
0.0000



ENSG00000147854
UHRF2
0.39
0.0000



ENSG00000147862
NFIB
0.45
0.0000



ENSG00000148120
C9orf3
0.45
0.0000



ENSG00000148175
STOM
0.79
0.0000



ENSG00000148180
GSN
0.78
0.0000



ENSG00000148248
SURF4
0.21
0.0005



ENSG00000148341
SH3GLB2
0.27
0.0000



ENSG00000148343
FAM73B
0.60
0.0000



ENSG00000148426
PROSER2
0.51
0.0000



ENSG00000148484
RSU1
0.46
0.0000



ENSG00000148488
ST8SIA6
0.24
0.0001



ENSG00000148498
PARD3
0.60
0.0000



ENSG00000148700
ADD3
0.66
0.0000



ENSG00000148834
GSTO1
0.46
0.0000



ENSG00000148908
RGS10
0.32
0.0000



ENSG00000149084
HSD17B12
0.42
0.0000



ENSG00000149091
DGKZ
0.29
0.0000



ENSG00000149131
SERPING1
0.32
0.0000



ENSG00000149177
PTPRJ
0.48
0.0000



ENSG00000149179
C11orf49
0.52
0.0000



ENSG00000149218
ENDOD1
0.68
0.0000



ENSG00000149243
KLHL35
0.27
0.0000



ENSG00000149357
LAMTOR1
0.61
0.0000



ENSG00000149476
DAK
0.36
0.0000



ENSG00000149485
FADS1
0.46
0.0000



ENSG00000149564
ESAM
0.83
0.0000



ENSG00000149600
COMMD7
0.44
0.0000



ENSG00000149781
FERMT3
0.85
0.0000



ENSG00000149925
ALDOA
0.66
0.0000



ENSG00000149932
TMEM219
0.46
0.0000



ENSG00000150054
MPP7
0.17
0.0072



ENSG00000150093
ITGB1
0.79
0.0000



ENSG00000150403
TMCO3
0.41
0.0000



ENSG00000150637
CD226
0.62
0.0000



ENSG00000150681
RGS18
0.23
0.0002



ENSG00000150712
MTMR12
0.59
0.0000



ENSG00000150867
PIP4K2A
0.56
0.0000



ENSG00000150991
UBC
0.20
0.0009



ENSG00000150995
ITPR1
0.17
0.0057



ENSG00000151136
BTBD11
0.21
0.0007



ENSG00000151148
UBE3B
0.54
0.0000



ENSG00000151247
EIF4E
0.39
0.0000



ENSG00000151327
FAM177A1
0.20
0.0010



ENSG00000151414
NEK7
0.40
0.0000



ENSG00000151502
VPS26B
0.50
0.0000



ENSG00000151665
PIGF
0.17
0.0056



ENSG00000151690
MFSD6
0.46
0.0000



ENSG00000151693
ASAP2
0.44
0.0000



ENSG00000151702
FLI1
0.43
0.0000



ENSG00000151743
AMN1
0.27
0.0000



ENSG00000151748
SAV1
0.53
0.0000



ENSG00000151779
NBAS
0.28
0.0000



ENSG00000152061
RABGAP1L
0.34
0.0000



ENSG00000152128
TMEM163
0.28
0.0000



ENSG00000152229
PSTPIP2
0.58
0.0000



ENSG00000152256
PDK1
0.51
0.0000



ENSG00000152291
TGOLN2
0.32
0.0000



ENSG00000152332
UHMK1
0.31
0.0000



ENSG00000152484
USP12
0.39
0.0000



ENSG00000152556
PFKM
0.57
0.0000



ENSG00000152601
MBNL1
0.61
0.0000



ENSG00000152620
NADK2
0.22
0.0003



ENSG00000152642
GPD1L
0.44
0.0000



ENSG00000152952
PLOD2
0.61
0.0000



ENSG00000153064
BANK1
0.38
0.0000



ENSG00000153071
DAB2
0.47
0.0000



ENSG00000153162
BMP6
0.60
0.0000



ENSG00000153214
TMEM87B
0.18
0.0029



ENSG00000153317
ASAP1
0.41
0.0000



ENSG00000153561
RMND5A
0.42
0.0000



ENSG00000153815
CMIP
0.32
0.0000



ENSG00000153827
TRIP12
0.50
0.0000



ENSG00000154122
ANKH
0.19
0.0025



ENSG00000154127
UBASH3B
0.39
0.0000



ENSG00000154146
NRGN
0.52
0.0000



ENSG00000154188
ANGPT1
0.27
0.0000



ENSG00000154229
PRKCA
0.28
0.0000



ENSG00000154310
TNIK
0.37
0.0000



ENSG00000154917
RAB6B
0.47
0.0000



ENSG00000154978
VOPP1
0.41
0.0000



ENSG00000155096
AZIN1
0.63
0.0000



ENSG00000155099
TMEM55A
0.46
0.0000



ENSG00000155115
GTF3C6
0.26
0.0000



ENSG00000155158
TTC39B
0.47
0.0000



ENSG00000155366
RHOC
0.48
0.0000



ENSG00000155729
KCTD18
0.43
0.0000



ENSG00000155849
ELMO1
0.38
0.0000



ENSG00000155975
VPS37A
0.35
0.0000



ENSG00000155984
TMEM185A
0.72
0.0000



ENSG00000156011
PSD3
0.44
0.0000



ENSG00000156026
MCU
0.48
0.0000



ENSG00000156052
GNAQ
0.72
0.0000



ENSG00000156136
DCK
0.20
0.0012



ENSG00000156206
C15orf26
0.53
0.0000



ENSG00000156381
ANKRD9
0.69
0.0000



ENSG00000156504
FAM122B
0.40
0.0000



ENSG00000156515
HK1
0.73
0.0000



ENSG00000156535
CD109
0.45
0.0000



ENSG00000156639
ZFAND3
0.51
0.0000



ENSG00000156642
NPTN
0.59
0.0000



ENSG00000156860
FBRS
0.47
0.0000



ENSG00000156875
HIAT1
0.22
0.0003



ENSG00000156931
VPS8
0.47
0.0000



ENSG00000157045
NTAN1
0.51
0.0000



ENSG00000157216
SSBP3
0.27
0.0000



ENSG00000157303
SUSD3
0.58
0.0000



ENSG00000157514
TSC22D3
0.63
0.0000



ENSG00000157538
DSCR3
0.50
0.0000



ENSG00000157570
TSPAN18
0.46
0.0000



ENSG00000157600
TMEM164
0.33
0.0000



ENSG00000157837
SPPL3
0.70
0.0000



ENSG00000157978
LDLRAP1
0.74
0.0000



ENSG00000158019
BRE
0.45
0.0000



ENSG00000158109
TPRG1L
0.48
0.0000



ENSG00000158290
CUL4B
0.18
0.0033



ENSG00000158457
TSPAN33
0.81
0.0000



ENSG00000158552
ZFAND2B
0.42
0.0000



ENSG00000158560
DYNC1I1
0.46
0.0000



ENSG00000158604
TMED4
0.34
0.0000



ENSG00000158710
TAGLN2
0.75
0.0000



ENSG00000158793
NIT1
0.21
0.0005



ENSG00000158796
DEDD
0.64
0.0000



ENSG00000158856
DMTN
0.62
0.0000



ENSG00000158869
FCER1G
0.23
0.0001



ENSG00000158985
CDC42SE2
0.29
0.0000



ENSG00000159023
EPB41
0.17
0.0071



ENSG00000159069
FBXW5
0.81
0.0000



ENSG00000159176
CSRP1
0.57
0.0000



ENSG00000159202
UBE2Z
0.32
0.0000



ENSG00000159335
PTMS
0.29
0.0000



ENSG00000159339
PADI4
0.23
0.0001



ENSG00000159346
ADIPOR1
0.74
0.0000



ENSG00000159348
CYB5R1
0.76
0.0000



ENSG00000159363
ATP13A2
0.29
0.0000



ENSG00000159461
AMFR
0.69
0.0000



ENSG00000159592
GPBP1L1
0.28
0.0000



ENSG00000159593
NAE1
0.20
0.0009



ENSG00000159625
CCDC135
0.41
0.0000



ENSG00000159658
EFCAB14
0.45
0.0000



ENSG00000159692
CTBP1
0.24
0.0001



ENSG00000159720
ATP6V0D1
0.28
0.0000



ENSG00000159840
ZYX
0.77
0.0000



ENSG00000160013
PTGIR
0.59
0.0000



ENSG00000160014
CALM3
0.41
0.0000



ENSG00000160058
BSDC1
0.68
0.0000



ENSG00000160145
KALRN
0.35
0.0000



ENSG00000160188
RSPH1
0.32
0.0000



ENSG00000160190
SLC37A1
0.58
0.0000



ENSG00000160211
G6PD
0.47
0.0000



ENSG00000160221
C21orf33
0.19
0.0020



ENSG00000160298
C21orf58
0.49
0.0000



ENSG00000160310
PRMT2
0.69
0.0000



ENSG00000160410
SHKBP1
0.27
0.0000



ENSG00000160445
ZER1
0.60
0.0000



ENSG00000160446
ZDHHC12
0.22
0.0003



ENSG00000160613
PCSK7
0.33
0.0000



ENSG00000160691
SHC1
0.37
0.0000



ENSG00000160703
NLRX1
0.47
0.0000



ENSG00000160714
UBE2Q1
0.42
0.0000



ENSG00000160789
LMNA
0.80
0.0000



ENSG00000160796
NBEAL2
0.17
0.0062



ENSG00000160948
VPS28
0.26
0.0000



ENSG00000160991
ORAI2
0.70
0.0000



ENSG00000160999
SH2B2
0.32
0.0000



ENSG00000161011
SQSTM1
0.69
0.0000



ENSG00000161013
MGAT4B
0.69
0.0000



ENSG00000161202
DVL3
0.17
0.0058



ENSG00000161203
AP2M1
0.87
0.0000



ENSG00000161547
SRSF2
0.29
0.0000



ENSG00000161570
CCL5
0.30
0.0000



ENSG00000161911
TREML1
0.74
0.0000



ENSG00000161921
CXCL16
0.17
0.0051



ENSG00000161999
JMJD8
0.53
0.0000



ENSG00000162368
CMPK1
0.73
0.0000



ENSG00000162434
JAK1
0.23
0.0002



ENSG00000162511
LAPTM5
0.17
0.0067



ENSG00000162517
PEF1
0.43
0.0000



ENSG00000162521
RBBP4
0.25
0.0000



ENSG00000162704
ARPC5
0.49
0.0000



ENSG00000162722
TRIM58
0.77
0.0000



ENSG00000162852
CNST
0.40
0.0000



ENSG00000162909
CAPN2
0.78
0.0000



ENSG00000162923
WDR26
0.52
0.0000



ENSG00000163041
H3F3A
0.18
0.0029



ENSG00000163110
PDLIM5
0.50
0.0000



ENSG00000163297
ANTXR2
0.24
0.0001



ENSG00000163320
CGGBP1
0.32
0.0000



ENSG00000163344
PMVK
0.20
0.0014



ENSG00000163349
HIPK1
0.18
0.0027



ENSG00000163359
COL6A3
0.53
0.0000



ENSG00000163374
YY1AP1
0.39
0.0000



ENSG00000163430
FSTL1
0.61
0.0000



ENSG00000163444
TMEM183A
0.19
0.0022



ENSG00000163466
ARPC2
0.18
0.0031



ENSG00000163536
SERPINI1
0.23
0.0002



ENSG00000163634
THOC7
0.18
0.0034



ENSG00000163681
SLMAP
0.29
0.0000



ENSG00000163703
CRELD1
0.37
0.0000



ENSG00000163734
CXCL3
0.36
0.0000



ENSG00000163735
CXCL5
0.46
0.0000



ENSG00000163736
PPBP
0.41
0.0000



ENSG00000163737
PF4
0.26
0.0000



ENSG00000163738
MTHFD2L
0.38
0.0000



ENSG00000163743
RCHY1
0.27
0.0000



ENSG00000163812
ZDHHC3
0.42
0.0000



ENSG00000163898
LIPH
0.40
0.0000



ENSG00000163930
BAP1
0.43
0.0000



ENSG00000163932
PRKCD
0.64
0.0000



ENSG00000163950
SLBP
0.38
0.0000



ENSG00000164088
PPM1M
0.17
0.0048



ENSG00000164096
C4orf3
0.17
0.0058



ENSG00000164116
GUCY1A3
0.68
0.0000



ENSG00000164118
CEP44
0.27
0.0000



ENSG00000164120
HPGD
0.25
0.0000



ENSG00000164171
ITGA2
0.36
0.0000



ENSG00000164181
ELOVL7
0.65
0.0000



ENSG00000164305
CASP3
0.41
0.0000



ENSG00000164506
STXBP5
0.39
0.0000



ENSG00000164574
GALNT10
0.50
0.0000



ENSG00000164659
KIAA1324L
0.23
0.0001



ENSG00000164924
YWHAZ
0.66
0.0000



ENSG00000165006
UBAP1
0.56
0.0000



ENSG00000165025
SYK
0.31
0.0000



ENSG00000165119
HNRNPK
0.40
0.0000



ENSG00000165169
DYNLT3
0.39
0.0000



ENSG00000165233
C9orf89
0.41
0.0000



ENSG00000165244
ZNF367
0.41
0.0000



ENSG00000165280
VCP
0.58
0.0000



ENSG00000165309
ARMC3
0.29
0.0000



ENSG00000165389
SPTSSA
0.29
0.0000



ENSG00000165406
MARCH8
0.22
0.0003



ENSG00000165434
PGM2L1
0.40
0.0000



ENSG00000165458
INPPL1
0.43
0.0000



ENSG00000165475
CRYL1
0.66
0.0000



ENSG00000165476
REEP3
0.17
0.0070



ENSG00000165637
VDAC2
0.29
0.0000



ENSG00000165646
SLC18A2
0.50
0.0000



ENSG00000165682
CLEC1B
0.42
0.0000



ENSG00000165702
GFI1B
0.67
0.0000



ENSG00000165775
FUNDC2
0.33
0.0000



ENSG00000165914
TTC7B
0.86
0.0000



ENSG00000165929
TC2N
0.39
0.0000



ENSG00000165948
IFI27L1
0.31
0.0000



ENSG00000165959
CLMN
0.21
0.0007



ENSG00000166035
LIPC
0.34
0.0000



ENSG00000166086
JAM3
0.65
0.0000



ENSG00000166091
CMTM5
0.63
0.0000



ENSG00000166165
CKB
0.31
0.0000



ENSG00000166171
DPCD
0.36
0.0000



ENSG00000166311
SMPD1
0.38
0.0000



ENSG00000166337
TAF10
0.25
0.0001



ENSG00000166340
TPP1
0.87
0.0000



ENSG00000166452
AKIP1
0.27
0.0000



ENSG00000166483
WEE1
0.25
0.0000



ENSG00000166501
PRKCB
0.87
0.0000



ENSG00000166557
TMED3
0.42
0.0000



ENSG00000166681
NGFRAP1
0.24
0.0001



ENSG00000166710
B2M
0.18
0.0038



ENSG00000166831
RBPMS2
0.59
0.0000



ENSG00000166848
TERF2IP
0.37
0.0000



ENSG00000166887
VPS39
0.38
0.0000



ENSG00000166912
MTMR10
0.38
0.0000



ENSG00000166925
TSC22D4
0.19
0.0021



ENSG00000166946
CCNDBP1
0.38
0.0000



ENSG00000166963
MAP1A
0.66
0.0000



ENSG00000166974
MAPRE2
0.73
0.0000



ENSG00000166979
EVA1C
0.45
0.0000



ENSG00000167004
PDIA3
0.21
0.0005



ENSG00000167005
NUDT21
0.28
0.0000



ENSG00000167081
PBX3
0.46
0.0000



ENSG00000167100
SAMD14
0.62
0.0000



ENSG00000167110
GOLGA2
0.29
0.0000



ENSG00000167112
TRUB2
0.34
0.0000



ENSG00000167113
COQ4
0.38
0.0000



ENSG00000167114
SLC27A4
0.42
0.0000



ENSG00000167210
LOXHD1
0.35
0.0000



ENSG00000167220
HDHD2
0.19
0.0021



ENSG00000167323
STIM1
0.61
0.0000



ENSG00000167414
GNG8
0.18
0.0027



ENSG00000167460
TPM4
0.73
0.0000



ENSG00000167461
RAB8A
0.60
0.0000



ENSG00000167468
GPX4
0.40
0.0000



ENSG00000167491
GATAD2A
0.48
0.0000



ENSG00000167522
ANKRD11
0.56
0.0000



ENSG00000167553
TUBA1C
0.62
0.0000



ENSG00000167632
TRAPPC9
0.56
0.0000



ENSG00000167642
SPINT2
0.76
0.0000



ENSG00000167645
YIF1B
0.73
0.0000



ENSG00000167657
DAPK3
0.36
0.0000



ENSG00000167671
UBXN6
0.42
0.0000



ENSG00000167705
RILP
0.40
0.0000



ENSG00000167740
CYB5D2
0.54
0.0000



ENSG00000167972
ABCA3
0.58
0.0000



ENSG00000167996
FTH1
0.22
0.0003



ENSG00000168002
POLR2G
0.26
0.0000



ENSG00000168066
SF1
0.24
0.0001



ENSG00000168067
MAP4K2
0.75
0.0000



ENSG00000168118
RAB4A
0.63
0.0000



ENSG00000168172
HOOK3
0.21
0.0005



ENSG00000168175
MAPK1IP1L
0.22
0.0003



ENSG00000168256
NKIRAS2
0.59
0.0000



ENSG00000168300
PCMTD1
0.31
0.0000



ENSG00000168374
ARF4
0.47
0.0000



ENSG00000168385
SEPT2
0.74
0.0000



ENSG00000168405
CMAHP
0.30
0.0000



ENSG00000168461
RAB31
0.39
0.0000



ENSG00000168497
SDPR
0.64
0.0000



ENSG00000168610
STAT3
0.56
0.0000



ENSG00000168615
ADAM9
0.66
0.0000



ENSG00000168710
AHCYL1
0.17
0.0068



ENSG00000168734
PKIG
0.53
0.0000



ENSG00000168765
GSTM4
0.53
0.0000



ENSG00000168883
USP39
0.55
0.0000



ENSG00000168904
LRRC28
0.36
0.0000



ENSG00000168958
MFF
0.34
0.0000



ENSG00000168994
PXDC1
0.40
0.0000



ENSG00000169032
MAP2K1
0.24
0.0001



ENSG00000169057
MECP2
0.19
0.0025



ENSG00000169129
AFAP1L2
0.33
0.0000



ENSG00000169241
SLC50A1
0.61
0.0000



ENSG00000169247
SH3TC2
0.51
0.0000



ENSG00000169313
P2RY12
0.28
0.0000



ENSG00000169398
PTK2
0.74
0.0000



ENSG00000169490
TM2D2
0.45
0.0000



ENSG00000169504
CLIC4
0.49
0.0000



ENSG00000169554
ZEB2
0.25
0.0000



ENSG00000169704
GP9
0.47
0.0000



ENSG00000169756
LIMS1
0.61
0.0000



ENSG00000169764
UGP2
0.51
0.0000



ENSG00000169813
HNRNPF
0.31
0.0000



ENSG00000169891
REPS2
0.37
0.0000



ENSG00000169925
BRD3
0.62
0.0000



ENSG00000170035
UBE2E3
0.69
0.0000



ENSG00000170043
TRAPPC1
0.44
0.0000



ENSG00000170100
ZNF778
0.18
0.0036



ENSG00000170113
NIPA1
0.34
0.0000



ENSG00000170242
USP47
0.39
0.0000



ENSG00000170271
FAXDC2
0.84
0.0000



ENSG00000170275
CRTAP
0.33
0.0000



ENSG00000170315
UBB
0.19
0.0020



ENSG00000170365
SMAD1
0.20
0.0010



ENSG00000170525
PFKFB3
0.17
0.0053



ENSG00000170542
SERPINB9
0.20
0.0011



ENSG00000171033
PKIA
0.33
0.0000



ENSG00000171148
TADA3
0.71
0.0000



ENSG00000171159
C9orf16
0.35
0.0000



ENSG00000171161
ZNF672
0.37
0.0000



ENSG00000171206
TRIM8
0.31
0.0000



ENSG00000171314
PGAM1
0.31
0.0000



ENSG00000171552
BCL2L1
0.67
0.0000



ENSG00000171611
PTCRA
0.46
0.0000



ENSG00000171720
HDAC3
0.44
0.0000



ENSG00000171735
CAMTA1
0.18
0.0040



ENSG00000171843
MLLT3
0.36
0.0000



ENSG00000171928
TVP23B
0.31
0.0000



ENSG00000172037
LAMB2
0.43
0.0000



ENSG00000172057
ORMDL3
0.55
0.0000



ENSG00000172115
CYCS
0.20
0.0009



ENSG00000172159
FRMD3
0.29
0.0000



ENSG00000172164
SNTB1
0.47
0.0000



ENSG00000172270
BSG
0.65
0.0000



ENSG00000172375
C2CD2L
0.31
0.0000



ENSG00000172426
RSPH9
0.38
0.0000



ENSG00000172432
GTPBP2
0.63
0.0000



ENSG00000172466
ZNF24
0.20
0.0011



ENSG00000172493
AFF1
0.21
0.0008



ENSG00000172543
CTSW
0.33
0.0000



ENSG00000172572
PDE3A
0.25
0.0001



ENSG00000172578
KLHL6
0.44
0.0000



ENSG00000172667
ZMAT3
0.46
0.0000



ENSG00000172725
CORO1B
0.56
0.0000



ENSG00000172757
CFL1
0.53
0.0000



ENSG00000172794
RAB37
0.85
0.0000



ENSG00000172819
RARG
0.57
0.0000



ENSG00000172889
EGFL7
0.67
0.0000



ENSG00000172893
DHCR7
0.51
0.0000



ENSG00000172927
MYEOV
0.22
0.0002



ENSG00000172965
MIR4435-1HG
0.23
0.0001



ENSG00000172992
DCAKD
0.61
0.0000



ENSG00000173064
HECTD4
0.19
0.0016



ENSG00000173083
HPSE
0.47
0.0000



ENSG00000173210
ABLIM3
0.82
0.0000



ENSG00000173264
GPR137
0.64
0.0000



ENSG00000173542
MOB1B
0.40
0.0000



ENSG00000173598
NUDT4
0.30
0.0000



ENSG00000173660
UQCRH
0.24
0.0001



ENSG00000173757
STAT5B
0.45
0.0000



ENSG00000173812
EIF1
0.23
0.0002



ENSG00000173852
DPY19L1
0.61
0.0000



ENSG00000173960
UBXN2A
0.30
0.0000



ENSG00000173992
CCS
0.19
0.0020



ENSG00000174083
PIK3R6
0.34
0.0000



ENSG00000174099
MSRB3
0.52
0.0000



ENSG00000174175
SELP
1.00
0.0000



ENSG00000174365
SNHG11
0.40
0.0000



ENSG00000174437
ATP2A2
0.40
0.0000



ENSG00000174456
C12orf76
0.43
0.0000



ENSG00000174574
AKIRIN1
0.57
0.0000



ENSG00000174788
PCP2
0.33
0.0000



ENSG00000174915
PTDSS2
0.35
0.0000



ENSG00000175063
UBE2C
0.26
0.0000



ENSG00000175115
PACS1
0.48
0.0000



ENSG00000175155
YPEL2
0.31
0.0000



ENSG00000175161
CADM2
0.18
0.0043



ENSG00000175166
PSMD2
0.72
0.0000



ENSG00000175203
DCTN2
0.68
0.0000



ENSG00000175215
CTDSP2
0.52
0.0000



ENSG00000175216
CKAP5
0.24
0.0001



ENSG00000175220
ARHGAP1
0.26
0.0000



ENSG00000175221
MED16
0.39
0.0000



ENSG00000175224
ATG13
0.35
0.0000



ENSG00000175294
CATSPER1
0.20
0.0013



ENSG00000175324
LSM1
0.33
0.0000



ENSG00000175348
TMEM9B
0.40
0.0000



ENSG00000175387
SMAD2
0.78
0.0000



ENSG00000175470
PPP2R2D
0.38
0.0000



ENSG00000175471
MCTP1
0.71
0.0000



ENSG00000175567
UCP2
0.39
0.0000



ENSG00000175582
RAB6A
0.72
0.0000



ENSG00000175662
TOM1L2
0.38
0.0000



ENSG00000175727
MLXIP
0.61
0.0000



ENSG00000175826
CTDNEP1
0.25
0.0000



ENSG00000175854
SWI5
0.27
0.0000



ENSG00000175931
UBE2O
0.48
0.0000



ENSG00000175984
DENND2C
0.24
0.0001



ENSG00000176108
CHMP6
0.60
0.0000



ENSG00000176170
SPHK1
0.65
0.0000



ENSG00000176171
BNIP3
0.23
0.0001



ENSG00000176407
KCMF1
0.45
0.0000



ENSG00000176463
SLCO3A1
0.35
0.0000



ENSG00000176783
RUFY1
0.43
0.0000



ENSG00000176871
WSB2
0.54
0.0000



ENSG00000176953
NFATC2IP
0.19
0.0021



ENSG00000177076
ACER2
0.43
0.0000



ENSG00000177119
ANO6
0.68
0.0000



ENSG00000177156
TALDO1
0.59
0.0000



ENSG00000177324
BEND2
0.47
0.0000



ENSG00000177370
TIMM22
0.29
0.0000



ENSG00000177425
PAWR
0.19
0.0023



ENSG00000177479
ARIH2
0.21
0.0005



ENSG00000177565
TBL1XR1
0.22
0.0003



ENSG00000177663
IL17RA
0.21
0.0006



ENSG00000177697
CD151
0.70
0.0000



ENSG00000177731
FLII
0.69
0.0000



ENSG00000177885
GRB2
0.33
0.0000



ENSG00000177963
RIC8A
0.41
0.0000



ENSG00000177981
ASB8
0.48
0.0000



ENSG00000178057
NDUFAF3
0.50
0.0000



ENSG00000178585
CTNNBIP1
0.52
0.0000



ENSG00000178927
C17orf62
0.37
0.0000



ENSG00000178980
SEPW1
0.21
0.0008



ENSG00000179051
RCC2
0.22
0.0003



ENSG00000179348
GATA2
0.47
0.0000



ENSG00000179361
ARID3B
0.47
0.0000



ENSG00000179364
PACS2
0.58
0.0000



ENSG00000179526
SHARPIN
0.56
0.0000



ENSG00000179632
MAF1
0.74
0.0000



ENSG00000180190
TDRP
0.64
0.0000



ENSG00000180233
ZNRF2
0.34
0.0000



ENSG00000180354
MTURN
0.59
0.0000



ENSG00000180448
HMHA1
0.65
0.0000



ENSG00000180573
HIST1H2AC
0.51
0.0000



ENSG00000180596
HIST1H2BC
0.29
0.0000



ENSG00000180628
PCGF5
0.48
0.0000



ENSG00000180694
TMEM64
0.57
0.0000



ENSG00000180879
SSR4
0.34
0.0000



ENSG00000181016
LSMEM1
0.32
0.0000



ENSG00000181061
HIGD1A
0.43
0.0000



ENSG00000181104
F2R
0.59
0.0000



ENSG00000181458
TMEM45A
0.23
0.0002



ENSG00000181704
YIPF6
0.34
0.0000



ENSG00000181804
SLC9A9
0.26
0.0000



ENSG00000182048
TRPC2
0.48
0.0000



ENSG00000182054
IDH2
0.20
0.0011



ENSG00000182093
WRB
0.46
0.0000



ENSG00000182134
TDRKH
0.24
0.0001



ENSG00000182149
IST1
0.17
0.0055



ENSG00000182179
UBA7
0.54
0.0000



ENSG00000182208
MOB2
0.56
0.0000



ENSG00000182220
ATP6AP2
0.53
0.0000



ENSG00000182287
AP1S2
0.34
0.0000



ENSG00000182400
TRAPPC6B
0.21
0.0006



ENSG00000182446
NPLOC4
0.20
0.0014



ENSG00000182500
ORAI1
0.49
0.0000



ENSG00000182551
ADI1
0.56
0.0000



ENSG00000182568
SATB1
0.23
0.0001



ENSG00000182732
RGS6
0.66
0.0000



ENSG00000182934
SRPR
0.61
0.0000



ENSG00000183044
ABAT
0.44
0.0000



ENSG00000183137
CEP57L1
0.21
0.0005



ENSG00000183255
PTTG1IP
0.67
0.0000



ENSG00000183283
DAZAP2
0.59
0.0000



ENSG00000183386
FHL3
0.22
0.0003



ENSG00000183576
SETD3
0.34
0.0000



ENSG00000183597
TANGO2
0.77
0.0000



ENSG00000183688
FAM101B
0.23
0.0002



ENSG00000183690
EFHC2
0.51
0.0000



ENSG00000183726
TMEM50A
0.30
0.0000



ENSG00000183963
SMTN
0.48
0.0000



ENSG00000184007
PTP4A2
0.55
0.0000



ENSG00000184009
ACTG1
0.71
0.0000



ENSG00000184178
SCFD2
0.47
0.0000



ENSG00000184216
IRAK1
0.23
0.0002



ENSG00000184489
PTP4A3
0.41
0.0000



ENSG00000184500
PROS1
0.82
0.0000



ENSG00000184602
SNN
0.50
0.0000



ENSG00000184640
SEPT9
0.18
0.0035



ENSG00000184702
SEPT5
0.85
0.0000



ENSG00000184743
ATL3
0.19
0.0017



ENSG00000184792
OSBP2
0.55
0.0000



ENSG00000184840
TMED9
0.21
0.0005



ENSG00000184900
SUMO3
0.37
0.0000



ENSG00000185010
F8
0.34
0.0000



ENSG00000185015
CA13
0.36
0.0000



ENSG00000185052
SLC24A3
0.69
0.0000



ENSG00000185236
RAB11B
0.66
0.0000



ENSG00000185245
GP1BA
0.44
0.0000



ENSG00000185305
ARL15
0.32
0.0000



ENSG00000185340
GAS2L1
0.75
0.0000



ENSG00000185418
TARSL2
0.37
0.0000



ENSG00000185420
SMYD3
0.24
0.0001



ENSG00000185513
L3MBTL1
0.46
0.0000



ENSG00000185532
PRKG1
0.56
0.0000



ENSG00000185621
LMLN
0.21
0.0007



ENSG00000185624
P4HB
0.57
0.0000



ENSG00000185630
PBX1
0.38
0.0000



ENSG00000185787
MORF4L1
0.28
0.0000



ENSG00000185825
BCAP31
0.58
0.0000



ENSG00000185896
LAMP1
0.46
0.0000



ENSG00000185909
KLHDC8B
0.45
0.0000



ENSG00000185963
BICD2
0.61
0.0000



ENSG00000185989
RASA3
0.76
0.0000



ENSG00000186063
AIDA
0.41
0.0000



ENSG00000186088
GSAP
0.61
0.0000



ENSG00000186111
PIP5K1C
0.50
0.0000



ENSG00000186162
CIDECP
0.39
0.0000



ENSG00000186314
PRELID2
0.26
0.0000



ENSG00000186470
BTN3A2
0.26
0.0000



ENSG00000186480
INSIG1
0.50
0.0000



ENSG00000186501
TMEM222
0.17
0.0064



ENSG00000186591
UBE2H
0.54
0.0000



ENSG00000186642
PDE2A
0.43
0.0000



ENSG00000186716
BCR
0.69
0.0000



ENSG00000186815
TPCN1
0.29
0.0000



ENSG00000187010
RHD
0.35
0.0000



ENSG00000187097
ENTPD5
0.36
0.0000



ENSG00000187098
MITF
0.54
0.0000



ENSG00000187109
NAP1L1
0.42
0.0000



ENSG00000187231
SESTD1
0.68
0.0000



ENSG00000187266
EPOR
0.70
0.0000



ENSG00000187667
WHAMMP3
0.21
0.0008



ENSG00000187699
C2orf88
0.41
0.0000



ENSG00000187764
SEMA4D
0.50
0.0000



ENSG00000187800
PEAR1
0.70
0.0000



ENSG00000188076
SCGB1C1
0.21
0.0006



ENSG00000188191
PRKAR1B
0.41
0.0000



ENSG00000188229
TUBB4B
0.73
0.0000



ENSG00000188554
NBR1
0.31
0.0000



ENSG00000188641
DPYD
0.24
0.0001



ENSG00000188677
PARVB
0.66
0.0000



ENSG00000188921
PTPLAD2
0.44
0.0000



ENSG00000188986
NELFB
0.40
0.0000



ENSG00000189308
LIN54
0.22
0.0003



ENSG00000189403
HMGB1
0.24
0.0001



ENSG00000196182
STK40
0.76
0.0000



ENSG00000196187
TMEM63A
0.44
0.0000



ENSG00000196230
TUBB
0.54
0.0000



ENSG00000196233
LCOR
0.45
0.0000



ENSG00000196459
TRAPPC2
0.31
0.0000



ENSG00000196526
AFAP1
0.21
0.0008



ENSG00000196547
MAN2A2
0.71
0.0000



ENSG00000196611
MMP1
0.49
0.0000



ENSG00000196704
AMZ2
0.33
0.0000



ENSG00000196776
CD47
0.34
0.0000



ENSG00000196914
ARHGEF12
0.58
0.0000



ENSG00000196923
PDLIM7
0.65
0.0000



ENSG00000196924
FLNA
0.71
0.0000



ENSG00000197006
METTL9
0.18
0.0037



ENSG00000197122
SRC
0.68
0.0000



ENSG00000197147
LRRC8B
0.45
0.0000



ENSG00000197183
C20orf112
0.32
0.0000



ENSG00000197226
TBC1D9B
0.60
0.0000



ENSG00000197321
SVIL
0.18
0.0043



ENSG00000197324
LRP10
0.66
0.0000



ENSG00000197386
HTT
0.32
0.0000



ENSG00000197415
VEPH1
0.58
0.0000



ENSG00000197442
MAP3K5
0.65
0.0000



ENSG00000197461
PDGFA
0.20
0.0009



ENSG00000197535
MYO5A
0.21
0.0005



ENSG00000197586
ENTPD6
0.28
0.0000



ENSG00000197746
PSAP
0.58
0.0000



ENSG00000197798
FAM118B
0.28
0.0000



ENSG00000197858
GPAA1
0.33
0.0000



ENSG00000197879
MYO1C
0.76
0.0000



ENSG00000197903
HIST1H2BK
0.39
0.0000



ENSG00000197959
DNM3
0.47
0.0000



ENSG00000197971
MBP
0.36
0.0000



ENSG00000198055
GRK6
0.59
0.0000



ENSG00000198168
SVIP
0.21
0.0005



ENSG00000198356
ASNA1
0.50
0.0000



ENSG00000198431
TXNRD1
0.18
0.0039



ENSG00000198467
TPM2
0.20
0.0009



ENSG00000198478
SH3BGRL2
0.75
0.0000



ENSG00000198513
ATL1
0.53
0.0000



ENSG00000198586
TLK1
0.38
0.0000



ENSG00000198589
LRBA
0.60
0.0000



ENSG00000198626
RYR2
0.38
0.0000



ENSG00000198668
CALM1
0.22
0.0004



ENSG00000198682
PAPSS2
0.37
0.0000



ENSG00000198730
CTR9
0.17
0.0066



ENSG00000198752
CDC42BPB
0.37
0.0000



ENSG00000198753
PLXNB3
0.59
0.0000



ENSG00000198805
PNP
0.48
0.0000



ENSG00000198814
GK
0.45
0.0000



ENSG00000198833
UBE2J1
0.70
0.0000



ENSG00000198836
OPA1
0.21
0.0005



ENSG00000198843

0.64
0.0000



ENSG00000198858
R3HDM4
0.68
0.0000



ENSG00000198873
GRK5
0.51
0.0000



ENSG00000198876
DCAF12
0.28
0.0000



ENSG00000198898
CAPZA2
0.65
0.0000



ENSG00000198911
SREBF2
0.53
0.0000



ENSG00000198925
ATG9A
0.67
0.0000



ENSG00000198948
MFAP3L
0.36
0.0000



ENSG00000198951
NAGA
0.19
0.0018



ENSG00000198960
ARMCX6
0.29
0.0000



ENSG00000203485
INF2
0.62
0.0000



ENSG00000203666
EFCAB2
0.29
0.0000



ENSG00000203879
GDI1
0.74
0.0000



ENSG00000204136
GGTA1P
0.36
0.0000



ENSG00000204272

0.22
0.0004



ENSG00000204308
RNF5
0.34
0.0000



ENSG00000204310
AGPAT1
0.71
0.0000



ENSG00000204323
SMIM5
0.25
0.0000



ENSG00000204406
MBD5
0.24
0.0001



ENSG00000204420
C6orf25
0.86
0.0000



ENSG00000204424
LY6G6F
0.52
0.0000



ENSG00000204428
LY6G5C
0.18
0.0037



ENSG00000204525
HLA-C
0.32
0.0000



ENSG00000204590
GNL1
0.35
0.0000



ENSG00000204592
HLA-E
0.85
0.0000



ENSG00000204843
DCTN1
0.17
0.0049



ENSG00000205038
PKHD1L1
0.63
0.0000



ENSG00000205126
ACCSL
0.39
0.0000



ENSG00000205133
TRIQK
0.34
0.0000



ENSG00000205309
NT5M
0.80
0.0000



ENSG00000205531
NAP1L4
0.56
0.0000



ENSG00000205581
HMGN1
0.33
0.0000



ENSG00000205593
DENND6B
0.36
0.0000



ENSG00000205639
MFSD2B
0.84
0.0000



ENSG00000206052
DOK6
0.32
0.0000



ENSG00000206503
HLA-A
0.24
0.0001



ENSG00000206549
PRSS50
0.37
0.0000



ENSG00000206560
ANKRD28
0.47
0.0000



ENSG00000207939
MIR223
0.19
0.0023



ENSG00000211456
SACM1L
0.37
0.0000



ENSG00000212694

0.32
0.0000



ENSG00000213246
SUPT4H1
0.27
0.0000



ENSG00000213281
NRAS
0.18
0.0029



ENSG00000213366
GSTM2
0.21
0.0005



ENSG00000213465
ARL2
0.38
0.0000



ENSG00000213625
LEPROT
0.56
0.0000



ENSG00000213639
PPP1CB
0.28
0.0000



ENSG00000213654
GPSM3
0.44
0.0000



ENSG00000213672
NCKIPSD
0.71
0.0000



ENSG00000213719
CLIC1
0.32
0.0000



ENSG00000213889
PPM1N
0.28
0.0000



ENSG00000214941
ZSWIM7
0.33
0.0000



ENSG00000215039
CD27-AS1
0.36
0.0000



ENSG00000215302

0.17
0.0057



ENSG00000222041
LINC00152
0.19
0.0026



ENSG00000223380
SEC22B
0.21
0.0006



ENSG00000223482
NUTM2A-AS1
0.21
0.0007



ENSG00000223519
KIF28P
0.32
0.0000



ENSG00000223773
CD99P1
0.17
0.0055



ENSG00000224616

0.46
0.0000



ENSG00000224914
LINC00863
0.22
0.0004



ENSG00000225205

0.22
0.0003



ENSG00000225484

0.31
0.0000



ENSG00000225733
FGD5-AS1
0.53
0.0000



ENSG00000225936

0.37
0.0000



ENSG00000226777
KIAA0125
0.20
0.0012



ENSG00000226824

0.25
0.0000



ENSG00000227355

0.18
0.0033



ENSG00000228215

0.26
0.0000



ENSG00000228409
CCT6P1
0.33
0.0000



ENSG00000228651

0.18
0.0032



ENSG00000229666
MAST4-AS1
0.23
0.0002



ENSG00000229754
CXCR2P1
0.55
0.0000



ENSG00000231925
TAPBP
0.17
0.0068



ENSG00000233093
LINC00892
0.18
0.0026



ENSG00000233276
GPX1
0.55
0.0000



ENSG00000233369

0.39
0.0000



ENSG00000233452
STXBP5-AS1
0.24
0.0001



ENSG00000233527

0.23
0.0001



ENSG00000233614
DDX11L10
0.30
0.0000



ENSG00000234231

0.51
0.0000



ENSG00000234585
CCT6P3
0.38
0.0000



ENSG00000234745
HLA-B
0.22
0.0004



ENSG00000234810

0.34
0.0000



ENSG00000235162
C12orf75
0.50
0.0000



ENSG00000235257

0.36
0.0000



ENSG00000235609

0.57
0.0000



ENSG00000236279
CLEC2L
0.47
0.0000



ENSG00000236304

0.21
0.0006



ENSG00000236397
DDX11L2
0.43
0.0000



ENSG00000236875
DDX11L5
0.28
0.0000



ENSG00000236936

0.18
0.0033



ENSG00000237419

0.29
0.0000



ENSG00000237803
LINC00211
0.41
0.0000



ENSG00000237805

0.21
0.0008



ENSG00000237854
LINC00674
0.51
0.0000



ENSG00000238201

0.20
0.0011



ENSG00000239213

0.26
0.0000



ENSG00000239445
ST3GAL6-AS1
0.25
0.0000



ENSG00000241685
ARPC1A
0.36
0.0000



ENSG00000241973
PI4KA
0.26
0.0000



ENSG00000243317
C7orf73
0.22
0.0004



ENSG00000244509
APOBEC3C
0.29
0.0000



ENSG00000245552

0.40
0.0000



ENSG00000246448

0.19
0.0019



ENSG00000246889

0.30
0.0000



ENSG00000247271
ZBED5-AS1
0.27
0.0000



ENSG00000247556
OIP5-AS1
0.24
0.0001



ENSG00000248242

0.20
0.0009



ENSG00000248636

0.37
0.0000



ENSG00000249684

0.35
0.0000



ENSG00000249898

0.23
0.0002



ENSG00000250334
LINC00989
0.31
0.0000



ENSG00000250348

0.27
0.0000



ENSG00000250878
METTL21EP
0.35
0.0000



ENSG00000251600

0.23
0.0001



ENSG00000253394
LINC00534
0.36
0.0000



ENSG00000253819
LINC01151
0.40
0.0000



ENSG00000253982

0.37
0.0000



ENSG00000254087
LYN
0.48
0.0000



ENSG00000254138

0.17
0.0058



ENSG00000254786

0.24
0.0001



ENSG00000254999
BRK1
0.33
0.0000



ENSG00000255002

0.24
0.0001



ENSG00000255240

0.23
0.0001



ENSG00000255325

0.34
0.0000



ENSG00000255364

0.43
0.0000



ENSG00000257103
LSM14A
0.31
0.0000



ENSG00000257261

0.27
0.0000



ENSG00000257267
ZNF271
0.34
0.0000



ENSG00000257923
CUX1
0.81
0.0000



ENSG00000258999

0.31
0.0000



ENSG00000259719

0.65
0.0000



ENSG00000260032
LINC00657
0.25
0.0000



ENSG00000261253

0.37
0.0000



ENSG00000263563
UBBP4
0.28
0.0000



ENSG00000264964

0.24
0.0001



ENSG00000265148
BZRAP1-AS1
0.67
0.0000



ENSG00000267243

0.28
0.0000



ENSG00000268555

0.29
0.0000



ENSG00000270055

0.32
0.0000



ENSG00000272168
CASC15
0.33
0.0000



ENSG00000272369

0.18
0.0036



ENSG00000273143

0.31
0.0000










EXAMPLES
Example 1
General Materials and Methods
Study Design and Sample Selection

Peripheral whole blood was drawn by venipuncture from cancer patients, patients with inflammatory and other non-cancerous conditions, and asymptomatic individuals at the VU University Medical Center, Amsterdam. The Netherlands, the Dutch Cancer Institute (NKI/AvL), Amsterdam, The Netherlands, the Academical Medical Center, Amsterdam, The Netherlands, the Utrecht Medical Center, Utrecht, The Netherlands, the University Hospital of Umeå, Umeå, Sweden, the Hospital Germans Trias i Pujol, Barcelona, Spain, The University Hospital of Pisa, Pisa, Italy, and Massachusetts General Hospital, Boston, USA. Whole blood was collected in 4-, 6-, or 10-mL EDTA-coated purple-capped BD Vacutainers containing the anti-coagulant EDTA. Cancer patients were diagnosed by clinical, radiological and pathological examination, and were confirmed to have at moment of blood collection detectable tumor load. 106 NSCLC samples included were follow-up samples of the same patient, collected weeks to months after the first blood collection. Age-matching was performed retrospectively using a custom script in MATLAB, iteratively matching samples by excluding and including Non-cancer and NSCLC samples aiming at a similar median age and age-range between both groups. Samples for both training, evaluation, and validation cohorts were collected and processed similarly and simultaneously. A detailed overview of the included samples, demographic characteristics, the hospital of origin, time between blood collection and platelet isolation (blood storage time), and for which analyses and classifiers were used is provided in Table 4. Asymptomatic individuals were at the moment of blood collection, or previously, not diagnosed with cancer, but were not subjected to additional tests confirming the absence of cancer. The patients with inflammatory or other non-cancerous conditions did not have a diagnosed malignant tumor at the moment of blood collection. This study was conducted in accordance with the principles of the Declaration of Helsinki. Approval for this study was obtained from the institutional review board and the ethics committee at each participating hospital. Clinical follow-up of asymptomatic individuals is not available due to anonymization of these samples according to the ethical rules of the hospitals.


Clinical Data Annotation

For collection and annotation of clinical data, patient records were manually queried for demographic variables. i.e. age, gender, smoking, type of tumor, metastases, details of current and prior treatments, and co-morbidities. In case of transgender individuals, the new gender was stated (n=1). Platelet samples were collected before start of (a new) treatment or during treatment, respectively baseline and follow-up samples. Response assessment of patients treated with nivolumab (FIG. 2) was performed by CT-imaging at baseline, 6-8 weeks, 3 months and 6 months after start of treatment. For the nivolumab response prediction algorithm, samples that were collected up to one month before start of treatment were annotated as baseline samples. Treatment response was assessed according to the updated RECIST version 1.1 criteria and scored as progressive disease (PD), stable disease (SD), partial response (PR), or complete response (CR) (Eisenhauer et al., 2009, European Journal of Cancer, 45: 228-247; Schwartz et al., 2016, European journal of cancer 62: 132-137). See FIG. 2a for a detailed schematic representation. Our aim was to identify those patients with disease control to therapy. Hence, for the nivolumab response prediction analysis, we grouped patients with progressive disease as the most optimal response in the non-responding group, totaling 60 samples. Patients with partial response at any response assessment time point as most optimal response or stable disease at 6 months response assessment were annotated as responders, totaling 44 samples. All clinical data was anonymized and stored in a secured database.


Confounding Variable Analysis

To estimate the contribution of the variables 1) patient age (in years) at moment of blood collection, 2) whole blood storage time, 3) gender, and 4) smoking (current, former, never), we summarized the available data from Supplemental Table S1A-C and Supplemental FIG. S2C of our previous study (Best et al., 2015, Cancer Cell, 28: 666-676), and performed logistic regression analyses in the statistical software module SAS (v.13.0.0; SAS Institute Inc., 100 SAS Campus Drive, Cary, N.C. 27513-2414, USA). Blood storage time was defined as the time between blood collection and the start of platelet isolation by differential centrifugation, stratified into a <12 hours group and a >12 hours group. For variables of samples of which data was missing, that particular value of the particular samples was excluded from the calculation. The joint predictive power of patient age, blood storage time, and the predictive strength of the diagnostics classifier for NSCLC, was assessed using a measure of logistic regression with nominal response, by selecting disease state as the Role Variable Y. and adding patient age, blood storage time, gender, smoking, and predictive strength for NSCLC as the model effects. All additional settings were set at default.









TABLE 4







Comprehensive overview of the study cohort and statistical contribution to the classifiers.

























Statistical predictive contribution











Likelihood-ratio chi-square value (p-value)




























Blood




thrombo-








n
Median
Storage




Seq







AUC
Inflam-
age
(% <
Patient
Blood


classifi-



Cohort
Group
n
Acc.
(95%-Cl)
matory
(IQR)
12 h)
age
storage
Gender
Smoking
cation























Un-
Training
Healthy
39
92%
0.99
0
40
100%
9.8
2.9
0.8
n.a.
29.5


matched
(un-



(0.97-1.00)
n.a.
(22.25)

 (p = 0.002)
(p = 0.09)
(p = 0.38)

(p <


cohort
matched)
NSCLC
36



59
 61%




0.0001)


(Best






(13.25)








et.al.
Validation
Healthy
16
98%
0.98
0
32.5
100%
0.004
0.01
3.5
n.a.
21.6


2015)
(un-



(0.93-1.00)

(26.25)

(p = 0.95)
(p = 0.90)
(p = 0.06)

(p <



matched)
NSCLC
24


n.a.
62
 58%




0.0001)









(14.25)








Matched
Training
Non-
44
77%
0.84
36
62
100%
2.4
n.a.
0.03
5.7
30.7


cohort
(matched)
cancer


(0.75-0.92)

(18.5) 

(p = 0.12)

(p = 0.87)
(p = 0.12)
(p <


(this

NSCLC
49


n.a.
59
100%




0.0001)


study)






(9)   








Genes:
Evaluation
Non-
20
85%
0.91
4
61
100%
4.1
n.a.
0.05
6.0
32.0


n= 830
(matched)
cancer


(0.62.1.00)

(10.25)

(p = 0.12)

(p = 0.80)
(p = 0.11)
(p <




NSCLC
20


n.a.
58
100%




0.0001)









(24)  









Validation
Non-
40
91%
0.95
9
56
100%
3.7
n.a.
0.1
14.7
76.2



(matched)
cancer


(0.91-0.99)

(9.25) 

(p = 0.06)

(p = 0.95)
 (p = 0.002)
(p <




NSCLC
90


n.a.
63
100%




0.0001)









(14)  








Full
Training
Non-
60
84%
0.90
30
59
100%
<0.0001
n.a.
3.4
2.7
58.7


cohort
(matched)
cancer


(0.84-0.95)

(9.25) 

(p = 0.99)

(p = 0.18)
(p = 0.43)
(p <


(this

NSCLC
60


n.a.
61
100%




0.0001)


study)






(13.25)








Genes:
Evaluation
Non-
44
91%
0.93
19
58
100%
0.62
n.a.
1.1
9.9
55.0


n = 1000
(matched)
cancer


(0.87-0.99)

(15.5) 

(p = 0.43)

(p = 0.30)
(p = 0.02)
(p <




NSCLC
44


n.a.
62
100%




0.0001)









(13)  









Validation
Non-
268
89%
0.94
91
39
 3%
42.4
0.05
0.23
28.0
87.7



(un-
cancer


(0.93-0.96)

(19)  

(p <   
(p = 0.83)
(p = 0.63)
  (p < 0.0001)
(p <



matched)
NSCLC
248


n.a.
64
 25%
0.0001)



0.0001)









(14)  









Blood Processing and Platelet Isolation

Whole blood samples in 4-, 6-, or 10-mL EDTA-coated Vacutainer tubes were processed using standardized protocols within 48 hours as described previously (Best et al., 2015. Cancer Cell 28: 666-676; Nilsson et al., 2011. Blood 118: 3680-3683). Whole blood collected in the VU University Medical Center, the Dutch Cancer Institute, the Utrecht Medical Center, the University Hospital of Umeå, the Hospital Germans Trias I Pujol, and the University Hospital of Pisa was subjected to platelet isolation within 12 hours after blood collection. Whole blood samples collected at Massachusetts General Hospital Boston and the Academical Medical Center Amsterdam were stored overnight and processed after 24 hours. To isolate platelets, platelet rich plasma (PRP) was separated from nucleated blood cells by a 20-minute 120×g centrifugation step, after which the platelets were pelleted by a 20-minute 360×g centrifugation step. Removal of 9/10th of the PRP has to be performed carefully to reduce the risk of contamination of the platelet preparation with nucleated cells, pelleted in the buffy coat. Centrifugations were performed at room temperature. Platelet pellets were carefully resuspended in RNAlater (Life Technologies) and after overnight incubation at 4° C. frozen at −80° C.


Flow Cytometric Analysis of Platelet Activation

To assess the relative platelet activation during our platelet isolations, we measured the surface protein expression levels of the constitutively expressed platelet marker CD41 (APC anti-human, clone: HIP8) and platelet activation-dependent markers P-selectin (CD62P, PE anti-human, clone: AK4, Biolegend) and CD63 (FITC anti-human, clone: H5C6, Biolegend), using a BD FACSCalibur flow cytometer. We collected five 6-mL EDTA-coated Vacutainers tubes from each of six healthy donors, and determined the platelet activation state at baseline (0 hours), 8 hours, 24 hours, 48 hours, and 72 hours. As a negative control, we isolated at time point zero platelets from whole blood using a standardized platelet isolation protocol from citrate-anticoagulated whole blood that has been validated for inducing minimal platelet activation. This protocol consisted of a step of OptiPrep (Sigma) density gradient centrifugation (350×g, 15 minutes) after collection of platelet rich plasma. This was followed by two washing steps first with Hepes, followed by a washing step in SSP+ (Macopharma) buffer. We used 400 nM prostaglandin I2 (Sigma-Aldrich) before every centrifugation step to prevent platelet activation during the isolation procedure. As a positive control, we included platelets activated by 20 μM TRAP (TRAPtest, Roche). Platelet pellets were after isolation prefixed in 0.5% formaldehyde (Roth), stained, and stored in 1% formaldehyde for flow cytometric analysis. Relative activation and mean fluorescent intensity (MFI) values were analyzed with FlowJo. Hence, absence of platelet activation during blood collection and storage was confirmed by stable levels of P-selectin and CD63 platelet surface markers (FIG. 4b).


Total RNA Isolation, SMARTer Amplification, and Truseq Library Preparation

Preparation of samples for sequencing was performed in batches, and included per batch a mixture of clinical conditions. For platelet RNA isolation, frozen platelets were thawed on ice and total RNA was isolated using the mirVana miRNA isolation kit (Ambion. Thermo Scientific, AM1560). Platelet RNA was eluated in 30 μL elution buffer. We evaluated the platelet RNA quality using the RNA 6000 Picochip (Bioanalyzer 2100, Agilent), and included as a quality standard for subsequent experiments only platelet RNA samples with a RIN-value >7 and/or distinctive rRNA curves. All Bioanalyzer 2100 quality and quantity measures were collected from the automatically generated Bioanalyzer result reports using default settings, and after critical assessment of the reference ladder (quantity, appearance, and slope). The Truseq cDNA labelling protocol for Illumina sequencing (see below) requires ˜1 μg of input cDNA. Since a single platelet contains an estimated ˜2 femtogram of RNA (Teruel-Montoya et al., 2014. PLuS ONE 9(7): e102259), assuming an average platelet count of 300×106 per mL of whole blood and highly efficient platelet isolation and RNA extraction, the estimated optimal yield of platelets from clinically relevant blood volumes (6 mL) is about 3.6 microg. The average total RNA obtained from our blood samples is 146 ng (standard deviation: 130 ng, n=237 samples, see FIG. 4c). Measurement of total platelet RNA yield of whole blood collected in 6 mL EDTA-coated Vacutainer tubes between Non-cancer individuals (n=86) and NSCLC patients (n=151) resulted in a minor but significant increase in total RNA in platelets of NSCLC patients (p=0.0014, Student's t-test. FIG. 4c), which was attributed to a potential difference in the platelet turnover in NSCLC patients (see also Example 3). To have sufficient platelet cDNA for robust RNA-seq library preparation, the samples were subjected to cDNA synthesis and amplification using the SMARTer Ultra Low RNA Kit for Illumina Sequencing v3 (Clontech, cat. nr. 634853). Prior to amplification, all samples were diluted to ˜500 pg/microL total RNA and again the quality was determined and quantified using the Bioanalyzer Picochip. For samples with a stock yield below 400 pg/microL, a volume of two or more microliters of total RNA (up to ˜500 pg total RNA) was used as input for the SMARTer amplification. Quality control of amplified cDNA was measured using the Bioanalyzer 2100 with DNA High Sensitivity chip (Agilent). All SMARTer cDNA synthesis and amplifications were performed together with a negative control, which was required to be negative by Bioanalyzer analysis. Samples with detectable fragments in the 300-7500 bp region were selected for further processing. To measure the average cDNA length, we selected in the Bioanalyzer software the region from 200-9000 base pairs and recorded the average length. For labelling of platelet cDNA for sequencing, all amplified platelet cDNA was first subjected to nucleic acid shearing by sonication (Covaris Inc) and subsequently labelled with single index barcodes for Illumina sequencing using the Truseq Nano DNA Sample Prep Kit (Illumina, cat nr. FC-121-4001). To account for the low platelet cDNA input concentration, all bead clean-up steps were performed using a 15-minute bead-cDNA binding step and a 10-cycle enrichment PCR. All other steps were according to manufacturers protocol. Labelled platelet DNA library quality and quantity was measured using the DNA 7500 chip or DNA High Sensitivity chip (Agilent). To correlate total RNA input for SMARTer amplification, SMARTer amplification cDNA yield, and Truseq cDNA yield (FIG. 4d, e) all samples with matched data available were subjected to a Pearson correlation test (correlation test function in R). High-quality samples with product sizes between 300-500 bp were pooled (12-19 samples per pool) in equimnolar concentrations for shallow thromboSeq and submitted for 100 bp Single Read sequencing on the Illumina Hiseq 2500 platform using version 4 sequencing reagents. For the deep thromboSeq experiment (see FIG. 4l), we pooled 12 identically prepared platelet samples, and sequenced the same pool on four lanes of a Hiseq 2500 flowcell. Subsequently, four separate FASTQ-files per sample were merged in silico.


Processing of Raw RNA-Sequencing Data

Raw RNA sequence data of platelets encoded in FASTQ-files were subjected to a standardized RNA-seq alignment pipeline, as described previously (Best et al., 2015. Cancer Cell 28: 666-676). In summary, RNA-sequence reads were subjected to trimming and clipping of sequence adapters by Trimmomatic (v. 0.22) (Bolger et al., 2014. Bioinformatics 30: 2114-2120), mapped to the human reference genome (hg19) using STAR (v. 2.3.0) (Dobin et al., 2013. Bioinformatics 29: 15-21), and summarized using HTSeq (v. 0.6.1), which was guided by the Ensembl gene annotation version 75 (Anders et al., 2014. Bioinformatics 31: 166-169). All subsequent statistical and analytical analyses were performed in R (version 3.3.0) and R-studio (version 0.99.902). Of samples that yielded less than 0.2×10E6 intron-spanning reads in total after sequencing, we again sequenced the original Truseq preparation of the sample and merged the read counts generated from the two individual FASTQ-files after HTSeq count summarization (performed for n=52 samples). Genes encoded on the mitochondrial DNA and the Y-chromosome were excluded from downstream analyses, except for the analyses in FIG. 6b. As expected, after sequencing of polyadenylated RNA we measured a significant enrichment of platelet sequence reads mapping to exonic regions (FIG. 6b). Sample filtering was performed by assessing the library complexity, which is partially associated with the intron-spanning reads library size (FIG. 4j). First, we excluded the genes that yielded <30 intron-spanning reads in >90% of the cohort for all platelet samples that were sequenced (n=740 Total, n=385 Non-cancer and n=355 NSCLC). This resulted in this platelet RNA-seq library in 4722 different genes detected with sufficient coverage. For each sample, we quantified the number of genes for which at least one intron-spanning read was mapped, and excluded samples with <3000 detected genes (˜1% lowerbound. FIG. 4j). Hereby we excluded 10 samples (n=8 (2.1% of total) Non-cancer, n=2 (0.6% of total) NSCLC). Next, to exclude platelet samples that show low inter-sample correlation, we performed a leave-one-sample-out cross-correlation analysis (FIG. 4m). Following data normalisation (see section ‘Data normalisation and RUV-mediated factor correction’ in Example 1), for each sample in the cohort, all samples except the ‘test sample’ were used to calculate the median counts-per-million expression for each gene (reference profile). Following, the comparability of the test sample to the reference set was determined by Pearson's correlation. Samples with a correlation <0.5 were excluded (n=2), and the remaining 728 samples were included in this study (FIG. 1a). Of note, we observed delicate differences in the Bioanalyzer cDNA profiles (spiked/smooth patterns), irrespective of patient group, but with a significant correlation to average cDNA length (FIG. 4f, g). This observation is discussed in more detail in Example 2. We measured the average length of concatenated reads mapped to intergenic regions for spiked and smooth samples separately using Bedtools (v. 2.17.0, Bedtools merge following Bedtools intersection), and observed that the majority of reads (>10.9% for spiked samples and >13.5% for smooth samples, n=50 samples each) had an average fragment length (concatenated reads) of <250 nt, with a peak at 100-200 nt. We attribute the differences in cDNA profiles at least partly to ‘contaminating’ plasma DNA retained during the platelet isolation procedure (FIG. 4h and Example 2). To prevent potential plasma DNA from contributing to our computational platelet RNA analyses, we only selected spliced intron-spanning RNA reads (FIG. 1b, FIG. 4i).


Assessment of the Technical Performance of thromboSeq


We observed in the platelet RNA a rich repertoire of spliced RNAs (FIG. 4k), including 4000-5000 different messenger and non-coding RNAs. The spliced platelet RNA diversity is in agreement with previous observations of platelet RNA profiles (Best et al., 2015. Cancer Cell 28: 666-676; Rowley et al., 2011. Blood 118: e101-11; Bray et al., 2013. BMC Genomics 14:1; Gnatenko et al., 2003. Blood 101: 2285-2293). To estinmate the efficiency of detecting the repertoire of 4000-5000 platelet RNAs from ˜500 pg of total platelet RNA input (FIG. 4k), we summarized all gene tags with at least 30 non-normalized intron-spanning read counts. We investigated whether collection of more single-read 100 bp RNA-seq reads (˜5× deeper: deep thromboSeq) of the platelet cDNA libraries (n=12 healthy donors) yielded in detection of more low-abundant RNAs (FIG. 4l). For this, we selected the gene tags that had more than 10 raw intron-spanning reads in at least one sample. This was performed separately for shallow and deep thromboSeq. For visualization purposes, we calculated the median raw intron-spanning read counts, log-transformed the counts (after adding one count to all tags), and plotted the 20,000 gene tags with highest count numbers. Again, this was performed separately for shallow and deep thromboSeq data. Increasing the average coverage of shallow thromboSeq ˜5× does not yield in significantly enriched detection of low-abundant platelet genes.


Differential Splicing Analysis

Prior to differential splicing analyses the data was subjected to the iterative correction-module as described in the section ‘Data normalisation and RUV-mediated factor correction’ in Example 1 (age correlation threshold 0.2, library size correlation threshold 0.8 (Non-cancer/NSCLC, FIG. 5a) or 0.95 (nivolumab therapy response signature, FIG. 4b)). Corrected read counts were converted to counts-per-million, log-transformed, and multiplied by the TMM-normalization factor calculated by the calcNormFactors-function of the R-package edgeR (Robinson et al., 2010. Bioinformatics 26: 139-140). For generation of differential spliced gene sets, the after fitting of negative binominal models and both common, tag-wise and trended dispersion estimates were obtained, differentially expressed transcripts were determined using a generalized linear model (GLM) likelihood ratio test, as implemented in the edgeR-package. For data signal purposes, we performed differential expression analyses with post-hoc gene ontology interpretation using the corrected read counts as input for differential splicing analyses, whereas for reproducibility of the data during classification tasks we used the non-corrected raw read counts as input. Genes with less than three logarithmic counts per million (log CPM) were removed from the spliced RNA gene lists. RNAs with a p-value corrected for multiple hypothesis testing (FDR) below 0.01 were considered as statistically significant. For the nivolumab response prediction signature development using differential splicing analysis (FIG. 2b) and the classification algorithm (FIG. 2c), we used p-value statistics for gene selection. The nivolumab response prediction signature threshold was determined by swarm-intelligence, using the p-value calculated by Fisher's exact test of the column dendrogram (Ward clustering) as the performance parameter (see also section ‘Performance measurement of the swarm-enhanced thromboSeq algorithm’ in Example 1. Unsupervised hierarchical clustering of heatmap row and column dendrograms was performed by Ward clustering and Pearson distances. Non-random partitioning and the corresponding p-value of unsupervised hierarchical clustering was determined using a Fisher's exact test (fisher.test-function in R). To determine differentially splicing levels between platelets of Non-cancer individuals and NSCLC patients (FIG. 5), we included only samples assigned to the patient age- and blood storage time-matched cohort (training, and validation, n=263 in total, see also FIGS. 3c and 4a).


Analysis of RNA-Seq Read Distribution

Distribution of mapped RNA-seq reads of platelet cDNA, and thus the origin of the RNA fragments, was investigated in samples assigned to the patient age- and blood storage time-matched NSCLC/Non-cancer cohort (training, evaluation, and validation, totaling 263 samples). The mitochondrial genome and human genome, of which the latter includes exonic, intronic, and intergenic regions were quantified separately (FIG. 6a). Read quantification was performed using the Samtools View algorithm (v. 1.2, options -q 30, -c enabled). For quantification of exonic reads, we only selected reads that mapped fully to an exon by performing a Bedtools Intersect filter step (-abam, -wa. -f 1, v. 2.17.0) prior to Samtools View quantification. We used bed-files of exonic, intronic, and intergenic regions annotated in Ensembl gene annotation version 37 and hg19 as a reference. Spliced RNAs were filtered from the aligned reads by selection of a cigar-tag in the bam-file, and reads mapping to the mitochondrial genome were selected by only quantifying reads mapping to ‘chrM’. We determined the ratios of reads mapping to the specific genomic regions by calculating the proportion of reads as compared to the total number of quantified reads per sample. Independent Student's t-test was performed using the t.test function in R. A detailed description of the results and data interpretation is provided in Example 3.


P-Selectin Signature

To determine the correlation between p-selection levels and exonic read counts, we compared the P-selectin (SELP, ENSG00000174175) counts-per-million values of 263 patient age- and blood storage time-matched individuals to the number of reads mapping to exons (FIG. 7a). P-selectin expression levels were collected from log 2-transformed. TMM-normalised, and counts-per-million transformed read counts, subjected to RUV-mediated correction (see section ‘Data normalisation and RUV-mediated factor correction’ in Example 1, age correlation threshold 0.2, library size correlation threshold 0.9). Exonic read counts to P-selectin expression levels correlation analysis was performed using Pearson's correlation. To identify gene expression co-correlated to P-selectin enrichment, we calculated Pearson's correlations of all individual genes (n=4722 in total) to the P-selectin expression levels. Data was summarized in a histogram, and we compiled a P-selectin signature by selecting positively (r>0) and most significantly (FDR<0.01, adjusted for multiple hypothesis testing) correlated genes. The P-selectin signature was compared with all differentially and increasingly spliced genes between Non-cancer and NSCLC (FIG. 5a), and summarized in a Venn diagram (VennDiagram-package in R).


Alternative Spliced Isoform and Exon Skipping Events Analyses

We employed the MISO algorithm (Katz et al., 2010. Nature methods 7: 1009-15) for alternative splicing analysis in our 100 bp single read RNA-seq data. Briefly, the MISO algorithm quantifies the number of reads favouring inclusion or exclusion of a particular annotated event, such as exon skipping, or RNA isoforms. By scoring reads supporting either one variant or the other (on/off) and scoring reads supporting both isoforms, the algorithm infers the ratio of inclusion, and thereby the percent spliced in (PSI). A detailed description of the alternative splicing analysis in TEPs and interpretation of the results is provided in Example 3.


Processing of Raw mRNA Sequencing Data for MISO Splicing Analysis


For the MISO RNA splicing analyses (FIGS. 6c and d). FASTQ-files of the patient age- and blood storage time-matched NSCLC/Non-cancer cohort were again subjected to Trimmomatic trimming and clipping, and STAR read mapping (see also section ‘Processing of raw RNA-sequencing data’ in Example 1). To create an uniform read length of all inputted reads, as required by the MISO algorithm, trimmed reads were cropped to 92 bp and reads below a read length of 92 bp were excluded from analysis. After addition of read groups using Picard tools (AddOrReplaceReadGroups function, v. 1.115), MISO sam-to-bam conversion was performed, and the indexed bam files were subjected to the MISO algorithm (v. 0.5.3) using hg19 and the indexed Ensembl gene annotation version 65 as reference. MISO output files were summarized using the summarize_miso-function. Summarized MISO files of isoforms and skipped exons were subsequently converted into ‘psi’ count matrices and ‘assigned counts’ count matrices using a custom script in MATLAB.


Identification of Alternatively Spliced Isoforms

For alternative isoform analysis, we narrowed the analysis to the 4722 genes identified with confident intron-spanning expression levels in platelets (see also section ‘Processing of raw RNA-sequencing data’ in Example 1). For each annotated Ensemble transcript ID, available in the MISO summary output files, the assigned read counts (reads assigned to the particular RNA isoform) were summarized in a count matrix. A schematic overview of the procedure is presented in FIG. 6c. To ensure proper detection of the isoform, we excluded RNA isoforms with <10 reads in >90% of the sample cohort, and applied TMM- and counts-per-million normalisation. Next, differential expression analysis among annotated Ensembl transcripts was performed, and the most significant hits (FDR<0.01, log CPM>1) were selected. For details regarding the differential expression analysis, see section ‘Differential splicing analysis’ in Example 1. For identification of multiple RNA isoforms per parent gene locus, we matched the Ensembl transcript IDs (enst) with Ensembl gene IDs (ensg) and calculated the frequency metrics of the ensg-tags for the significant enst-tags. Distribution of alternatively spliced isoforms was assessed by including all enst-tags per parent gene locus, and comparing the median expression values for both Non-cancer and NSCLC samples. Isoforms that showed in all cases increased or decreased levels were scored as non-alternatively spliced. Isoforms that exhibited enrichment in either group but a decrease in the other, and the opposite for at least one other isoform were scored as alternatively spliced RNAs.


Identification of Exon Skipping Events

For analysis of exon skipping events, we developed a custom analysis pipeline summarizing reads supporting inclusion or exclusion of annotated exons and scoring the relative contribution in groups of interest, i.e. Non-cancer versus NSCLC. The input for the algorithm is a PSI-values count matrix and an ‘assigned counts’ count matrix, as generated from summary output files generated by MISO. The former count matrix is required to calculate the relative PSI-values and distribution per group, the latter count matrix is required to only include exons with sufficient coverage in the RNA-seq data (i.e. >10 reads in >60% of the samples, which support both inclusion (1.0) and exclusion (0,1) of the variant, see also Katz et al.,). The coverage selector dowvnscaled the available exons for analysis to 230 exons (FIG. 6d). To select differential levels of skipping exon events. PSI-values were compared among Non-cancer and NSCLC using an independent student's t-test including post-hoc false discovery rate (FDR) correction (t.test and p.adjust function in R). Events with an FDR<0.01 were considered as potential skipped exon events. The deltaPSI-value was calculated by subtracting per skipping event the median PSI-value of Non-cancer from the median PSI-value NSCLC.


RNA Binding Protein Motif Enrichment Analysis—RBP-thromboSearch Engine

To identify RNA-binding protein (RBP) profiles associated with the TEP signatures in NSCLC patients (FIG. 8), we designed and developed the RBP-thromboSearch engine. The rationale of this algorithm is that enriched binding sites for particular RBPs in the untranslated regions (UTRs) of genes is correlated to stabilization or regulation of splicing of that specific RNA. The algorithm identifies the number of matching RBP binding motifs in the genomic UTH sequences of genes confidently identified in platelets. Subsequently, it correlates for each included RBP the n binding sites to the logarithmic fold-change (log FC) of each individual gene, and significant correlations are ranked as potentially involved RBPs. For this analysis, we collected previously well-characterized RBP binding motifs from literature (Ray et al., 2013. Nature 499:172-177). The algorithm exploits the following assumptions: 1) more binding sites for a particular RBP in a UTR region predicts increased regulation of the gene either by stabilization or destabilization of the pre-mRNA molecule (Oikonomou et al., 2014. Cell Reports 7: 281-292), 2) the functions in 1) are primarily driven by a single RBP and not in combinations or synergy with multiple RBPs or miRNAs. or other cis or trans regulatory elements, and 3) the included RBPs are present in platelets of Non-cancer individuals and/or NSCLC patients. In order to determine the n RBP binding sites-log FC correlations, the algorithm performs the following calculations and quality measure steps:


(i) The algorithm selects of all inputted genes the annotated RNA isoforms and identifies genomic regions of the annotated RNA isoforms that are associated with either the 5′-UTR or 3′-UTR. The genomic coding sequence is extracted from the human hg19 reference genome using the getfasta function in Bedtools (v. 2.17.0). For this study, we used the Ensembl annotation version 75.


(ii) All characterized motif sequences extracted from literature (102 in total, Supplementary Table 3 of Ray et al., (Ray et al., 2013. Nature 499: 172-177), filtered for Homo Sapiens) are reduced to 547 non-redundant (‘A’, ‘G’, ‘C’, and ‘T’-sequence) annotations according to the IUPAC motif annotation. These non-redundant motif sequences serve as the representative motif sequences for the initial search.


(iii) In an iterative manner, per RBP the associated non-redundant RBP motif sequences are matched with all identified and included UTR sequences (using the str_count function of the seqinr package in R).


(iv) The algorithm identifies the number of reads mapping to each UTR region per sample using Samtools View (q 30, -c enabled. FIG. 8b). UTR sequences with no or minimal coverage were considered to be non-confident for presence in platelets. To account for the minimal bias introduced by oligo-dT-primed mRNA amplification (Ramskold et al., 2012. Nature Biotech 30: 777-782), we set the threshold of number of reads for the 3′-UTR at five reads, and for the 5′-UTR at three reads.


(v) For all 5′- and 3′-UTRs with sufficient coverage associated with the same parent gene (ensg), all matched UTR-non-redundant motif hits were summed, and summarized in a gene-motif matrix. Non-redundant motifs were converted to RBP-ids by overlaying all possible RBP-motif matches. This matrix is used for downstream analyses, data interpretation, and visualization.


We confirmed 3′- and 5′-UTR enrichment of particular RBPs (FIG. 8d), and observed UTR-clusters of co-involved RBPs (FIG. 8e,f). Correlations between log FC and n RBP binding sites were determined for all RBPs using Pearson's correlation, and summarized in a volcano plot (FIG. 8g). For a detailed description and interpretation of the results, see Example 4.


Data Normalisation and RUV-Mediated Factor Correction

We identified two variables, i.e. blood storage time and patient age, that potentially influence the classifiers predictive strength (Table 4). To reduce the influence of confounding factors participating in the classification model, we applied the following novel approach for iterative RNA-sequencing data correction (see also schematic representation in FIG. 9a). The correction module is based on the remove unwanted variation (RUV) method, proposed by Risso et al., (Risso et al., 2014. Nature Biotech 32: 896-902; Peixoto et al., 2015. Nucleic Acids Res 43: 7664-7674), supplemented by selection of ‘stable genes’ (independent of the confounding variables), and an iterative and automated approach for removal and inclusion of respectively unwanted and wanted variation. The RUV correction approach exploits a generalized linear model, and estimates the contribution of covariates of interest and unwanted variation using singular value decomposition (Risso et al., 2014, Nature Biotech 32: 896-902). In principle, this approach is applicable to any RNA-seq dataset and allows for investigation of many potentially confounding variables in parallel. Of note, the iterative correction algorithm is agnostic for the group to which a particular sample belongs, in this case NSCLC or Non-cancer, and the necessary stable gene panels are only calculated by samples included in the training cohort. The algorithm performs the following multiple filtering, selection, and normalisation steps, i.e.:


(i) Filtering of genes with low abundance, i.e. less than 30 intron-spanning spliced RNA reads in more than 90% of the sample cohort (also included in the general QC-module, see section ‘Processing of raw RNA-sequencing data’).


(ii) Determination of genes showing least variability among confounding variables. For this, the non-normalized raw reads counts of each gene that passed the initial filter in (i) were correlated using Pearson's correlation to either the total intron-spanning library size (as calculated by the DGEList-function of the edgeR package in R) or the age of the individuals. Genes with a high Pearson correlation (towards 1) show the least variability after counts-per-million normalisation (see FIG. 9b,c), and were thus designated as stable genes.


(iii) Raw read counts of the training cohort were subjected to the RUVg-function from the RUVSeq-package in R. The stable genes identified among the confounding variables were used as ‘negative control genes’. Following, the individual estimated factors for each sample identified by RUVg are correlated to potential confounding factors (in the current study: library size, age of the individual) or the group of interest (for example Non-cancer versus NSCLC). The continuous (confounding) variables are correlated to the estimated variance of the samples. Dichotomous variables (e.g. group) are compared using a Student's t-test. In both instances, the p-value was used as a significance surrogate between the RUVg variable and the (confounding) variable. Of note, to prevent removal of a variable likely correlated to group, we applied two rules prior to matching a variable to a (confounding) factor. i.e. a) the p-value between RUVg variable and group should be at least >1e−5, and b) the p-value between RUVg variable and the other variable should be at least <0.01. Raw non-normalized reads were corrected for RUVg variable x in case this variable was correlated to a confounding factor. Finally, the total intron-spanning library size per sample was adjusted by calculating the sum of the RUVg-corrected read counts per sample.


(iv) RUVg-normalized read counts are subjected to counts-per-million normalization, log-transformation, and multiplication using a TMM-normalisation factor. The latter normalisation factor was calculated using a custom function, implemented from the calcNornmFactors-function in the edgeR package in R. Here, the eligible samples for TMM-reference sample selection can be narrowed to a subset of the cohort. i.e. for this study the samples assigned to the training cohort, and the selected reference sample was locked. We applied this iterative correction module to all analyses in this work. The estimated RUVg number of factors of unwanted variation (k) was 3. We directly compared the performance of our previous normalisation module and the iterative correction module presented in this study using relative log intensity (RLE) plots (FIG. 9d), and observed superior removal of variation within the expression data. RLE-plots were generated using the plotRLE-function of the EDASeq package. Significance of the reduction of inter-sample variability (FIG. 9d) was determined by calculating the absolute difference of the samples' median RLE counts to the overall median RLE counts for all samples for each sample with and without RUV-mediated factor correction.


Support Vector Machine (SVM)-Based Algorithm Development and Particle Swarm-Driven SVM-Parameter Optimalisation

The swarm-enhanced thromboSeq algorithm implements multiple improvements over the previously published thromboSeq algorithm (Best et at, 2015. Cancer Cell 28: 68-676). An overview of the swarm-enhanced thromboSeq classification algorithm is provided in FIG. 9e. First, we improved algorithm optimization and training evaluation by implementing a training-evaluation approach. A total of 93 samples for the matched cohort (FIG. 1d) and 120 samples for the full cohort (FIG. 1e) assigned for training-evaluation were used as an internal training cohort. These samples served as reference samples for the iterative correction module (see ‘Data normalisation and RUV-mediated factor correction’-section in Example 1), initial gene panel selection by a likelihood ratio ANOVA test (see ‘Differential splicing analysis’-section in Example 1), SVM-parameter optimization, and final algorithm training and locking (selection of support vectors). Second, after the likelihood ratio ANOVA analysis we removed genes with high internal correlation (findCorrelations function in the R-package caret), as these were previously suggested to contribute to unwanted noise in SVM-models. Third, we implemented a recursive feature elimination (RFE) algorithm, previously proposed by Guyon et al., (Guyon et al., 2002. Machine Learning 46: 389-422), to enrich the gene panels for genes most relevant and contributing to the SVM classifiers. Fourth, following the final SVM cost and gamma parameter grid search (see FIG. 9e), we performed additional refinement of the cost and gamma parameters, by enabling an internal, second particle swarm algorithm (cv.particle_swarm-function in the R-package Optunity). This internal particle swarm algorithm was employed to investigate and pinpoint neighbouring values of the optimal gamma and cost parameters determined by the SVM grid search for more optimal internal SVM performance. Fifth, the entire SVM classification algorithm was subjected to a particle swarm optimization algorithm (PSO), implemented by the ppso-package in R (optim_ppso_robust-function) (Tolson and Shoemaker, 2007. Water Resources Research 43: W01413). Particle swarm intelligence is based on the position and velocity of particles in a search-space that are seeking for the best solution to a problem. Upon iterative recalibration of the particles based on its local best solution and overall best solution, a more refined estimate of the input parameters and algorithm settings can be achieved (FIG. 1c). The implemented algorithm allows for realtime visualization of the particle swarms, optimization of multiple parameters in parallel, and deployment of the iterative ‘function-calls’ using multiple computational cores, thereby advancing implementation of large classifiers on large-sized computer clusters. The PSO-algorithm aims to minimize the ‘1-AUC’-score. We employed for our matched NSCLC/Non-cancer cohort classifier 100 particles with 10 iterations and for the full NSCLC/Non-cancer cohort classifier 200 particles with 7 iterations. We optimized four steps of the generic classification algorithms, i.e. (i) the iterative correction module threshold used for selection of genes identified as stable genes among the library size (see also FIG. 9a), (ii) the FDR-threshold included in the differential splicing filter applied to the results of the likelihood ANOVA test, (iii) the exclusion of highly correlated genes selected after the likelihood ANOVA test, and (iv) number of genes passing the RFE-algorithm. Predefined ranges were submitted to the PSO-algorithm for every classification task presented in the this study. Training of SVM algorithms was performed using a two-times internal cross validation, and an initial gamma and cost parameter range for the grid search of respectively 2{circumflex over ( )}(−20:0) and 2{circumflex over ( )}(0:20). To account for undetected genes in the validation cohort, potentially hampering normalization of the data and reducing algorithm performance, genes with counts between zero and 12 (matched cohort) and 2 (full cohort) were replaced by the median counts of the training cohort, for that particular gene.


Performance Measurement of the Swarm-Enhanced thromboSeq Algorithm


We assessed the performance, stability, and reproducibility of the swarm-enhanced thromboSeq platform using multiple training, evaluation, and validation cohorts. A schematic overview of the cohorts used for assessment of the performance of the platform in patient age- and blood storage-matched cohorts is provided in FIG. 3b. A detailed description of the samples used for classification and assignment to the different cohorts is provided in Table 5. Demographic and clinical characteristics of the cohorts are summarized in Table 4, FIG. 4a, and Table 5. All classification experiments were performed with the swarm-enhanced thromboSeq algorithm, using parameters optimized by particle swarm intelligence. We assigned for the matched cohort (FIG. 1d) 133 samples for training-evaluation, of which 93 were used for RUV-correction, gene panel selection, and SVM training, and 40 were used for gene panel optimization. The full cohort (FIG. 1e) contained 208 samples for training-evaluation, of which 120 were used for RUV-correction, gene panel selection, and SMV training, and 88 were used for gene panel optimization. The nivolumab response prediction cohort contained randomly samples cohorts consisting of 60 training samples, 21 evaluation samples, and 23 independent validation samples. All random selection procedures were performed using the sample-function as implemented in R. For assignment of samples per cohort to the training and evaluation subcohorts, only the number of samples per clinical group was balanced, whereas other potentially contributing variables were not stratified at this stage (assuming random distribution among the groups). Performance of the training cohort was assessed by a leave-one-out cross validation approach (LOOCV, see also Best et al., (Best et al., 2015. Cancer Cell 28: 666-676)). During a LOOCV procedure, all samples minus one (‘left-out sample’) are used for training of the algorithm, after which the response status of the left-out sample is classified. Each sample is predicted once, resulting in the same number of predictions as samples in the training cohort. The list of stable genes among the initial training cohort, determined RUV-factors for removal, and final gene panel determined by swarm-optimization of the training-evaluation cohort were used as input for the LOOCV procedure. As a control for internal reproducibility, we randomly sampled training and evaluation cohorts, while maintaining the validation cohorts and the swarm-guided gene panel of the original classifier, and perform 100 (nivolumab response prediction) or 1000 (matched and full cohort NSCLC/Non-cancer) training and classification procedures. As a control for random classification, class labels of the samples used by the SVM-algorithm for training of the support vectors were randomly permutated, while maintaining the swarm-guided gene list of the original classifier. This process was performed 1000 for the matched and full NSCLC/Non-cancer cohort classifiers, and 100 for the nivolumab response prediction classifier. P-values were calculated accordingly, as described previously (Best et al., 2015. Cancer Cell 28: 666-676). Results were presented in receiver operating characteristics (ROC)-curves, and summarized using area under the curve (AUC)-values, as determined by the ROCR-package in R. AUC 95% confidence intervals were calculated according to the method of Delong using the ci.auc-function of the pROC-package in R (Delong et al., 1988. Biometrics 44: 837-45).


Gene Ontology Analysis

For the gene ontology analysis, we investigated co-associated gene clusters using the PAGODA functions implemented in version 1.99 of the scde R-package (http://pklab.med.harvard.edu/scde/). PAGODA allows for clustering of redundant heterogeneity patterns and the identification of de novo gene clusters through pathway and gene set overdispersion analysis (Fan et al., 2016. Nature Methods 13: 241-244). In particular, the ability to identify de novo gene clusters is of interest for the analysis of platelet RNA-seq data, as platelet biological functions are potentially unannotated and can only be inferred by unbiased cluster analysis. Gene IDs as selected by differential splicing analysis (n=1622, FIG. 5a) were used as input to generate gene ontology library files. We used a distance threshold of 0.9 for the PAGODA redundancy reduction, and identification of de novo gene options was enabled. Remaining steps in the analysis were according to instructions from the PAGODA authors. PAGODA analysis revealed four major clusters (one existing and three de novo gene clusters) of co-regulated genes that were correlated to disease state. We selected clusters with a significantly enriched multiple hypothesis testing corrected z-score (adjusted z-score). The de novo clusters were further curated manually using the PANTHER Classification System (http://pantherdb.org/) on the 26 Sep. 2016.


Example 2

By analysis of platelet RNA samples after SMARTer amplification we observed delicate differences in the SMARTer cDNA profiles (FIG. 4f), as measured by a Bioanalyzer DNA High Sensitivity chip. The slopes of the cDNA products can be subdivided in spiked, smooth, and intermediate spiked/smooth profiles, and do not tend to be disease-specific (FIG. 4g). The spiked pattern, which is the most abundantly observed slope (59% in both Non-cancer as NSCLC cohort) is possibly related to the relative small diversity of RNA molecules (˜4000-5000 different RNAs measured) in platelets. The remaining samples are characterized by a smooth or intermediate spiked/smooth cDNA product profile. Of note, the Picochip RNA profiles and DNA 7500 Truseq cDNA profiles are similar among the three SMARTer groups (FIG. 4f), and none of the SMARTer groups was enriched in low-quality RNA samples. The average cDNA length can be correlated to the SMARTer profiles, whereas the cDNA yield following SMARTer amplification was comparable. Notably, the samples with a more smooth-like pattern resulted in reduced total counts of intron-spanning spliced RNA reads, and a concomitant increase in reads mapping to intergenic regions (FIG. 4i). RNA-seq reads mapping to intergenic regions are considered to be derived from unannotated genes resulting in stacks of multiple (spliced) reads, or (genomic) DNA contamination resulting in scattered reads. By analysis of small bins of intergenic regions (1 kb each), we observed that a minority of these reads can be attributed to potential unannotated genes (data not shown). Analysis of the average length distribution of concatenated read fragment mapping to intergenic regions (see Example 1), revealed a median fragment size of ˜100-200 bp with a distinct peak at 100 bp, which might be derived from fragments of cell-free DNA (FIG. 4h) (Newman et al., 2014. Nature Med 20: 548-554; Jiang and Lo, 2016. Trends Gen 32: 360-371). We previously estimated the contribution of nucleated cells in the platelet isolation procedure (n=7 randomly selected platelet isolations), potentially explaining traces of genomic DNA, but observed only minor contamination of these nucleated (white blood) cell (Best et al., 2015. Cancer Cell 28: 666-676). Notably, the time between whole blood collection and start of the platelet isolation procedure is likely to be correlated to the SMARTer cDNA slopes. Samples that have been stored as whole blood for more than 24 hours showed a spiked pattern in virtually all cases, whereas platelets isolated directly after blood collection showed a smooth pattern in most of the cases. Cell-free DNA is rather unstable in whole blood collected in EDTA-coated tubes, and most traces of cell-free DNA are likely degraded after more than 12-24 hours of incubation. Therefore, we anticipated that the whole blood samples subjected to the platelet isolation protocol—immediately or within 12 hours after blood collection—were possibly contaminated by residual plasma-derived cell-free DNA, of which traces remain in the isolated platelet pellet. The contamination with ‘unwanted’ cell-free DNA in the platelet RNA profiles can be circumvented by selection of intron-spanning RNA-seq reads, since exon-to-exon reads are specifically RNA-derived. Standardization of sample collection by starting the platelet isolation within 4-24 hours after blood collection, is therefore suggested.


Example 3

RNA-seq data offers an opportunity to quantify nearly any region of the transcriptome at high resolution. Hence we investigated the distribution of RNA species in the platelet RNA profiles. The platelets analyzed in this study make up a snapshot of all platelets circulating in the blood stream at moment of blood collection, and may be influenced by variables such as total platelet counts, medication, bleeding disorders, injuries, activities or sports, and circadian rhythm. For the following analyses, in order to reduce the influence of factors highly suspected of confounding the platelets profiles (Table 4), we selected 263 patient age- and blood storage time-matched individuals. Based on intron-spanning read count analysis we identified 1625 spliced platelet genes with significantly differentially spliced levels (FDR<0.01, 698 genes with enhanced splicing in platelets of NSCLC patients and 927 genes with decreased splicing in platelets of NSCLC patients), which is in line with previous findings (Best et al., 2015. Cancer Cell 28: 666-676; Calverley et al., 2010. Clinical and Transl Science 3: 227-232).


Based on unsupervised hierarchical clustering of intron-spanning reads the Non-cancer and NSCLC samples separated into two distinct groups (p<0.0001, Fisher's exact test, FIG. 5a). Next, we quantified the number of confidently mapped RNA-seq reads for each separate region of the mitochondrial genome and human genome, i.e. exonic, intronic, and intergenic fractions (see Example 1). We observed an on average increase in the number of reads mapping to the mitochondrial genome in NSCLC patients as compared to cancer-free individuals (FIG. 6b). Follow-up analysis revealed an increased number of normalized reads (the reads per one million total genomic reads) mapping to exonic fractions in NSCLC patients, whereas for intronic and intergenic fractions the opposite was observed (FIG. 6b). We further observed that, for samples with a larger proportion of reads mapping as intron-spanning spliced RNA reads, the contribution of reads mapping to the mitochondrial genome and intergenic regions was lower, whereas samples with low intron-spanning spliced RNA reads showed the opposite (FIGS. 4i and 6b).


Next, we investigated the contribution of alternative splicing events to the platelet RNA repertoire, since alternative splicing events might influence the number of spliced HNA reads used for the diagnostic classifiers. For characterization of transcriptome-wide alternative isoforms and splicing events, we implemented the previously published MISO algorithm (Katz et al., 2010. Nature Methods 7: 1009-1015) for the quantification and summarization of annotated RNA isoforms. From this, we inferred a count matrix, which contains the number of reads supporting each included RNA isoform per sample (FIG. 6c, see Example 1 for additional details). Next, we performed differential expression analysis between the RNA isoforms, and selected differential RNA isoforms between Non-cancer individuals (n=104) and NSCLC patients (n=159). Differential RNA isoform analysis between Non-cancer individuals and NSCLC patients revealed 743 RNA isoforms to be significantly enriched (n=359) or depleted (n=384) in TEPs of NSCLC patients. In 20% ( 113/571) of the genes, we identified multiple isoforms associated with the same gene locus (FIG. 6c). However, in only 13/571 (2.3%) of the genes we observed potential alternative splicing of the isoforms, although the differences between these particular RNA isoform were minor (data not shown). Altogether these results suggest that alternatively spliced RNA isoforms only have a minor-to-moderate contribution to the TEP profiles (FIG. 1b).


Next, we investigated alternative splicing events within genes. i.e. exon skipping. Here, we again applied the MISO algorithm (Katz et al., 2010. Nature Methods 7: 1009-1015) to profile 38327 annotated exons, and to infer the fraction of reads supporting either inclusion or exclusion of the particular exon as compared to neighbouring exons (schematic representation in FIG. 6d). In addition, the algorithm provides for each event a percent spliced in (PSI) value, quantifying the estimated fraction of reads supporting either inclusion or exclusion of a particular exon. For exon skipping analysis, 230 exons remained eligible for analysis after filtering for exons with low coverage. We applied ANOVA statistics, including correction for multiple hypothesis testing (FDR), for each included exon. By applying a threshold (ANOVA FDR<0.01), we identified 27 exon skipping events that were statistically significantly different in PSI value between Non-cancer and NSCLC samples (n=15 skipped in Non-cancer, n=12 skipped in NSCLC), and we observed a general trend towards exon inclusion in NSCLC (FIG. 6d). The putative exon skipping events are present in genes like SNHG6, CD74, and SRP9 (FIG. 6d). Hence, analysis of alternative splicing in platelets suggests a minor-to-moderate contribution to the TEP splicing profiles (FIG. 1b).


We also observed multiple variables converging, i.e. 1) platelets of NSCLC patients have an higher RNA yield on average (FIG. 4c), 2) platelets of NSCLC patients show on average a lower variety of processed and spliced RNAs, indicating reduced activity (FIG. 4k), and 5) platelets of NSCLC patients show an increased expression of reads mapping to exons and intron-spanning reads (FIG. 6b), whereas the reads spanning exon boundaries (potential unspliced RNAs) have similar levels in Non-cancer and NSCLC. In line with these findings, and supported by literature reports (Dymicka-Piekarska and Kemona, 2008. Thrombosis Res 122: 141-143; Dymicka-Piekarska et al., 2006. Advances Med Sciences 51: 304-308; Stone et al., 2012. New England J Med 366: 610-618; Watrowski et al., 2016. Tumour Biol 37: 12079-12087), the platelet fraction of cancer patients seems to be enriched with younger reticulated platelets. Reticulated platelets are newborn platelets (<1 day old), and contain considerably enriched levels of RNAs, as measured by thiazole orange staining (Hoffmann, 2014. Clinical Chem Lab Med 52: 1107-1117; Harrison et al., 1997. Platelets, 8: 379-383; Ingram and Coopersmith, 1969. British J Haematol 17: 225-229). Reticulated platelets were estimated to have an enriched RNA content of 20-40 fold (Angénieux et al., 2016. PloS one 11: e0148064). Hence, we hypothesized that the platelet RNA of NSCLC patients could be enriched with RNAs associated with younger platelets, including P-selectin (CD62) (Bernlochner et al., 2016. Platelets 27: 796-804). We indeed observed a highly significant positive correlation between exonic read coverage and P-selectin RNA-seq read counts (n=263, r=0.51, p<0.0001, Pearson's correlation, FIG. 7a). Next, we calculated an RNA signature correlated to P-selectin, and defined a profile of 2797 confidently detected and P-selectin co-correlating genes (FDR<0.01, FIG. 7b). The P-selectin signature was enriched for markers like CASP3, previously implicated in megakaryocyte-mediated pro-platelet formation (Morishima and Nakanishi, 2016. Genes Cells 21: 798-806). MMP1 and TIMP1, previously shown to be sorted to platelets (Ceechetti et al., 2011. Blood 118: 1903-1911), and ACTB, previously detected in reticulated platelets (Angénieux et al., 2016. PloS One 11: e0148064), providing validity of the P-selectin reticulated platelet signature. We observed that 77% of genes in the P-selectin signature were also identified as significantly enriched in the TEPs of NSCLC patients (FIG. 7c). Hence, we estimated that the contribution of the younger reticulated platelets to the TEP RNA profiles of NSCLC patients is significant (FIG. 1b and FIG. 7c).


Example 4

Platelets are anucleated cell fragments. They contain, however, a functional spliceosome and several splice factor proteins (Denis et al., 2005. Cell 122: 379-391). Therefore, platelets retain their capacity to initiate pre-mRNA splicing. Several experiments have demonstrated that platelets are able to splice pre-mRNA upon environmental queues (Rondina et al., 2011. Journal Thromb Haemostasis 9: 748-758; Schwertz et al., 2006. J Exp Med 203: 2433-2340; Denis et al., 2005. Cell 122: 379-391), and that they have the ability to translate RNA into proteins (Weyrich et al., 1998. Proceedings of the National Academy of Sciences 95: 5556-5561). As platelets lack a nucleus, but are packaged with ˜20-40 femtograms of RNA (Angénieux et al., 2016. PloS One 11: e0148064) and circulate for 7-10 days, the (pre-)mRNA needs to be properly curated. The inability of platelets to transcribe chromosomal DNA, as opposed to nucleated cells, prevents the platelets from transcription factor-mediated gene regulation, hinting at post-transcriptional regulation of the RNA pool (FIG. 8a), possibly by RNA binding proteins (RBPs) (Zimmerman and Weyrich, 2008. Arteriosel Thromb Vasc Biol 28: s17-24). Indeed, the SF2/ASF- (SRSF1-) RBP has previously been implicated in the initiation of splicing of tissue factor mRNA in the platelets of healthy individuals (Schwertz et al., 2006. J Exp Med 203: 2433-2440). In general, RBPs are implicated in multiple co- and post-transcriptional processes associated with gene expression, such as RNA splicing, poly-adenylation, stabilization, and localisation (Glisovic et al., 2008. FEBS Letters 582: 1977-1986). A co-assembly of multiple RBPs with RNA molecules results in heterogeneous nuclear ribonucleoproteins (hnRNPs), which can define the fate of the pre-mRNA molecules. The 5′- and 3′-UTR are considered to be the most prominent regulatory regions for pre-mRNAs (Ray et al., 2013. Nature 499 172-177), whereas intronic regions primarily mediate alternative splicing events such as exon skipping. SAGE analyses of platelet RNA lysates have shown that the platelets contain genes with an on average longer 3′-UTR length (Dittrich et al., 2006. Thromb Haemostasis 95: 643-651). Therefore, we hypothesized that differential binding of RBPs to the UTR regions of platelet RNAs might explain the differential splicing patterns observed in TEPs. We developed an algorithm that scans for RBP binding motifs in UTR regions, and which identifies correlations between the number of binding sites and the log fold-change of the particular gene. We termed the algorithm the RBP-thromboSearch engine (FIG. 8b, see details in Example 1). We included 102 RBPs of which the binding motifs were previously identified (Ray et al., 2013. Nature 499: 172-177). We only included UTR regions with sufficient read coverage in the RNA-seq data (FIG. 8c, see Example 1). We first identified RBPs with enriched tropism for either the 5′-UTR or 3′-UTR, and indeed observed that RBM8A, FUS, and PPRC1 were primarily targeted towards the 5-ULTR, whereas IGF2BP2. ZC3H14, and RALY showed an enriched binding repertoire for the 3′-UTR (FIG. 8d). These enrichments were reported previously (Ray et al., 2013. Nature 499: 172-177), supporting the specificity of our matching-approach. All UTRs had at least one binding site for one of the RBPs. By analysis of the 3210 5′-UTR regions and 3720 3′-UTR regions, we observed that the number of RBP binding sites per UTR region showed a bimodal distribution, indicating controlled regulation of specific RBPs for specific UTR regions (FIG. 8e, f). To assess whether the RNAs in the NSCLC TEP RNA signatures are co-regulated by specific RBP binding sites, we correlated the log FC-values of either the 5′-UTR or 3′-UTR of the genes to the number of matching binding sides on either of these regions for each RBP. This resulted in 5 significant correlations for the 5′-UTR (FDR<0.01, RBM4, RBM8A, PPRC1, FUS, SAMD4A) and 69 for the 3′-UTR (FDR<0.01, top 5 is PCBP1/2, SRSF1, RBM28 LIN28A. and CPEB2, FIG. 8g). The significant correlations between n RBP binding sites and the log FC of the signature genes were positive for all significantly enriched RBPs, suggesting that enhanced binding sites might lead to enhanced splicing. Possibly, upon platelet activation, RBPs are released from specific granules into the platelet cytosol, thereby starting the splicing process. Alternatively, RBPs are controlled by protein kinases, such as Clk, that regulated RBP phosphorylation (Denis et al., 2005. Cell 122: 379-391; Schwertz et al., 2006. J Exp Med 203: 2433-2440), and thereby its intracellular localization (Colwill et al., 1996. EMBO J 15: 265-275). Thus, we conclude that differential RBP binding signatures might at least partially contribute to the specific TEP signatures, although further experimental validation is warranted.


Example 5
Development of Classification Signature

Blood platelets act as local and systemic responders during tumorigenesis and cancer metastasis (McAllister and Weinberg 2014. Nature Cell Biol 16: 717-27), thereby being exposed to tumor-mediated platelet education, and resulting in altered platelet behaviour (Labelle et al., 2011. Cancer Cell 20: 576-590; Schumacher et al., 2013. Cancer Cell 24: 130-137; Kerr et al., 2013. Oncogene 32: 4319-4324). We have previously demonstrated that platelet RNA can function as a biomarker trove to detect and classify cancer from blood via self-learning support vector machine (SVM)-based algorithms (Best et al., 2015. Cancer Cell 28: 666-676)(FIG. 3a). For platelet RNA biomarker selection and computational analyses, the isolated platelet RNA is first subjected to SMARTer cDNA synthesis and amplification. Truseq library preparation, and Illumina Hiseq sequencing (FIG. 4d-e, Example 1). We termed this highly multiplexed biomarker signature detection platform thromboSeq. Extrinsic factors can be of influence in the selection process and read-out of the platelet RNA biomarkers (Diamandis, 2016. Cancer Cell 29: 141-142; Joosse and Pantel, 2015. Cancer Cell 28: 552-554; Feller and Lewitzky, 2016. Cell Communication and Signaling 14: 24), and by statistical modeling of publicly available data (Best et al., 2015. Cancer Cell 28: 666-676), we were able to confirm that age of the individual and blood storage time can influence the platelet classification score (Table 4). Hence, we assembled cohorts of blood platelet samples from patients with NSCLC (n=159) and individuals with no known cancer (n=104), matched for age (median age (interquartile range: IQR) of 61 (14.5) and 58 (12.25) years respectively, FIG. 4a), and blood storage time (platelet isolation within 12 hours of blood collection). This matched cohort is part of a larger cohort of NSCLC patients (n=352) and individuals with no known cancer, but not excluding individuals with inflammatory diseases (n=376) (FIG. 1a, Table 4, Table 5, FIG. 4a). The matched NSCLC/Non-cancer cohort enabled us to first assess the contribution of potential technical and biological variables, i.e. platelet activation, platelet RNA yield, platelet maturation, and circulating DNA contamination (FIGS. 4-5, Example 2), and to investigate the platelet RNA profiles and RNA processing pathways (FIG. 1b, FIGS. 5-8, Examples 3-4). In addition, we investigated the platelet RNA sequencing efficiency using the thromboSeq platform (FIG. 4) Altogether, our results demonstrate that selection of intron-spanning spliced RNA reads eliminates potential undesired contribution of DNA contamination in the platelet RNA biomarker selection process, and that per sample a repertoire of at least 3000 different genes has to be detected prior to inclusion for diagnostic algorithm development (FIG. 4). In addition, the spliced platelet RNA profiles in patients with NSCLC seem to be predominantly altered by canonical splicing events and RNA-binding protein activity during platelet education and maturation in response to tumor growth (FIG. 1b, FIGS. 4-8, Examples 2-4). Next, we employed the matched NSCLC/Non-cancer platelet cohort to develop a NSCLC diagnostics classification algorithm (FIG. 1). We first improved the robustness of the data normalisation procedure of our previously developed SVM-based thromboSeq classification algorithm (Best et al., 2015. Cancer Cell 28: 666-676) by introduction of a RUV-based (Risso et al., 2014. Nature Biotech 32: 896-902) iterative correction module, thereby considerably reducing the relative intersample variability (p<0.0001, two-sided Student's t-test, FIG. 9a-d). Second, we implemented a PSO-driven meta-algorithm for selection of the most contributive genes used for classification (FIG. 1c, FIG. 9e). The PSO-driven algorithm leverages the use of many candidate solutions (i.e. particles), and by adopting swarm intelligence and particle velocity the algorithm continuously searches for more optimal solutions, ultimately reaching the most optimal fit (Kennedy et al., 2001. The Morgan Kaufmann Series in Evolutionary Computation. Ed: David B. Fogel; Bonyadi and Michalewicz 2016. Evolutionary computation: 1-54). Finally, we tested and validated the PSO-driven thromboSeq algorithm using the NSCLC/Non-cancer cohorts matched for patient age and blood storage time (n=263 in total). We summarized the predictive measures of the PSO-enhanced thromboSeq platform in a receiver operating characteristics (ROC) curve. We observed that this NSCLC classification algorithm has significant predictive power in patient age- and blood storage time-matched evaluation (accuracy: 85%, AUC: 0.91, 95%-CI: 0.82-1.00, n=40, red line. FIG. 1d) and validation cohorts (accuracy: 91%, AUC: 0.95, 95%-CI: 0.91-0.99, n=130, blue line, FIG. 1d). Post hoc leave-one-out cross validation (LOOCV) analysis of the training cohort suggests reduced performance (accuracy: 77%, AUC of 0.84, 95%-CI: 0.75-0.92, n=93, dashed grey line, FIG. 1d), as compared to the ‘matched’ evaluation (85% accuracy) and validation cohort (91% accuracy). This may be explained by the different classification techniques used, and optimization of the gene panel towards the evaluation cohort at cost of classification power in the training cohort. Following swarm-enhanced gene panel selection, the performance metrics of the training, evaluation and validation cohorts suggest that the algorithm has not been overfitted, a common pitfall of machine learning tasks (Lever et al., 2016. Nature Methods 13: 703-704). The contribution of patient age and blood storage time to the cancer classification was negligible as compared to the predictive power attributed to platelet RNA (Table 4). Of note, random selection of 1000 other patient age- and blood storage time-matched training cohorts from the same sample library (n=93 each) showed similar classification strength (median AUC ‘validation cohort’: 0.85, IQR: 0.05), as opposed to random classification (median AUC ‘validation cohort’: 0.55, IQR: 0.01, p<0.001). Subsequently, we included all samples of the full non-matched NSCLC/Non-cancer cohort (n=352 and n=376, respectively) and developed a new classification algorithm. For development of the algorithm training cohort, we summed all matched patient age and blood storage time samples and assigned 120 samples for swarm-guided gene list selection and SVM training, and 88 samples for swarm-based optimization. Hence, again the training cohort of the NSCLC diagnostics classifier was not confounded by patient age or blood storage time (Table 4). A total of 520 samples (patient age- and/or blood storage time-unmatched), including samples collected in multiple hospitals and from different clinical cohorts (Table 5), remained for validation of the algorithm, and were predicted by the algorithms while the algorithms' classification parameters were locked. We again summarized the predictive measures of the PSO-enhanced thromboSeq platform in a HOC curve, for evaluation (accuracy: 91%, AUC: 0.93, 95%-CI: 0.87-0.99, n=88, red line. FIG. 1e) and validation (accuracy: 89%, AUC: 0.94, 95%-CI: 0.93-0.96, n=520, blue line. FIG. 1e). Post-hoc LOOCV analysis of the training cohort again resulted in reduced performance (accuracy: 84%, AUC: 0.90, 95%-CI: 0.84-0.95, n=120, dashed grey line, FIG. 1e), as compared to the ‘full’ evaluation (91% accuracy) and validation cohort. (89% accuracy). Random selection of other training cohorts (n=120 each) while locking the gene panel resulted in similar classification strength (n=1000, median AUC ‘validation cohort’: 0.89. IQR: 0.05), whereas for random classification algorithm performance diminished (median AUC ‘validation cohort’: 0.5, IQR: 0.03, p<0.001). Therefore, we conclude that the PSO-driven thromboSeq platform allows for robust biomarker selection for blood-based cancer diagnostics, independent of bias introduced by age of the individual, blood storage time, and certain inflammatory diseases.


Example 6 Development of Response Signature

Next, we investigated the clinical utility of swarm-modulated TEP biomarker signatures for therapy response prediction in patients with NSCLC. For this, we prospectively included patients with NSCLC that were selected for treatment with the PD-1 monoclonal antibody nivolumab that is associated with an objective response rate of approximately 20% in unselected NSCLC cohorts in the second line setting (Borghaei et al., 2015. New England J Med 373: 1627-1639; Brahmer et al., 2015. New England J Med 373: 123-135). Currently, stratification of patients for anti-PD-(L)1 targeted therapy is hampered by limited accuracy and concordance of available biomarkers, including PD-L1 immunohistochemistry of tumor tissue. Studies have identified correlations between tumor tissue mutational load, presence of neo-antigens, infiltration of immune cells, and response to anti-PD-(L)1 immunotherapy (Rizvi et al., 2015. Science 348: 124-128; McGranahan et al., 2016. Science 351: 1463-1469). Identification of patients with a low likelihood of response to anti-PD-(L)1 immunotherapy, while still correctly identifying individuals who most likely benefit from this therapy, might prevent unnecessary treatment and concomitant costs, and potential exposure of patients to serious immunological adverse events. Platelets can behave as immunomodulators in inflammatory conditions (Boilard et al., 2010. Science 327: 580-583), and are therefore potentially also involved in the immune response towards a tumor. To this end, we collected platelet samples before start of nivolumab treatment (n=64). These samples are part of the cohort presented in FIG. 1a. Response assessment of patients treated with nivolumab was performed by computed tomography (CT)-imaging at baseline, 6-8 weeks, 3 months and 6 months after start of treatment (FIG. 2a). Treatment response was assessed according to the updated Response Evaluation Criteria in Solid Tumours (RECIST) version 1.1. NSCLC patients with disease control (i.e. complete and partial responders, and patients with stable disease at six months after start of nivolumab treatment), were assigned to the responders group. For thromboSeq analysis, we selected baseline blood samples of 64 NSCLC patients treated with nivolumab (n=44 responders and n=60 non-responders), aiming at relatively balanced group sizes for optimal development of the PSO-driven nivolumab response prediction algorithm (FIG. 2a). First, we observed significant non-random clustering of differentially spliced RNAs in platelets of 44 responders and 60 patients not responding to nivolumab (gene panel optimized by swarm-intelligence, p<0.0001 by Fisher's exact test, FIG. 2b). Next, we re-applied swarm-intelligence for nivolumab response prediction signature identification. For this, we randomly selected a 60-sample training, 21-sample dependent evaluation, and 23-sample validation cohorts. The PSO-enhanced thromboSeq classification algorithm reached, using a 1246-gene nivolumab response prediction panel, an accuracy of 76% in the dependent evaluation cohort (AUC: 0.72, 95%-CI: 0.49-0.96, n=21, grey line. FIG. 2c). We next observed that the 1246-gene nivolumab response prediction algorithm has significant predictive power in an independent validation cohort. (accuracy: 83%, AUC: 0.89, 95%-CI: 0.67-1.00, n=23, blue line, FIG. 2c). Post hoc leave-one-out cross validation (LOOCV) analysis of the training cohort, during which each samples of the 60-samples training cohort is left out for algorithm training and subsequently predicted, resulted in high-accuracy classifications (accuracy: 83%, AUC: 0.89, 95%-CI: 0.81-0.97, red line, FIG. 2c). We confirmed the sensitivity of the nivolumab response prediction classifier by randomly selecting other training and dependent evaluation cohorts with similar sample sizes (n=1000 iterations, median AUC: 0.78, IQR: 0.09). In addition, we confirmed the specificity by randomly shuffling class labels (permutations) during the training process, resulting in random classifications (n=1000, median AUC: 0.30, min-max: 0.2-0.31, p<0.0001. FIG. 2c). Selection of an algorithm threshold at which all responders are correctly assigned for nivolumab treatment (100% sensitivity) using this 1246-gene classifier results in correct assignment in 53% of the cases in non-responders (53% specificity, FIG. 2d).


Assuming a 20% response rate to nivolumab among an unselected population of NSCLC patients (Borghaei et al., 2015. New Engl J Med 373: 1627-1639; Brahmer et al., 2015. New Engl J Med 373: 123-135), 42% of the full population will safely be withheld nivolumab treatment. We noted that classification of the n28-Follow-up-cohort (collected 2-4 weeks after start of treatment) in the 1246-genes nivolumab response prediction algorithm yielded in random classification (data not shown). However, we observed similar distinctive power in TEP RNA profiles at 2-4 weeks following start of treatment when analyzed separately (FIG. 10a), indicating that for a response predictor, during nivolumab treatment a separate classifier has to be build. We also noted that the TEP RNA profiles alter while patient are treated with nivolumab (FIG. 10b,c).


Altogether, we provide evidence that TEPs could potentially serve as a diagnostics platform for cancer detection and therapy selection. The PSO-driven thromboSeq algorithm development approach allowed for efficient biomarker selection and may be applicable to other diagnostics biosources and indications. A further increase in the classification power of swarm-enhanced thromboSeq may be achieved by 1) training of the swarm-enhanced self-learning algorithms on significantly more patient age- and blood storage time-matched samples, 2) including analysis of small RNA-seq (e.g. miRNAs), 3) including non-human RNAs, and/or 4) combining multiple blood-based biosources, such as TEP RNA, exosomal RNA, cell-free RNA, and cell-free DNA. By nature, swarm intelligence allows for self-reorganization and re-evaluation, enabling continuous algorithm optimization (FIG. 3a). At present, large scale validation of TEPs for the (early) detection of NSCLC and nivolumab response prediction is warranted.


Example 7 Patient Cases

A 60-years-old male presents at the general practitioner (GP). He complains about sputum mixed with blood, tiredness, shortness of breath, and loss of weight. Upon physical examination the GP notices enlargement of clavicular lymph nodes. The GP suspects the patient of localized or metastasized lung cancer. He orders a platelet-RNA-based diagnostic test (thromboSeq). The patient is subjected to a venipuncture, and whole blood is collected in a EDTA-coated tube. The EDTA-coated tube with blood is send via medical transport to a sequencing facility, compatible with the thromboSeq system. Upon arrival of the blood tube at the sequencing facility the EDTA-coated tube is subjected to the standardized platelet isolation protocol, and from the resulting platelet pellet total RNA isolation is performed. The total RNA is quantified, quality-controlled, and ˜500 pg RNA is subjected to the standardized SMARTer cDNA amplification protocol. Resulting cDNA is labelled for Illumina sequencing, and the sample is sequenced using the Illumina sequencing platform.


Following sequencing, the samples' FASTQ-file is processed using the thromboSeq bioinformatics pipeline, consisting of read mapping, quantification, normalization, and correction, and classified using the swarm-enhanced NSCLC Dx signature-based support vector machine (SVM) classifier. The classification result is send to the GP.


A 66-years-old female is diagnosed with a stage IV non-small cell lung cancer (NSCLC), with multiple metastases to the brain. The medical doctors decide to investigate the sensitivity of the primary tumor for anti-PD(L)1-targeted treatment, especially nivolumab treatment. They draw blood using a regular venipuncture procedure, and collect the whole blood in EDTA-coated vacutainer tubes. The EDTA-coated tube with blood is send via medical transport to a sequencing facility, compatible with the thromboSeq system. Upon arrival of the blood tube at the sequencing facility the EDTA-coated tube is subjected to the standardized platelet isolation protocol, and from the resulting platelet pellet total RNA isolation is performed. The total RNA is quantified, quality-controlled, and ˜500 pg RNA is subjected to the standardized SMARTer cDNA amplification protocol. Resulting cDNA is labelled for Illumina sequencing, and the sample is sequenced using the Illumina sequencing platform. Following sequencing, the samples' FASTQ-file is processed using the thromboSeq bioinformatics pipeline, consisting roughly of read mapping, quantification, normalization, and correction, and classified using the swarm-enhanced nivolumab therapy response signature-based SVM classifier. The classification result, which contains a predicted response efficacy to nivolumab, is send to the medical team.


Example 8 Minimal Biomarker Panels
NSCLC Diagnostics Gene Panel

To select a minimal biomarker gene panel for TEP-RNA NSCLC diagnostics, a NSCLC diagnostics score was calculated. The NSCLC/Non-cancer RNA-sequencing dataset (n=779 samples) was first subjected to the RUV-normalization module (lib-size threshold: 0.418, as determined by PSO). The genes with stable expression levels among the cohort and the factors for RUV-correction were determined using the training cohort only (n=120 samples). Next, ANOVA differential expression analysis using only the samples assigned to the age-, gender-, EDTA-, and smoking-matched NSCLC/Non-cancer training cohort was performed. Following, an iterative biomarker gene panel selection algorithm, which adds per iteration a new gene according to a ranked FDR- or p-value-ranked ANOVA list, was employed. The biomarker gene panel is composed of genes with a positive logarithmic fold change. The NSCLC diagnostics score was calculated per iteration by selecting the median 2-log counts-per-million value for each sample for the genes in the biomarker gene panel. For each biomarker set, the AUC-value of a ROC-curve of the biomarker gene in an evaluation cohort (n=88) was evaluated. This was performed for a biomarker gene panel ranging from 2 genes up to and including 500 genes.


The evaluation cohort (n=88 samples) showed the highest AUC-value in the ROC-curve of the NSCLC diagnostics score in a 60-gene biomarker gene panel (AUC-value: 0.86, classification accuracy: 81%). Subsequent locking of the 60-genes biomarker gene panel and ROC-curve evaluation of an independent NSCLC late-stage validation cohort (n=518, n=245 NSCLC and n=273 non-cancer) resulted in an AUC-value of 0.80 (95%-CI: 0.77-0.84) and an classification accuracy of 73%, and an independent NSCLC locally-advanced validation cohort (n=106, n=53 NSCLC and n=53 non-cancer) resulted in an AUC-value of 0.74 (95%-CI: 0.64-0.84) and an classification accuracy of 69%.


Before the biomarker gene panel was reduced to 10 genes, the 60-genes biomarker gene panel was filtered for genes that were also selected by PSO (see above). 45 out of 60 genes were present in both gene panels and thus selected for further analyses. The 45 genes resulted in an AUC-value of 0.77 (95%-CI: 0.73-0.81) and a classification accuracy of 77% in an independent, late stage validation set (n=518 samples). The AUC-value was 0.74 (95%-CI: 0.65-0.83), with a classification accuracy of 70% in an early stage validation set (n=106 samples). Following, random 10-gene panel biomarker gene panels from these 45 candidate biomarkers were selected (n=1000 iterations), and the classification accuracy in the evaluation cohort (n=88) was determined. The randomly selected biomarker gene panel (n=10 genes) with highest AUC-value and classification accuracy (respectively 0.87 and 81%) was selected for validation in the independent early and late-stage validation cohort (early-stage cohort: n=106, AUC-value: 0.69 (95%-CI: 0.59-0.79), classification accuracy 65%, late-stage cohort: n=518, AUC-value: 0.74 (95%-CI: 0.70-0.77), classification accuracy 68%).


P-Selectin Panel for NSCLC Diagnostics and Nivolumab Response Prediction

The p-selectin 5-gene signature was selected using a similar approach. First, all genes correlated to the expression level of p-selectin RNA were selected and sorted according to the correlation coefficient and FDR-value. Next, the sorted p-selectin correlating genes were filtered for those with a positive logarithmic fold change in the non-cancer versus NSCLC ANOVA. Again, the p-selectin gene panel was iteratively increased by adding in each iteration one additional gene, according to the FDR-ranked p-selectin co-correlating gene list. This was performed for two up till and including 50 genes. For each biomarker set the samples in the evaluation cohort were evaluated for AUC-value and classification accuracy, and the p-selectin gene panel with the best AUC-value and classification accuracy was selected (n=5 genes, AUC: 0.74, classification accuracy: 70%). The resulting 5 gene panel classified the independent NSCLC late-stage validation samples, resulting in an AUC-value of 0.58 (95%-CI: 0.53-0.62) and classification accuracy of 57% (n=518 samples). The early-stage NSCLC were classified with an AUC-value of 0.66 (95%-CI: 0.55-0.76) and classification accuracy of 65% (n=106 samples).


Nivolumab Response Prediction Gene Panel

A minimal gene panel for nivolumab response prediction was selected using a similar approach. Platelet samples were collected up to one month before start of treatment (baseline, n=179 samples). Response assessment of patients treated with nivolumab was performed by CT-imaging at baseline, 6-8 weeks, 3 months and 6 months after start of treatment. Treatment response was assessed according to the updated RECIST version 1.1 criteria (Eisenhauer et al., 2009. Europ J Cancer 45: 228-247; Schwartz et al., 2016. Eur J Cancer 62: 132-7), and scored as progressive disease (PD), stable disease (SD), partial response (PR), or complete response (CR). The main aim was to identify those patients who showed control of disease in response to therapy versus non-responders. Hence, for the nivolumab response prediction analysis, patients were grouped who showed progressive disease as the most optimal response in the non-responding group, totaling 179 samples. Patients with partial response at any response assessment time point as most optimal response or stable disease at 6 months response assessment were annotated as responders, totaling 91 samples. To select and validate the nivolumab biomarker gene panel, 91 responders and 91 non-responders matched for age and gender were selected randomly, to enable for equal group sizes. 55 responders and non-responders were assigned to the training cohort (n=110 in total), 25 responders and non-responders were assigned to the evaluation cohort (n=50 in total), and 11 responders and non-responders remained for independent validation (n=22 in total). We first subjected the cohort to the RUV-normalization module (Jacob et al., 2016. Biostatistics 17: 16-28). For this analysis, genes were selected that showed expression levels which correlated to sample library sizes (calculated by Pearson's correlation) and hospital of sample collection (calculated by ANOVA statistics), and subjected the samples to RUV-correction. This enables for correction of the read counts for confounding factors in the RNA-sequencing data. The stable genes were determined using the training cohort only. Next, we performed trimmed mean of M values-normalization (TMM-normalization; Robinson and Oshlack, 2010. Genome Biol 11: R25) and subjected the TMM-normalized log-2-transformed counts-per-million reads to per-gene wilcoxon differential expression analysis. For this, only the samples assigned to the training cohort were included. The gene list resulting from the wilcoxon differential expression analysis sorted by p-value served as an input for an iterative biomarker gene panel selection algorithm as described above. The direction of the differential expression was calculated by subtracting the median counts from the non-responders from the responders (delta_median-value). The nivolumab response prediction score was determined by subtracting per sample the median counts of genes that showed decreased expression from those that showed increased expression. During each iteration of the iterative biomarker gene panel selection algorithm both an increased and decreased RNA was added. For each biomarker set, the AUC-value of a HOC-curve of the biomarker gene was evaluated in an evaluation cohort (n=50 samples). This was performed for a biomarker gene panel ranging from 4 up till and including 1600 genes. The evaluation cohort reached the highest AUC-value in the ROC-curve of the nivolumab response prediction score in a 4-gene biomarker gene panel (AUC-value: 0.69, classification accuracy: 70%). Subsequent locking of the 4-gene biomarker gene panel and HOC-curve analysis of classification of an independent validation cohort (n=22, n=11 responders, n=11 non-responders) resulted in an AUC-value of 0.70 (95%-CI: 0.47-0.94) and an classification accuracy of 73%. Additional evaluation of a 6-gene biomarker gene panel, selected using the three most significantly increase and the three most significantly decreased differentially expressed RNAs resulted in an classification accuracy of (0% in the evaluation cohort (AUC: 0.60, n=50 samples) and classification accuracy of 64% in the validation cohort (AUC: 0.61, 95%-CI: 0.36-0.86, n=22 samples).









TABLE 5







Patient characteristics






























Time of














Response
collection


Nivol-



Classification

Storage


Smok-
Meta-

to
Nivol-
Matched
Full
umab


Number
group
Hospital
time
Age
Gender
ing
stasis
Treatment
treatment
umab
cohort
cohort
cohort























1
nonCancer
VUMC
<12 h
68
F
N
NA
NA
NA
NA
evaluation
evaluation
NA


2
nonCancer
VUMC
<12 h
65
F
N
NA
NA
NA
NA
evaluation
evaluation
NA


3
nonCancer
VUMC
<12 h
65
M
N
NA
NA
NA
NA
evaluation
evaluation
NA


4
nonCancer
VUMC
<12 h
56
F
N
NA
NA
NA
NA
evaluation
training
NA


5
nonCancer
VUMC
<12 h
54
F
N
NA
NA
NA
NA
evaluation
training
NA


6
nonCancer
VUMC
<12 h
62
M
N
NA
NA
NA
NA
evaluation
training
NA


7
nonCancer
VUMC
<12 h
51
M
N
NA
NA
NA
NA
evaluation
evaluation
NA


8
nonCancer
VUMC
<12 h
60
F
N
NA
NA
NA
NA
evaluation
training
NA


9
nonCancer
VUMC
<12 h
56
F
N
NA
NA
NA
NA
evaluation
training
NA


10
nonCancer
VUMC
<12 h
59
M
F
NA
NA
NA
NA
evaluation
evaluation
NA


11
nonCancer
VUMC
<12 h
63
F
F
NA
NA
NA
NA
evaluation
training
NA


12
nonCancer
VUMC
<12 h
55
M
N
NA
NA
NA
NA
evaluation
evaluation
NA


13
nonCancer
VUMC
<12 h
54
F
N
NA
NA
NA
NA
evaluation
evaluation
NA


14
nonCancer
VUMC
<12 h
62
F
N
NA
NA
NA
NA
evaluation
evaluation
NA


15
nonCancer
VUMC
<12 h
53
F
N
NA
NA
NA
NA
evaluation
training
NA


16
nonCancer
VUMC
<12 h
71
M
NA
NA
NA
NA
NA
evaluation
training
NA


17
nonCancer
VUMC
<12 h
48
F
N
NA
NA
NA
NA
validation
evaluation
NA


18
nonCancer
VUMC
<12 h
55
F
N
NA
NA
NA
NA
validation
training
NA


19
nonCancer
VUMC
<12 h
60
F
N
NA
NA
NA
NA
validation
training
NA


20
nonCancer
VUMC
<12 h
56
M
N
NA
NA
NA
NA
validation
training
NA


21
nonCancer
VUMC
<12 h
58
M
N
NA
NA
NA
NA
validation
evaluation
NA


22
nonCancer
VUMC
<12 h
54
M
F
NA
NA
NA
NA
validation
evaluation
NA


23
nonCancer
VUMC
<12 h
46
F
N
NA
NA
NA
NA
validation
training
NA


24
nonCancer
VUMC
<12 h
53
F
N
NA
NA
NA
NA
validation
evaluation
NA


25
nonCancer
VUMC
<12 h
52
F
N
NA
NA
NA
NA
validation
evaluation
NA


26
nonCancer
VUMC
<12 h
54
F
N
NA
NA
NA
NA
validation
evaluation
NA


27
nonCancer
VUMC
<12 h
64
F
Y
NA
NA
NA
NA
validation
training
NA


28
nonCancer
VUMC
<12 h
46
M
N
NA
NA
NA
NA
validation
training
NA


29
nonCancer
VUMC
<12 h
63
M
N
NA
NA
NA
NA
validation
training
NA


30
nonCancer
VUMC
<12 h
47
M
N
NA
NA
NA
NA
validation
training
NA


31
nonCancer
VUMC
<12 h
76
F
N
NA
NA
NA
NA
validation
training
NA


32
nonCancer
VUMC
<12 h
53
M
N
NA
NA
NA
NA
validation
evaluation
NA


33
nonCancer
VUMC
<12 h
54
F
Y
NA
NA
NA
NA
validation
evaluation
NA


34
nonCancer
VUMC
<12 h
56
M
N
NA
NA
NA
NA
validation
training
NA


35
nonCancer
VUMC
<12 h
56
M
N
NA
NA
NA
NA
validation
training
NA


36
nonCancer
VUMC
<12 h
55
F
N
NA
NA
NA
NA
validation
training
NA


37
nonCancer
VUMC
<12 h
55
F
N
NA
NA
NA
NA
validation
training
NA


38
nonCancer
VUMC
<12 h
53
M
N
NA
NA
NA
NA
validation
evaluation
NA


39
nonCancer
VUMC
<12 h
55
F
Y
NA
NA
NA
NA
validation
evaluation
NA


40
nonCancer
VUMC
<12 h
59
M
N
NA
NA
NA
NA
validation
training
NA


41
nonCancer
VUMC
<12 h
56
F
N
NA
NA
NA
NA
validation
training
NA


42
nonCancer
VUMC
<12 h
86
M
N
NA
NA
NA
NA
validation
evaluation
NA


43
nonCancer
VUMC
<12 h
69
F
N
NA
NA
NA
NA
validation
evaluation
NA


44
nonCancer
VUMC
<12 h
54
M
N
NA
NA
NA
NA
validation
training
NA


45
nonCancer
VUMC
<12 h
56
F
N
NA
NA
NA
NA
validation
training
NA


46
nonCancer
VUMC
<12 h
60
M
N
NA
NA
NA
NA
validation
training
NA


47
nonCancer
VUMC
<12 h
62
F
N
NA
NA
NA
NA
validation
training
NA


48
nonCancer
VUMC
<12 h
50
F
N
NA
NA
NA
NA
training
training
NA


49
nonCancer
VUMC
<12 h
51
M
Y
NA
NA
NA
NA
training
evaluation
NA


50
nonCancer
VUMC
<12 h
50
F
N
NA
NA
NA
NA
training
evaluation
NA


51
nonCancer
VUMC
<12 h
47
F
N
NA
NA
NA
NA
training
training
NA


52
nonCancer
VUMC
<12 h
51
M
N
NA
NA
NA
NA
training
evaluation
NA


53
nonCancer
VUMC
<12 h
49
F
N
NA
NA
NA
NA
training
evaluation
NA


54
nonCancer
VUMC
<12 h
52
F
N
NA
NA
NA
NA
training
evaluation
NA


55
nonCancer
VUMC
<12 h
57
F
N
NA
NA
NA
NA
training
training
NA


56
nonCancer
VUMC
<12 h
NA
NA
NA
NA
NA
NA
NA
NA
validation
NA


57
nonCancer
UMCU
<12 h
54
F
Y
NA
NA
NA
NA
NA
validation
NA


58
nonCancer
UMCU
<12 h
53
M
N
NA
NA
NA
NA
NA
validation
NA


59
nonCancer
UMCU
<12 h
56
M
F
NA
NA
NA
NA
NA
validation
NA


60
nonCancer
UMCU
<12 h
48
M
N
NA
NA
NA
NA
NA
validation
NA


61
nonCancer
UMCU
<12 h
53
M
N
NA
NA
NA
NA
NA
validation
NA


62
nonCancer
UMCU
<12 h
41
M
F
NA
NA
NA
NA
NA
validation
NA


63
nonCancer
UMCU
<12 h
43
M
N
NA
NA
NA
NA
NA
validation
NA


64
nonCancer
UMCU
<12 h
41
M
N
NA
NA
NA
NA
NA
validation
NA


65
nonCancer
UMCU
<12 h
40
F
N
NA
NA
NA
NA
NA
validation
NA


66
nonCancer
UMCU
<12 h
47
M
N
NA
NA
NA
NA
NA
validation
NA


67
nonCancer
UMCU
<12 h
48
M
N
NA
NA
NA
NA
NA
validation
NA


68
nonCancer
UMCU
<12 h
53
M
N
NA
NA
NA
NA
NA
validation
NA


69
nonCancer
UMCU
<12 h
53
M
F
NA
NA
NA
NA
NA
validation
NA


70
nonCancer
UMCU
<12 h
57
M
F
NA
NA
NA
NA
NA
validation
NA


71
nonCancer
UMCU
<12 h
51
F
N
NA
NA
NA
NA
NA
validation
NA


72
nonCancer
VUMC
<12 h
35
F
N
NA
NA
NA
NA
NA
validation
NA


73
nonCancer
VUMC
<12 h
38
F
N
NA
NA
NA
NA
NA
validation
NA


74
nonCancer
VUMC
<12 h
38
F
N
NA
NA
NA
NA
NA
validation
NA


75
nonCancer
VUMC
<12 h
39
F
F
NA
NA
NA
NA
NA
validation
NA


76
nonCancer
VUMC
<12 h
42
F
N
NA
NA
NA
NA
NA
validation
NA


77
nonCancer
VUMC
<12 h
42
F
N
NA
NA
NA
NA
NA
validation
NA


78
nonCancer
VUMC
<12 h
42
F
N
NA
NA
NA
NA
NA
validation
NA


79
nonCancer
VUMC
<12 h
44
F
N
NA
NA
NA
NA
NA
validation
NA


80
nonCancer
VUMC
<12 h
40
F
N
NA
NA
NA
NA
NA
validation
NA


81
nonCancer
VUMC
<12 h
39
F
N
NA
NA
NA
NA
NA
validation
NA


82
nonCancer
VUMC
<12 h
40
F
N
NA
NA
NA
NA
NA
validation
NA


83
nonCancer
VUMC
<12 h
37
F
N
NA
NA
NA
NA
NA
validation
NA


84
nonCancer
VUMC
<12 h
45
F
Y
NA
NA
NA
NA
NA
validation
NA


85
nonCancer
VUMC
<12 h
40
F
Y
NA
NA
NA
NA
NA
validation
NA


86
nonCancer
VUMC
<12 h
45
F
N
NA
NA
NA
NA
NA
validation
NA


87
nonCancer
VUMC
<12 h
59
F
N
NA
NA
NA
NA
NA
validation
NA


88
nonCancer
VUMC
<12 h
36
F
N
NA
NA
NA
NA
NA
validation
NA


89
nonCancer
AMC
>12 h
23
M
N
NA
NA
NA
NA
NA
validation
NA


90
nonCancer
AMC
>12 h
20
F
Y
NA
NA
NA
NA
NA
validation
NA


91
nonCancer
AMC
>12 h
21
F
N
NA
NA
NA
NA
NA
validation
NA


92
nonCancer
AMC
>12 h
21
F
N
NA
NA
NA
NA
NA
validation
NA


93
nonCancer
AMC
>12 h
21
F
N
NA
NA
NA
NA
NA
validation
NA


94
nonCancer
AMC
>12 h
22
F
N
NA
NA
NA
NA
NA
validation
NA


95
nonCancer
AMC
>12 h
30
F
Y
NA
NA
NA
NA
NA
validation
NA


96
nonCancer
AMC
>12 h
24
M
N
NA
NA
NA
NA
NA
validation
NA


97
nonCancer
AMC
>12 h
42
F
N
NA
NA
NA
NA
NA
validation
NA


98
nonCancer
VUMC
<12 h
33
F
N
NA
NA
NA
NA
NA
validation
NA


99
nonCancer
VUMC
<12 h
34
M
N
NA
NA
NA
NA
NA
validation
NA


100
nonCancer
VUMC
<12 h
35
M
N
NA
NA
NA
NA
NA
validation
NA


101
nonCancer
VUMC
<12 h
24
F
Y
NA
NA
NA
NA
NA
validation
NA


102
nonCancer
VUMC
<12 h
26
M
N
NA
NA
NA
NA
NA
validation
NA


103
nonCancer
VUMC
<12 h
23
F
N
NA
NA
NA
NA
NA
validation
NA


104
nonCancer
VUMC
<12 h
27
F
N
NA
NA
NA
NA
NA
validation
NA


105
nonCancer
VUMC
<12 h
21
F
N
NA
NA
NA
NA
NA
validation
NA


106
nonCancer
VUMC
<12 h
22
F
N
NA
NA
NA
NA
NA
validation
NA


107
nonCancer
VUMC
<12 h
21
M
N
NA
NA
NA
NA
NA
validation
NA


108
nonCancer
VUMC
<12 h
29
F
N
NA
NA
NA
NA
NA
validation
NA


109
nonCancer
VUMC
<12 h
32
F
N
NA
NA
NA
NA
NA
validation
NA


110
nonCancer
VUMC
<12 h
35
M
N
NA
NA
NA
NA
NA
validation
NA


111
nonCancer
VUMC
<12 h
29
M
N
NA
NA
NA
NA
NA
validation
NA


112
nonCancer
VUMC
<12 h
32
F
N
NA
NA
NA
NA
NA
validation
NA


113
nonCancer
VUMC
<12 h
33
F
N
NA
NA
NA
NA
NA
validation
NA


114
nonCancer
VUMC
<12 h
25
M
N
NA
NA
NA
NA
NA
validation
NA


115
nonCancer
VUMC
<12 h
25
F
N
NA
NA
NA
NA
NA
validation
NA


116
nonCancer
VUMC
<12 h
27
F
N
NA
NA
NA
NA
NA
validation
NA


117
nonCancer
VUMC
<12 h
30
M
N
NA
NA
NA
NA
NA
validation
NA


118
nonCancer
VUMC
<12 h
34
M
N
NA
NA
NA
NA
NA
validation
NA


119
nonCancer
VUMC
<12 h
32
F
N
NA
NA
NA
NA
NA
validation
NA


120
nonCancer
VUMC
<12 h
24
F
N
NA
NA
NA
NA
NA
validation
NA


121
nonCancer
VUMC
<12 h
33
F
N
NA
NA
NA
NA
NA
validation
NA


122
nonCancer
VUMC
<12 h
24
M
Y
NA
NA
NA
NA
NA
validation
NA


123
nonCancer
VUMC
<12 h
29
M
N
NA
NA
NA
NA
NA
validation
NA


124
nonCancer
VUMC
<12 h
32
M
N
NA
NA
NA
NA
NA
validation
NA


125
nonCancer
VUMC
<12 h
23
F
Y
NA
NA
NA
NA
NA
validation
NA


126
nonCancer
VUMC
<12 h
20
F
N
NA
NA
NA
NA
NA
validation
NA


127
nonCancer
VUMC
<12 h
18
M
N
NA
NA
NA
NA
NA
validation
NA


128
nonCancer
VUMC
<12 h
18
M
N
NA
NA
NA
NA
NA
validation
NA


129
nonCancer
VUMC
<12 h
41
M
N
NA
NA
NA
NA
NA
validation
NA


130
nonCancer
VUMC
<12 h
33
M
Y
NA
NA
NA
NA
NA
validation
NA


131
nonCancer
VUMC
<12 h
26
M
Y
NA
NA
NA
NA
NA
validation
NA


132
nonCancer
VUMC
<12 h
32
F
N
NA
NA
NA
NA
NA
validation
NA


133
nonCancer
VUMC
<12 h
26
F
N
NA
NA
NA
NA
NA
validation
NA


134
nonCancer
VUMC
<12 h
32
F
N
NA
NA
NA
NA
NA
validation
NA


135
nonCancer
VUMC
<12 h
26
F
N
NA
NA
NA
NA
NA
validation
NA


136
nonCancer
VUMC
<12 h
26
F
N
NA
NA
NA
NA
NA
validation
NA


137
nonCancer
VUMC
<12 h
37
M
N
NA
NA
NA
NA
NA
validation
NA


138
nonCancer
VUMC
<12 h
26
M
N
NA
NA
NA
NA
NA
validation
NA


139
nonCancer
VUMC
<12 h
43
F
N
NA
NA
NA
NA
NA
validation
NA


140
nonCancer
VUMC
<12 h
27
F
N
NA
NA
NA
NA
NA
validation
NA


141
nonCancer
VUMC
<12 h
39
F
Y
NA
NA
NA
NA
NA
validation
NA


142
nonCancer
VUMC
<12 h
36
F
N
NA
NA
NA
NA
NA
validation
NA


143
nonCancer
VUMC
<12 h
29
F
N
NA
NA
NA
NA
NA
validation
NA


144
nonCancer
VUMC
<12 h
27
F
Y
NA
NA
NA
NA
NA
validation
NA


145
nonCancer
VUMC
<12 h
38
F
N
NA
NA
NA
NA
NA
validation
NA


146
nonCancer
VUMC
<12 h
22
F
N
NA
NA
NA
NA
NA
validation
NA


147
nonCancer
VUMC
<12 h
21
F
N
NA
NA
NA
NA
NA
validation
NA


148
nonCancer
VUMC
<12 h
33
F
N
NA
NA
NA
NA
NA
validation
NA


149
nonCancer
VUMC
<12 h
49
F
NA
NA
NA
NA
NA
NA
validation
NA


150
nonCancer
VUMC
<12 h
43
F
NA
NA
NA
NA
NA
NA
validation
NA


151
nonCancer
VUMC
<12 h
41
F
N
NA
NA
NA
NA
NA
validation
NA


152
nonCancer
VUMC
<12 h
64
F
NA
NA
NA
NA
NA
NA
validation
NA


153
nonCancer
VUMC
<12 h
29
M
N
NA
NA
NA
NA
NA
validation
NA


154
nonCancer
VUMC
<12 h
34
M
N
NA
NA
NA
NA
NA
validation
NA


155
nonCancer
VUMC
<12 h
27
M
N
NA
NA
NA
NA
NA
validation
NA


156
nonCancer
VUMC
<12 h
45
M
N
NA
NA
NA
NA
NA
validation
NA


157
nonCancer
VUMC
<12 h
24
F
F
NA
NA
NA
NA
NA
validation
NA


158
nonCancer
VUMC
<12 h
45
M
N
NA
NA
NA
NA
NA
validation
NA


159
nonCancer
VUMC
<12 h
26
M
N
NA
NA
NA
NA
NA
validation
NA


160
nonCancer
VUMC
<12 h
21
M
N
NA
NA
NA
NA
NA
validation
NA


161
nonCancer
VUMC
<12 h
27
F
Y
NA
NA
NA
NA
NA
validation
NA


162
nonCancer
VUMC
<12 h
43
M
N
NA
NA
NA
NA
NA
validation
NA


163
nonCancer
VUMC
<12 h
29
M
N
NA
NA
NA
NA
NA
validation
NA


164
nonCancer
VUMC
<12 h
24
F
N
NA
NA
NA
NA
NA
validation
NA


165
nonCancer
VUMC
<12 h
40
M
N
NA
NA
NA
NA
NA
validation
NA


166
nonCancer
VUMC
<12 h
43
M
N
NA
NA
NA
NA
NA
validation
NA


167
nonCancer
VUMC
<12 h
37
M
Y
NA
NA
NA
NA
NA
validation
NA


168
nonCancer
VUMC
<12 h
29
M
Y
NA
NA
NA
NA
NA
validation
NA


169
nonCancer
VUMC
<12 h
29
M
N
NA
NA
NA
NA
NA
validation
NA


170
nonCancer
VUMC
<12 h
41
F
N
NA
NA
NA
NA
NA
validation
NA


171
nonCancer
VUMC
<12 h
NA
NA
NA
NA
NA
NA
NA
NA
validation
NA


172
nonCancer
VUMC
<12 h
NA
NA
NA
NA
NA
NA
NA
NA
validation
NA


173
nonCancer
VUMC
<12 h
NA
NA
NA
NA
NA
NA
NA
NA
validation
NA


174
nonCancer
VUMC
<12 h
NA
NA
NA
NA
NA
NA
NA
NA
validation
NA


175
nonCancer
VUMC
<12 h
64
F
NA
NA
NA
NA
NA
NA
validation
NA


176
nonCancer
VUMC
<12 h
49
F
NA
NA
NA
NA
NA
NA
validation
NA


177
nonCancer
VUMC
<12 h
64
F
NA
NA
NA
NA
NA
NA
validation
NA


178
nonCancer
UMEA
<12 h
NA
M
NA
NA
NA
NA
NA
NA
validation
NA


179
nonCancer
UMEA
<12 h
NA
M
NA
NA
NA
NA
NA
NA
validation
NA


180
nonCancer
UMEA
<12 h
NA
M
NA
NA
NA
NA
NA
NA
validation
NA


181
nonCancer
UMEA
<12 h
NA
M
NA
NA
NA
NA
NA
NA
validation
NA


182
nonCancer
UMEA
<12 h
NA
M
NA
NA
NA
NA
NA
NA
validation
NA


183
nonCancer
UMEA
<12 h
NA
M
NA
NA
NA
NA
NA
NA
validation
NA


184
nonCancer
UMEA
<12 h
NA
M
NA
NA
NA
NA
NA
NA
validation
NA


185
nonCancer
UMEA
<12 h
NA
M
NA
NA
NA
NA
NA
NA
validation
NA


186
nonCancer
UMEA
<12 h
NA
M
NA
NA
NA
NA
NA
NA
validation
NA


187
nonCancer
UMEA
<12 h
NA
M
NA
NA
NA
NA
NA
NA
validation
NA


188
nonCancer
VUMC
<12 h
35
M
Y
NA
NA
NA
NA
NA
validation
NA


189
nonCancer
VUMC
<12 h
49
M
N
NA
NA
NA
NA
NA
validation
NA


190
nonCancer
VUMC
<12 h
51
M
N
NA
NA
NA
NA
NA
validation
NA


191
nonCancer
VUMC
<12 h
22
M
N
NA
NA
NA
NA
NA
validation
NA


192
nonCancer
VUMC
<12 h
61
M
N
NA
NA
NA
NA
NA
validation
NA


193
nonCancer
VUMC
<12 h
36
M
N
NA
NA
NA
NA
NA
validation
NA


194
nonCancer
VUMC
<12 h
26
M
N
NA
NA
NA
NA
NA
validation
NA


195
nonCancer
VUMC
<12 h
24
M
N
NA
NA
NA
NA
NA
validation
NA


196
nonCancer
VUMC
<12 h
62
M
Y
NA
NA
NA
NA
NA
validation
NA


197
nonCancer
VUMC
<12 h
53
F
N
NA
NA
NA
NA
NA
validation
NA


198
nonCancer
VUMC
<12 h
31
M
N
NA
NA
NA
NA
NA
validation
NA


199
nonCancer
VUMC
<12 h
44
M
N
NA
NA
NA
NA
NA
validation
NA


200
nonCancer
VUMC
<12 h
57
F
N
NA
NA
NA
NA
NA
validation
NA


201
nonCancer
VUMC
<12 h
53
M
N
NA
NA
NA
NA
NA
validation
NA


202
nonCancer
VUMC
<12 h
34
M
Y
NA
NA
NA
NA
NA
validation
NA


203
nonCancer
VUMC
<12 h
35
M
Y
NA
NA
NA
NA
NA
validation
NA


204
nonCancer
VUMC
<12 h
29
M
N
NA
NA
NA
NA
NA
validation
NA


205
nonCancer
VUMC
<12 h
23
M
N
NA
NA
NA
NA
NA
validation
NA


206
nonCancer
VUMC
<12 h
28
M
N
NA
NA
NA
NA
NA
validation
NA


207
nonCancer
VUMC
<12 h
25
M
N
NA
NA
NA
NA
NA
validation
NA


208
nonCancer
VUMC
<12 h
53
M
N
NA
NA
NA
NA
NA
validation
NA


209
nonCancer
VUMC
<12 h
57
M
N
NA
NA
NA
NA
NA
validation
NA


210
nonCancer
VUMC
<12 h
51
M
N
NA
NA
NA
NA
NA
validation
NA


211
nonCancer
VUMC
<12 h
50
M
N
NA
NA
NA
NA
NA
validation
NA


212
nonCancer
VUMC
<12 h
42
F
N
NA
NA
NA
NA
NA
validation
NA


213
nonCancer
VUMC
<12 h
42
F
N
NA
NA
NA
NA
NA
validation
NA


214
nonCancer
VUMC
<12 h
52
M
Y
NA
NA
NA
NA
NA
validation
NA


215
nonCancer
VUMC
<12 h
50
M
N
NA
NA
NA
NA
NA
validation
NA


216
nonCancer
VUMC
<12 h
26
M
Y
NA
NA
NA
NA
NA
validation
NA


217
nonCancer
VUMC
<12 h
49
M
N
NA
NA
NA
NA
NA
validation
NA


218
nonCancer
VUMC
<12 h
44
F
N
NA
NA
NA
NA
NA
validation
NA


219
nonCancer
VUMC
<12 h
47
F
N
NA
NA
NA
NA
NA
validation
NA


220
nonCancer
VUMC
<12 h
67
M
F
NA
NA
NA
NA
NA
validation
NA


221
nonCancer
VUMC
<12 h
58
F
Y
NA
NA
NA
NA
NA
validation
NA


222
nonCancer
VUMC
<12 h
55
F
N
NA
NA
NA
NA
NA
validation
NA


223
nonCancer
VUMC
<12 h
63
F
N
NA
NA
NA
NA
NA
validation
NA


224
nonCancer
VUMC
<12 h
52
F
N
NA
NA
NA
NA
NA
validation
NA


225
nonCancer
VUMC
<12 h
50
F
N
NA
NA
NA
NA
NA
validation
NA


226
nonCancer
VUMC
<12 h
48
F
Y
NA
NA
NA
NA
NA
validation
NA


227
nonCancer
VUMC
<12 h
47
F
N
NA
NA
NA
NA
NA
validation
NA


228
nonCancer
VUMC
<12 h
44
M
N
NA
NA
NA
NA
NA
validation
NA


229
nonCancer
VUMC
<12 h
52
F
F
NA
NA
NA
NA
NA
validation
NA


230
nonCancer
VUMC
<12 h
51
F
Y
NA
NA
NA
NA
NA
validation
NA


231
nonCancer
VUMC
<12 h
59
F
N
NA
NA
NA
NA
NA
validation
NA


232
nonCancer
VUMC
<12 h
55
F
N
NA
NA
NA
NA
NA
validation
NA


233
nonCancer
VUMC
<12 h
50
F
N
NA
NA
NA
NA
NA
validation
NA


234
nonCancer
VUMC
<12 h
51
F
Y
NA
NA
NA
NA
NA
validation
NA


235
nonCancer
VUMC
<12 h
52
F
N
NA
NA
NA
NA
NA
validation
NA


236
nonCancer
VUMC
<12 h
48
M
N
NA
NA
NA
NA
NA
validation
NA


237
nonCancer
VUMC
<12 h
69
M
N
NA
NA
NA
NA
training
training
NA


238
nonCancer
PISA
<12 h
NA
NA
NA
NA
NA
NA
NA
NA
validation
NA


239
nonCancer
VUMC
<12 h
60
F
N
NA
NA
NA
NA
NA
validation
NA


240
nonCancer
VUMC
<12 h
NA
NA
NA
NA
NA
NA
NA
NA
validation
NA


241
nonCancer
VUMC
<12 h
NA
NA
NA
NA
NA
NA
NA
NA
validation
NA


242
nonCancer
VUMC
<12 h
46
M
N
NA
NA
NA
NA
validation
training
NA


243
nonCancer
VUMC
<12 h
58
M
Y
NA
NA
NA
NA
training
training
NA


244
nonCancer
VUMC
<12 h
51
M
F
NA
NA
NA
NA
training
evaluation
NA


245
nonCancer
VUMC
<12 h
53
M
NA
NA
NA
NA
NA
training
evaluation
NA


246
nonCancer
VUMC
<12 h
54
F
NA
NA
NA
NA
NA
training
training
NA


247
nonCancer
VUMC
<12 h
62
M
NA
NA
NA
NA
NA
training
training
NA


248
nonCancer
VUMC
<12 h
27
F
NA
NA
NA
NA
NA
NA
validation
NA


249
nonCancer
VUMC
<12 h
18
M
NA
NA
NA
NA
NA
NA
validation
NA


250
nonCancer
VUMC
<12 h
45
M
F
NA
NA
NA
NA
NA
validation
NA


251
nonCancer
VUMC
<12 h
21
F
NA
NA
NA
NA
NA
NA
validation
NA


252
nonCancer
VUMC
<12 h
39
M
F
NA
NA
NA
NA
NA
validation
NA


253
nonCancer
VUMC
<12 h
22
F
N
NA
NA
NA
NA
NA
validation
NA


254
nonCancer
VUMC
<12 h
23
M
N
NA
NA
NA
NA
NA
validation
NA


255
nonCancer
VUMC
<12 h
32
F
NA
NA
NA
NA
NA
NA
validation
NA


256
nonCancer
VUMC
<12 h
21
M
NA
NA
NA
NA
NA
NA
validation
NA


257
nonCancer
VUMC
<12 h
18
F
N
NA
NA
NA
NA
NA
validation
NA


258
nonCancer
VUMC
<12 h
25
F
N
NA
NA
NA
NA
NA
validation
NA


259
nonCancer
VUMC
<12 h
19
F
F
NA
NA
NA
NA
NA
validation
NA


260
nonCancer
VUMC
<12 h
41
M
N
NA
NA
NA
NA
NA
validation
NA


261
nonCancer
VUMC
<12 h
24
M
Y
NA
NA
NA
NA
NA
validation
NA


262
nonCancer
VUMC
<12 h
28
F
NA
NA
NA
NA
NA
NA
validation
NA


263
nonCancer
VUMC
<12 h
49
F
NA
NA
NA
NA
NA
validation
training
NA


264
nonCancer
VUMC
<12 h
51
F
NA
NA
NA
NA
NA
validation
training
NA


265
nonCancer
VUMC
<12 h
47
F
NA
NA
NA
NA
NA
training
evaluation
NA


266
nonCancer
VUMC
<12 h
57
M
NA
NA
NA
NA
NA
training
training
NA


267
nonCancer
VUMC
<12 h
61
F
NA
NA
NA
NA
NA
training
training
NA


268
nonCancer
VUMC
<12 h
62
M
NA
NA
NA
NA
NA
training
evaluation
NA


269
nonCancer
VUMC
<12 h
39
F
NA
NA
NA
NA
NA
NA
validation
NA


270
nonCancer
VUMC
<12 h
43
F
NA
NA
NA
NA
NA
NA
validation
NA


271
nonCancer
VUMC
<12 h
39
M
NA
NA
NA
NA
NA
NA
validation
NA


272
nonCancer
VUMC
<12 h
40
F
NA
NA
NA
NA
NA
NA
validation
NA


273
nonCancer
VUMC
<12 h
46
F
NA
NA
NA
NA
NA
NA
validation
NA


274
nonCancer
VUMC
<12 h
44
F
NA
NA
NA
NA
NA
NA
validation
NA


275
nonCancer
VUMC
<12 h
37
M
NA
NA
NA
NA
NA
NA
validation
NA


276
nonCancer
VUMC
<12 h
46
F
NA
NA
NA
NA
NA
NA
validation
NA


277
nonCancer
VUMC
<12 h
40
F
NA
NA
NA
NA
NA
NA
validation
NA


278
nonCancer
VUMC
<12 h
39
F
NA
NA
NA
NA
NA
NA
validation
NA


279
nonCancer
VUMC
<12 h
43
F
NA
NA
NA
NA
NA
NA
validation
NA


280
nonCancer
VUMC
<12 h
42
F
NA
NA
NA
NA
NA
NA
validation
NA


281
nonCancer
VUMC
<12 h
34
M
NA
NA
NA
NA
NA
NA
validation
NA


282
nonCancer
VUMC
<12 h
41
F
NA
NA
NA
NA
NA
NA
validation
NA


283
nonCancer
VUMC
<12 h
42
F
NA
NA
NA
NA
NA
NA
validation
NA


284
nonCancer
VUMC
<12 h
47
M
NA
NA
NA
NA
NA
NA
validation
NA


285
nonCancer
VUMC
<12 h
35
M
NA
NA
NA
NA
NA
NA
validation
NA


286
nonCancer
VUMC
<12 h
68
M
NA
NA
NA
NA
NA
NA
validation
NA


287
nonCancer
VUMC
<12 h
41
F
NA
NA
NA
NA
NA
NA
validation
NA


288
nonCancer
VUMC
<12 h
48
F
NA
NA
NA
NA
NA
NA
validation
NA


289
nonCancer
VUMC
<12 h
43
F
NA
NA
NA
NA
NA
NA
validation
NA


290
nonCancer
VUMC
<12 h
45
F
NA
NA
NA
NA
NA
NA
validation
NA


291
nonCancer
VUMC
<12 h
42
F
NA
NA
NA
NA
NA
NA
validation
NA


292
nonCancer
VUMC
<12 h
42
M
NA
NA
NA
NA
NA
NA
validation
NA


293
nonCancer
VUMC
<12 h
35
F
NA
NA
NA
NA
NA
NA
validation
NA


294
nonCancer
VUMC
<12 h
54
F
NA
NA
NA
NA
NA
NA
validation
NA


295
nonCancer
VUMC
<12 h
39
F
NA
NA
NA
NA
NA
NA
validation
NA


296
nonCancer
VUMC
<12 h
56
F
NA
NA
NA
NA
NA
NA
validation
NA


297
nonCancer
VUMC
<12 h
59
F
NA
NA
NA
NA
NA
NA
validation
NA


298
nonCancer
VUMC
<12 h
61
F
NA
NA
NA
NA
NA
NA
validation
NA


299
nonCancer
VUMC
<12 h
53
F
NA
NA
NA
NA
NA
NA
validation
NA


300
nonCancer
VUMC
<12 h
49
M
NA
NA
NA
NA
NA
NA
validation
NA


301
nonCancer
VUMC
<12 h
44
M
NA
NA
NA
NA
NA
NA
validation
NA


302
nonCancer
VUMC
<12 h
48
F
NA
NA
NA
NA
NA
NA
validation
NA


303
nonCancer
VUMC
<12 h
42
F
NA
NA
NA
NA
NA
NA
validation
NA


304
nonCancer
VUMC
<12 h
51
F
NA
NA
NA
NA
NA
NA
validation
NA


305
nonCancer
VUMC
<12 h
30
F
NA
NA
NA
NA
NA
NA
validation
NA


306
nonCancer
VUMC
<12 h
49
M
NA
NA
NA
NA
NA
NA
validation
NA


307
nonCancer
VUMC
<12 h
61
M
NA
NA
NA
NA
NA
NA
validation
NA


308
nonCancer
VUMC
<12 h
42
F
NA
NA
NA
NA
NA
NA
validation
NA


309
nonCancer
VUMC
<12 h
47
F
NA
NA
NA
NA
NA
NA
validation
NA


310
nonCancer
VUMC
<12 h
53
M
NA
NA
NA
NA
NA
NA
validation
NA


311
nonCancer
VUMC
<12 h
52
F
NA
NA
NA
NA
NA
NA
validation
NA


312
nonCancer
VUMC
<12 h
68
M
NA
NA
NA
NA
NA
NA
validation
NA


313
nonCancer
VUMC
<12 h
30
M
NA
NA
NA
NA
NA
NA
validation
NA


314
nonCancer
VUMC
<12 h
52
M
NA
NA
NA
NA
NA
NA
validation
NA


315
nonCancer
VUMC
<12 h
45
F
NA
NA
NA
NA
NA
NA
validation
NA


316
nonCancer
VUMC
<12 h
64
F
NA
NA
NA
NA
NA
NA
validation
NA


317
nonCancer
VUMC
<12 h
32
F
NA
NA
NA
NA
NA
NA
validation
NA


318
nonCancer
VUMC
<12 h
52
F
NA
NA
NA
NA
NA
NA
validation
NA


319
nonCancer
VUMC
<12 h
49
F
NA
NA
NA
NA
NA
NA
validation
NA


320
nonCancer
VUMC
<12 h
52
F
NA
NA
NA
NA
NA
NA
validation
NA


321
nonCancer
UMCU
<12 h
64
M
N
NA
NA
NA
NA
evaluation
evaluation
NA


322
nonCancer
UMCU
<12 h
48
F
Y
NA
NA
NA
NA
training
training
NA


323
nonCancer
UMCU
<12 h
71
F
N
NA
NA
NA
NA
training
training
NA


324
nonCancer
UMCU
<12 h
63
F
N
NA
NA
NA
NA
training
training
NA


325
nonCancer
UMCU
<12 h
63
F
N
NA
NA
NA
NA
training
evaluation
NA


326
nonCancer
UMCU
<12 h
NA
NA
NA
NA
NA
NA
NA
NA
validation
NA


327
nonCancer
UMCU
<12 h
NA
NA
NA
NA
NA
NA
NA
NA
validation
NA


328
nonCancer
UMCU
<12 h
NA
NA
NA
NA
NA
NA
NA
NA
validation
NA


329
nonCancer
UMCU
<12 h
NA
NA
NA
NA
NA
NA
NA
NA
validation
NA


330
nonCancer
UMCU
<12 h
NA
NA
NA
NA
NA
NA
NA
NA
validation
NA


331
nonCancer
UMCU
<12 h
NA
NA
NA
NA
NA
NA
NA
NA
validation
NA


332
nonCancer
UMCU
<12 h
NA
NA
NA
NA
NA
NA
NA
NA
validation
NA


333
nonCancer
VUMC
<12 h
81
F
F
NA
NA
NA
NA
evaluation
training
NA


334
nonCancer
VUMC
<12 h
69
F
F
NA
NA
NA
NA
validation
training
NA


335
nonCancer
VUMC
<12 h
51
F
N
NA
NA
NA
NA
validation
evaluation
NA


336
nonCancer
VUMC
<12 h
65
F
F
NA
NA
NA
NA
validation
training
NA


337
nonCancer
VUMC
<12 h
66
F
N
NA
NA
NA
NA
validation
evaluation
NA


338
nonCancer
VUMC
<12 h
62
F
F
NA
NA
NA
NA
training
training
NA


339
nonCancer
VUMC
<12 h
71
F
F
NA
NA
NA
NA
training
evaluation
NA


340
nonCancer
VUMC
<12 h
69
F
Y
NA
NA
NA
NA
training
training
NA


341
nonCancer
VUMC
<12 h
63
M
F
NA
NA
NA
NA
training
training
NA


342
nonCancer
VUMC
<12 h
58
M
Y
NA
NA
NA
NA
training
evaluation
NA


343
nonCancer
VUMC
<12 h
75
M
N
NA
NA
NA
NA
training
evaluation
NA


344
nonCancer
VUMC
<12 h
74
F
N
NA
NA
NA
NA
training
training
NA


345
nonCancer
VUMC
<12 h
80
M
F
NA
NA
NA
NA
training
evaluation
NA


346
nonCancer
VUMC
<12 h
63
M
F
NA
NA
NA
NA
training
training
NA


347
nonCancer
VUMC
<12 h
72
M
F
NA
NA
NA
NA
training
evaluation
NA


348
nonCancer
VUMC
<12 h
72
M
Y
NA
NA
NA
NA
training
evaluation
NA


349
nonCancer
VUMC
<12 h
71
F
F
NA
NA
NA
NA
training
evaluation
NA


350
nonCancer
VUMC
<12 h
69
F
F
NA
NA
NA
NA
training
evaluation
NA


351
nonCancer
VUMC
<12 h
79
M
F
NA
NA
NA
NA
training
training
NA


352
nonCancer
VUMC
<12 h
67
F
N
NA
NA
NA
NA
training
training
NA


353
nonCancer
VUMC
<12 h
77
F
N
NA
NA
NA
NA
training
training
NA


354
nonCancer
VUMC
<12 h
51
M
N
NA
NA
NA
NA
training
training
NA


355
nonCancer
VUMC
<12 h
76
F
N
NA
NA
NA
NA
training
training
NA


356
nonCancer
VUMC
<12 h
29
F
F
NA
NA
NA
NA
NA
validation
NA


357
nonCancer
VUMC
<12 h
35
M
N
NA
NA
NA
NA
NA
validation
NA


358
nonCancer
VUMC
<12 h
40
F
N
NA
NA
NA
NA
NA
validation
NA


359
nonCancer
VUMC
<12 h
43
F
N
NA
NA
NA
NA
NA
validation
NA


360
nonCancer
VUMC
<12 h
34
F
Y
NA
NA
NA
NA
NA
validation
NA


361
nonCancer
VUMC
<12 h
17
M
N
NA
NA
NA
NA
NA
validation
NA


362
nonCancer
VUMC
<12 h
39
F
NA
NA
NA
NA
NA
NA
validation
NA


363
nonCancer
VUMC
<12 h
45
F
N
NA
NA
NA
NA
NA
validation
NA


364
nonCancer
VUMC
<12 h
36
F
Y
NA
NA
NA
NA
NA
validation
NA


365
nonCancer
VUMC
<12 h
24
F
N
NA
NA
NA
NA
NA
validation
NA


366
nonCancer
VUMC
<12 h
43
F
NA
NA
NA
NA
NA
NA
validation
NA


367
nonCancer
UMCU
<12 h
52
F
Y
NA
NA
NA
NA
evaluation
training
NA


368
nonCancer
UMCU
<12 h
71
F
Y
NA
NA
NA
NA
evaluation
evaluation
NA


369
nonCancer
UMCU
<12 h
63
F
N
NA
NA
NA
NA
validation
training
NA


370
nonCancer
UMCU
<12 h
73
M
N
NA
NA
NA
NA
validation
training
NA


371
nonCancer
UMCU
<12 h
65
M
N
NA
NA
NA
NA
training
evaluation
NA


372
nonCancer
UMCU
<12 h
39
F
Y
NA
NA
NA
NA
NA
validation
NA


373
nonCancer
UMCU
<12 h
55
M
Y
NA
NA
NA
NA
training
training
NA


374
nonCancer
UMCU
<12 h
70
M
N
NA
NA
NA
NA
training
evaluation
NA


375
nonCancer
UMCU
<12 h
48
M
Y
NA
NA
NA
NA
training
training
NA


376
nonCancer
UMCU
<12 h
39
M
N
NA
NA
NA
NA
NA
validation
NA


377
NSCLC
VUMC
<12 h
55
M
NA
N
NA
NA
NA
evaluation
training
NA


378
NSCLC
VUMC
<12 h
55
F
F
Y
Vinorelbine
PD
NA
evaluation
validation
NA


379
NSCLC
VUMC
<12 h
55
F
F
Y
Vinorelbine
PD
NA
evaluation
validation
NA


380
NSCLC
VUMC
<12 h
78
M
N
Y
NA
NA
NA
evaluation
training
NA


381
NSCLC
VUMC
<12 h
44
M
N
Y
NA
NA
NA
evaluation
evaluation
NA


382
NSCLC
VUMC
<12 h
39
F
N
Y
NA
NA
NA
evaluation
evaluation
NA


383
NSCLC
VUMC
<12 h
65
F
F
Y
NA
NA
NA
evaluation
evaluation
NA


384
NSCLC
VUMC
<12 h
42
M
NA
Y
NA
NA
NA
evaluation
evaluation
NA


385
NSCLC
VUMC
<12 h
61
M
F
Y
Crizotinib
PR
NA
evaluation
training
NA


386
NSCLC
VUMC
<12 h
61
F
N
Y
NA
NA
NA
evaluation
evaluation
NA


387
NSCLC
VUMC
<12 h
79
F
N
Y
NA
NA
NA
evaluation
training
NA


388
NSCLC
VUMC
<12 h
49
F
Y
Y
Crizotinib
MR
NA
evaluation
training
NA


389
NSCLC
VUMC
<12 h
73
F
N
Y
NA
NA
NA
evaluation
validation
NA


390
NSCLC
VUMC
<12 h
55
M
N
Y
Ceritinib
PR
NA
evaluation
training
NA


391
NSCLC
VUMC
<12 h
72
M
N
Y
NA
NA
NA
evaluation
training
NA


392
NSCLC
VUMC
<12 h
39
M
N
Y
NA
NA
NA
evaluation
evaluation
NA


393
NSCLC
VUMC
<12 h
84
F
N
Y
NA
NA
NA
evaluation
training
NA


394
NSCLC
VUMC
<12 h
74
M
N
Y
NA
NA
NA
evaluation
validation
NA


395
NSCLC
VUMC
<12 h
67
M
N
Y
NA
NA
NA
evaluation
validation
NA


396
NSCLC
VUMC
<12 h
46
F
F
Y
NA
NA
NA
evaluation
evaluation
NA


397
NSCLC
VUMC
<12 h
52
M
Y
Y
NA
NA
NA
validation
validation
NA


398
NSCLC
VUMC
<12 h
61
F
N
Y
Vemurafenib
SD
NA
validation
training
NA


399
NSCLC
VUMC
<12 h
54
M
F
Y
Crizotinib
PD
NA
validation
training
NA


400
NSCLC
VUMC
<12 h
68
M
F
Y
Dabrafenib +
PR
NA
validation
evaluation
NA










Trametinib







401
NSCLC
VUMC
<12 h
60
F
Y
Y
Dabrafenib
SD
NA
validation
training
NA


402
NSCLC
VUMC
<12 h
43
M
N
Y
Ceritinib
SD
NA
validation
evaluation
NA


403
NSCLC
VUMC
<12 h
63
M
Y
Y
Crizotinib
CR
NA
validation
evaluation
NA


404
NSCLC
VUMC
<12 h
62
M
N
Y
Crizotinib
PR
NA
validation
training
NA


405
NSCLC
VUMC
<12 h
62
M
F
Y
NA
NA
NA
validation
training
NA


406
NSCLC
VUMC
<12 h
73
F
N
Y
NA
NA
NA
validation
validation
NA


407
NSCLC
VUMC
<12 h
81
F
Y
Y
NA
NA
NA
validation
training
NA


408
NSCLC
VUMC
<12 h
63
M
F
Y
NA
NA
NA
validation
evaluation
NA


409
NSCLC
VUMC
<12 h
49
M
NA
Y
NA
NA
NA
validation
validation
NA


410
NSCLC
VUMC
<12 h
65
M
Y
Y
Crizotinib
SD
NA
validation
training
NA


411
NSCLC
VUMC
<12 h
55
F
N
Y
NA
NA
NA
validation
training
NA


412
NSCLC
VUMC
<12 h
47
M
N
Y
Pemetrexed
PD
NA
validation
validation
NA


413
NSCLC
VUMC
<12 h
67
M
F
Y
NA
NA
NA
validation
training
NA


414
NSCLC
VUMC
<12 h
68
F
N
Y
NA
NA
NA
validation
training
NA


415
NSCLC
VUMC
<12 h
53
F
N
Y
NA
NA
NA
validation
evaluation
NA


416
NSCLC
VUMC
<12 h
60
M
NA
Y
Crizotinib
NA
NA
validation
training
NA


417
NSCLC
VUMC
<12 h
83
F
N
Y
NA
NA
NA
validation
training
NA


418
NSCLC
VUMC
<12 h
61
F
N
NA
NA
NA
NA
validation
evaluation
NA


419
NSCLC
VUMC
<12 h
55
F
N
Y
NA
NA
NA
validation
evaluation
NA


420
NSCLC
VUMC
<12 h
56
F
N
Y
Crizotinib
PR
NA
validation
validation
NA


421
NSCLC
VUMC
<12 h
66
M
N
Y
Crizotinib
PR
NA
validation
evaluation
NA


422
NSCLC
VUMC
<12 h
59
M
F
Y
Gefitinib
PD
NA
validation
validation
NA


423
NSCLC
VUMC
<12 h
53
M
Y
Y
Crizotinib
PR
NA
validation
evaluation
NA


424
NSCLC
VUMC
<12 h
81
F
N
Y
Crizotinib
SD
NA
validation
validation
NA


425
NSCLC
VUMC
<12 h
59
F
N
Y
NA
NA
NA
validation
training
NA


426
NSCLC
VUMC
<12 h
47
M
N
Y
NA
PD
NA
validation
training
NA


427
NSCLC
VUMC
<12 h
49
M
Y
Y
NA
NA
NA
validation
evaluation
NA


428
NSCLC
VUMC
<12 h
43
M
N
Y
NA
NA
NA
validation
validation
NA


429
NSCLC
VUMC
<12 h
62
F
F
Y
Crizotinib
PD
NA
validation
validation
NA


430
NSCLC
VUMC
<12 h
71
F
F
Y
NA
NA
NA
validation
validation
NA


431
NSCLC
VUMC
<12 h
61
F
Y
Y
NA
NA
NA
validation
evaluation
NA


432
NSCLC
VUMC
<12 h
66
M
Y
Y
Crizotinib
PR
NA
validation
evaluation
NA


433
NSCLC
VUMC
<12 h
64
M
F
Y
Crizotinib
MR
NA
validation
validation
NA


434
NSCLC
VUMC
<12 h
50
F
NA
Y
NA
NA
NA
validation
training
NA


435
NSCLC
VUMC
<12 h
67
M
NA
Y
Sorafenib +
NA
NA
validation
training
NA










Metformin







436
NSCLC
VUMC
<12 h
54
M
Y
Y
Sorafenib +
SD
NA
validation
evaluation
NA










Metformin







437
NSCLC
VUMC
<12 h
49
F
N
Y
Sorafenib +
SD
NA
validation
validation
NA










Metformin







438
NSCLC
VUMC
<12 h
56
F
Y
Y
Sorafenib
PD
NA
validation
training
NA


439
NSCLC
VUMC
<12 h
44
M
Y
Y
Sorafenib +
PR
NA
validation
training
NA










Metformin







440
NSCLC
VUMC
<12 h
50
F
N
Y
Sorafenib +
PD
NA
validation
training
NA










Metformin







441
NSCLC
VUMC
<12 h
66
M
NA
Y
NA
NA
NA
validation
evaluation
NA


442
NSCLC
VUMC
<12 h
66
F
NA
Y
Vemurafenib
PD
NA
validation
training
NA


443
NSCLC
VUMC
<12 h
53
F
F
Y
Dabrafenib
PR
NA
validation
training
NA


444
NSCLC
VUMC
<12 h
66
M
N
Y
Crizotinib
PR
NA
validation
training
NA


445
NSCLC
VUMC
<12 h
83
F
N
Y
NA
NA
NA
validation
training
NA


446
NSCLC
VUMC
<12 h
54
F
Y
Y
Crizo inib
PR
NA
validation
training
NA


447
NSCLC
VUMC
<12 h
65
F
F
Y
Vemurafenib
PR
NA
validation
validation
NA


448
NSCLC
VUMC
<12 h
66
F
NA
Y
Vemurafenib
PD
NA
validation
validation
NA


449
NSCLC
VUMC
<12 h
68
F
N
Y
Dabrafenib +
PR
NA
validation
validation
NA










Trametinib







450
NSCLC
VUMC
<12 h
73
M
NA
Y
Cisplatin +
PR
NA
validation
training
NA










Pemetrexed







451
NSCLC
VUMC
<12 h
62
F
F
Y
Dabrafenib +
PR
NA
validation
evaluation
NA










Trametinib







452
NSCLC
VUMC
<12 h
55
M
NA
N
NA
NA
NA
validation
evaluation
NA


453
NSCLC
VUMC
<12 h
56
F
F
Y
NA
NA
NA
validation
validation
NA


454
NSCLC
VUMC
<12 h
64
M
NA
Y
NA
NA
NA
validation
validation
NA


455
NSCLC
VUMC
<12 h
88
M
Y
Y
Dabrafenib
SD
NA
validation
evaluation
NA


456
NSCLC
VUMC
<12 h
27
M
N
Y
Cisplatin +
PR
NA
validation
training
NA










Pemetrexed







457
NSCLC
VUMC
<12 h
72
M
N
Y
NA
NA
NA
validation
validation
NA


458
NSCLC
VUMC
<12 h
62
F
F
Y
Dabrafenib
SD
NA
validation
evaluation
NA


459
NSCLC
VUMC
<12 h
68
M
Y
N
NA
NA
NA
validation
validation
NA


460
NSCLC
VUMC
<12 h
71
M
N
Y
NA
NA
NA
validation
evaluation
NA


461
NSCLC
VUMC
<12 h
40
M
N
Y
NA
NA
NA
validation
training
NA


462
NSCLC
VUMC
<12 h
53
F
F
Y
NA
NA
NA
validation
validation
NA


463
NSCLC
VUMC
<12 h
73
F
N
Y
NA
NA
NA
validation
evaluation
NA


464
NSCLC
VUMC
<12 h
48
M
NA
Y
NA
NA
NA
validation
evaluation
NA


465
NSCLC
VUMC
<12 h
55
M
N
Y
NA
NA
NA
validation
validation
NA


466
NSCLC
VUMC
<12 h
65
M
NA
Y
NA
NA
NA
validation
validation
NA


467
NSCLC
VUMC
<12 h
64
F
N
Y
NA
NA
NA
validation
validation
NA


468
NSCLC
VUMC
<12 h
39
F
N
Y
NA
NA
NA
validation
training
NA


469
NSCLC
VUMC
<12 h
63
M
F
Y
NA
NA
NA
validation
training
NA


470
NSCLC
VUMC
<12 h
63
M
N
Y
NA
NA
NA
validation
validation
NA


471
NSCLC
VUMC
<12 h
78
M
F
Y
NA
NA
NA
validation
training
NA


472
NSCLC
VUMC
<12 h
76
F
N
Y
NA
NA
NA
validation
training
NA


473
NSCLC
VUMC
<12 h
59
F
Y
Y
Garboplatin +
MR
NA
validation
training
NA










Gemcitabine







474
NSCLC
VUMC
<12 h
72
M
N
Y
NA
NA
NA
validation
evaluation
NA


475
NSCLC
VUMC
<12 h
74
F
F
Y
Dabrafenib +
PR
NA
validation
training
NA










Trametinib







476
NSCLC
VUMC
<12 h
71
F
F
Y
NA
NA
NA
validation
evaluation
NA


477
NSCLC
VUMC
<12 h
68
F
N
Y
Dabrafenib +
PR
NA
validation
validation
NA










Trametinib







478
NSCLC
VUMC
<12 h
53
F
F
Y
NA
NA
NA
validation
training
NA


479
NSCLC
VUMC
<12 h
69
M
NA
Y
NA
NA
NA
validation
validation
NA


480
NSCLC
VUMC
<12 h
73
M
NA
Y
Cisplatin +
SD
NA
validation
training
NA










Pemetrexed







481
NSCLC
VUMC
<12 h
68
F
N
Y
Dabrafenib +
PR
NA
validation
validation
NA










Trametinib







482
NSCLC
VUMC
<12 h
69
M
N
Y
Nivolumab
PR
NA
validation
validation
NA


483
NSCLC
VUMC
<12 h
47
M
F
Y
Nivolumab
NA
NA
validation
training
NA


484
NSCLC
VUMC
<12 h
75
M
NA
Y
Nivolumab
PR
NA
validation
validation
NA


485
NSCLC
VUMC
<12 h
75
M
NA
Y
Nivolumab
PR
FollowUp
validation
validation
NA


486
NSCLC
VUMC
<12 h
40
M
Y
Y
Nivolumab
PD
FollowUp
validation
training
NA


487
NSCLC
VUMC
<12 h
63
F
F
Y
Erlotinib
SD
NA
training
validation
NA


488
NSCLC
VUMC
<12 h
53
M
Y
Y
NA
NA
NA
training
validation
NA


489
NSCLC
VUMC
<12 h
55
F
N
Y
NA
NA
NA
training
validation
NA


490
NSCLC
VUMC
<12 h
61
F
N
Y
NA
NA
NA
training
evaluation
NA


491
NSCLC
VUMC
<12 h
59
F
N
Y
NA
NA
NA
training
validation
NA


492
NSCLC
VUMC
<12 h
63
M
F
Y
NA
NA
NA
training
training
NA


493
NSCLC
VUMC
<12 h
61
M
Y
Y
Nivolumab
PD
FollowUp
training
training
NA


494
NSCLC
VUMC
<12 h
53
M
Y
Y
Crizotinib
NA
NA
training
validation
NA


495
NSCLC
VUMC
<12 h
63
M
N
Y
Crizotinib
PR
NA
training
evaluation
NA


496
NSCLC
VUMC
<12 h
55
M
Y
Y
NA
NA
NA
training
training
NA


497
NSCLC
VUMC
<12 h
48
M
N
Y
Pemetrexed
PD
NA
training
validation
NA


498
NSCLC
VUMC
<12 h
42
M
NA
Y
NA
NA
NA
training
evaluation
NA


499
NSCLC
VUMC
<12 h
63
M
Y
Y
NA
NA
NA
training
training
NA


500
NSCLC
VUMC
<12 h
61
F
N
Y
NA
NA
NA
training
validation
NA


501
NSCLC
VUMC
<12 h
64
M
N
Y
NA
NA
NA
training
validation
NA


502
NSCLC
VUMC
<12 h
54
M
NA
N
NA
NA
NA
training
evaluation
NA


503
NSCLC
VUMC
<12 h
65
F
F
Y
NA
NA
NA
training
evaluation
NA


504
NSCLC
VUMC
<12 h
53
M
F
Y
Nivolumab
PR
Baseline
training
validation
Training


505
NSCLC
VUMC
<12 h
61
F
Y
Y
Crizotinib
PR
NA
training
training
NA


506
NSCLC
VUMC
<12 h
56
F
N
Y
NA
NA
NA
training
training
NA


507
NSCLC
VUMC
<12 h
62
F
F
Y
Dabrafenib +
PR
NA
training
training
NA










Trametinib







508
NSCLC
VUMC
<12 h
59
F
N
Y
NA
NA
NA
training
training
NA


509
NSCLC
VUMC
<12 h
39
M
Y
Y
Nivolumab
MR
NA
training
training
NA


510
NSCLC
VUMC
<12 h
56
F
Y
N
Nivolumab
PR
NA
training
validation
NA


511
NSCLC
VUMC
<12 h
43
M
N
Y
NA
NA
NA
training
training
NA


512
NSCLC
VUMC
<12 h
73
M
NA
Y
Cisplatin +
SD
NA
training
evaluation
NA










Pemetrexed







513
NSCLC
VUMC
<12 h
47
F
F
Y
NA
NA
NA
training
validation
NA


514
NSCLC
VUMC
<12 h
56
F
Y
N
Nivolumab
PR
Baseline
training
evaluation
Training


515
NSCLC
VUMC
<12 h
48
M
N
Y
NA
NA
NA
training
training
NA


516
NSCLC
VUMC
<12 h
81
F
N
Y
NA
NA
NA
training
validation
NA


517
NSCLC
VUMC
<12 h
53
M
F
Y
Nivolumab
PR
FollowUp
training
evaluation
NA


518
NSCLC
VUMC
<12 h
74
F
N
Y
NA
NA
NA
training
evaluation
NA


519
NSCLC
VUMC
<12 h
75
M
Y
Y
Nivolumab
PR
FollowUp
training
validation
NA


520
NSCLC
VUMC
<12 h
79
M
N
Y
NA
NA
NA
training
validation
NA


521
NSCLC
VUMC
<12 h
63
F
F
Y
Erlotinib
SD
NA
training
evaluation
NA


522
NSCLC
VUMC
<12 h
54
F
Y
Y
Crizotinib
PR
NA
training
validation
NA


523
NSCLC
VUMC
<12 h
67
M
Y
Y
NA
NA
NA
training
validation
NA


524
NSCLC
VUMC
<12 h
63
F
F
Y
Ceritinib
PD
NA
training
evaluation
NA


525
NSCLC
VUMC
<12 h
44
M
N
Y
NA
NA
NA
training
validation
NA


526
NSCLC
VUMC
<12 h
39
M
N
Y
NA
NA
NA
training
evaluation
NA


527
NSCLC
VUMC
<12 h
54
F
Y
Y
NA
NA
NA
training
training
NA


528
NSCLC
VUMC
<12 h
61
F
N
Y
NA
NA
NA
training
validation
NA


529
NSCLC
VUMC
<12 h
78
M
N
Y
NA
NA
NA
training
training
NA


530
NSCLC
VUMC
<12 h
57
F
F
Y
NA
NA
NA
training
validation
NA


531
NSCLC
VUMC
<12 h
54
F
F
Y
NA
NA
NA
training
training
NA


532
NSCLC
VUMC
<12 h
61
F
Y
Y
CLDK-2201
PR
NA
training
training
NA


533
NSCLC
VUMC
<12 h
74
F
F
Y
Dabrafenib +
PR
NA
training
evaluation
NA










Trametinib







534
NSCLC
VUMC
<12 h
56
F
F
Y
NA
NA
NA
training
validation
NA


535
NSCLC
VUMC
<12 h
78
M
NA
Y
Nivolumab
SD
Baseline
training
evaluation
Training


536
NSCLC
MGH
>12 h
32
M
NA
Y
NA
NA
NA
NA
validation
NA


537
NSCLC
MGH
>12 h
58
M
NA
Y
NA
NA
NA
NA
validation
NA


538
NSCLC
MGH
>12 h
82
F
NA
Y
NA
NA
NA
NA
validation
NA


539
NSCLC
MGH
>12 h
74
F
NA
Y
NA
NA
NA
NA
validation
NA


540
NSCLC
MGH
>12 h
36
M
N
Y
NA
NA
NA
NA
validation
NA


541
NSCLC
MGH
>12 h
33
M
NA
Y
NA
NA
NA
NA
validation
NA


542
NSCLC
MGH
>12 h
63
M
NA
Y
NA
NA
NA
NA
validation
NA


543
NSCLC
MGH
>12 h
77
F
NA
Y
NA
NA
NA
NA
validation
NA


544
NSCLC
MGH
>12 h
37
F
NA
Y
NA
NA
NA
NA
validation
NA


545
NSCLC
MGH
>12 h
69
M
NA
Y
NA
NA
NA
NA
validation
NA


546
NSCLC
MGH
>12 h
67
F
NA
Y
NA
NA
NA
NA
validation
NA


547
NSCLC
MGH
>12 h
73
M
NA
Y
NA
NA
NA
NA
validation
NA


548
NSCLC
MGH
>12 h
48
F
NA
Y
NA
NA
NA
NA
validation
NA


549
NSCLC
MGH
>12 h
54
M
NA
Y
NA
NA
NA
NA
validation
NA


550
NSCLC
MGH
>12 h
55
F
NA
Y
NA
NA
NA
NA
validation
NA


551
NSCLC
MGH
>12 h
55
M
NA
Y
NA
NA
NA
NA
validation
NA


552
NSCLC
MGH
>12 h
68
F
NA
Y
NA
NA
NA
NA
validation
NA


553
NSCLC
MGH
>12 h
68
F
NA
Y
NA
NA
NA
NA
validation
NA


554
NSCLC
MGH
>12 h
62
M
NA
Y
NA
NA
NA
NA
validation
NA


555
NSCLC
MGH
>12 h
49
F
NA
Y
NA
NA
NA
NA
validation
NA


556
NSCLC
MGH
>12 h
67
M
NA
Y
NA
NA
NA
NA
validation
NA


557
NSCLC
MGH
>12 h
82
F
NA
Y
NA
NA
NA
NA
validation
NA


558
NSCLC
MGH
>12 h
62
F
NA
Y
NA
NA
NA
NA
validation
NA


559
NSCLC
MGH
>12 h
53
F
NA
Y
NA
NA
NA
NA
validation
NA


560
NSCLC
MGH
>12 h
60
M
NA
Y
NA
NA
NA
NA
validation
NA


561
NSCLC
MGH
>12 h
64
F
NA
Y
NA
NA
NA
NA
validation
NA


562
NSCLC
MGH
>12 h
50
F
NA
Y
NA
NA
NA
NA
validation
NA


563
NSCLC
MGH
>12 h
64
F
NA
Y
NA
NA
NA
NA
validation
NA


564
NSCLC
MGH
>12 h
64
F
NA
Y
NA
NA
NA
NA
validation
NA


565
NSCLC
MGH
>12 h
68
F
NA
Y
NA
NA
NA
NA
validation
NA


566
NSCLC
MGH
>12 h
78
M
NA
Y
NA
NA
NA
NA
validation
NA


567
NSCLC
MGH
>12 h
86
M
NA
Y
NA
NA
NA
NA
validation
NA


568
NSCLC
HGTP
<12 h
72
M
N
Y
NA
NA
NA
NA
validation
NA


569
NSCLC
HGTP
<12 h
36
F
Y
Y
NA
NA
NA
NA
validation
NA


570
NSCLC
MGH
>12 h
65
F
NA
Y
NA
NA
NA
NA
validation
NA


571
NSCLC
MGH
>12 h
64
M
NA
Y
NA
NA
NA
NA
validation
NA


572
NSCLC
MGH
>12 h
61
M
NA
Y
NA
NA
NA
NA
validation
NA


573
NSCLC
MGH
>12 h
56
M
NA
Y
NA
NA
NA
NA
validation
NA


574
NSCLC
MGH
>12 h
70
M
NA
Y
NA
NA
NA
NA
validation
NA


575
NSCLC
MGH
>12 h
59
M
NA
Y
NA
NA
NA
NA
validation
NA


576
NSCLC
MGH
>12 h
58
M
NA
Y
NA
NA
NA
NA
validation
NA


577
NSCLC
MGH
>12 h
70
F
NA
Y
NA
NA
NA
NA
validation
NA


578
NSCLC
MGH
>12 h
42
F
NA
Y
NA
NA
NA
NA
validation
NA


579
NSCLC
MGH
>12 h
55
F
NA
Y
NA
NA
NA
NA
validation
NA


580
NSCLC
MGH
>12 h
74
M
NA
Y
NA
NA
NA
NA
validation
NA


581
NSCLC
MGH
>12 h
63
F
NA
Y
NA
NA
NA
NA
validation
NA


582
NSCLC
MGH
>12 h
54
F
NA
Y
NA
NA
NA
NA
validation
NA


583
NSCLC
NKI
<12 h
54
M
F
Y
NA
NA
NA
NA
validation
NA


584
NSCLC
NKI
<12 h
69
M
F
Y
NA
NA
NA
NA
validation
NA


585
NSCLC
NKI
<12 h
74
M
F
Y
NA
NA
NA
NA
validation
NA


586
NSCLC
NKI
<12 h
54
M
F
Y
NA
NA
NA
NA
validation
NA


587
NSCLC
NKI
<12 h
73
F
F
Y
NA
NA
NA
NA
validation
NA


588
NSCLC
NKI
<12 h
73
F
F
Y
NA
NA
NA
NA
validation
NA


589
NSCLC
NKI
<12 h
67
F
F
Y
Nivolumab
PD
NA
NA
validation
Training


590
NSCLC
NKI
<12 h
73
F
F
Y
NA
NA
NA
NA
validation
NA


591
NSCLC
NKI
<12 h
67
M
F
Y
Nivolumab
PD
NA
NA
validation
NA


592
NSCLC
NKI
<12 h
73
F
F
Y
NA
NA
NA
NA
validation
NA


593
NSCLC
NKI
<12 h
69
M
F
Y
NA
NA
NA
NA
validation
NA


594
NSCLC
NKI
<12 h
74
M
F
Y
NA
NA
NA
NA
validation
NA


595
NSCLC
NKI
<12 h
67
M
Y
Y
Nivolumab
SD
NA
NA
validation
NA


596
NSCLC
NKI
<12 h
74
M
F
Y
NA
NA
NA
NA
validation
NA


597
NSCLC
NKI
<12 h
73
F
F
Y
NA
NA
NA
NA
validation
NA


598
NSCLC
NKI
<12 h
67
F
F
Y
NA
NA
NA
NA
validation
NA


599
NSCLC
NKI
<12 h
74
M
F
Y
NA
NA
NA
NA
validation
NA


600
NSCLC
NKI
<12 h
74
M
F
Y
NA
NA
NA
NA
validation
NA


601
NSCLC
NKI
<12 h
41
M
F
Y
NA
NA
NA
NA
validation
NA


602
NSCLC
NKI
<12 h
73
F
F
Y
NA
NA
NA
NA
validation
NA


603
NSCLC
NKI
<12 h
54
M
F
Y
NA
NA
NA
NA
validation
NA


604
NSCLC
NKI
<12 h
67
M
Y
Y
NA
NA
NA
NA
validation
NA


605
NSCLC
NKI
<12 h
74
M
F
Y
NA
NA
NA
NA
validation
NA


606
NSCLC
NKI
<12 h
54
M
F
Y
NA
NA
NA
NA
validation
NA


607
NSCLC
NKI
<12 h
67
M
Y
Y
NA
NA
NA
NA
validation
NA


608
NSCLC
NKI
<12 h
52
M
N
Y
NA
NA
NA
NA
validation
NA


609
NSCLC
NKI
<12 h
52
F
N
Y
Nivolumab
SD
NA
NA
validation
Evaluation


610
NSCLC
NKI
<12 h
49
F
F
Y
Nivolumab
PR
NA
NA
validation
NA


611
NSCLC
NKI
<12 h
49
F
F
Y
Nivolumab
PR
NA
NA
validation
NA


612
NSCLC
NKI
<12 h
69
M
F
Y
NA
NA
NA
NA
validation
NA


613
NSCLC
NKI
<12 h
74
M
F
Y
NA
NA
NA
NA
validation
NA


614
NSCLC
NKI
<12 h
54
M
F
Y
NA
NA
NA
NA
validation
NA


615
NSCLC
NKI
<12 h
67
M
Y
Y
NA
NA
NA
NA
validation
NA


616
NSCLC
NKI
<12 h
69
M
F
Y
NA
NA
NA
NA
validation
NA


617
NSCLC
MGH
>12 h
50
F
NA
Y
NA
NA
NA
NA
validation
NA


618
NSCLC
MGH
>12 h
51
F
NA
Y
NA
NA
NA
NA
validation
NA


619
NSCLC
MGH
>12 h
70
F
NA
Y
NA
NA
NA
NA
validation
NA


620
NSCLC
MGH
>12 h
49
F
NA
Y
NA
NA
NA
NA
validation
NA


621
NSCLC
MGH
>12 h
68
F
NA
Y
NA
NA
NA
NA
validation
NA


622
NSCLC
MGH
>12 h
71
F
NA
Y
NA
NA
NA
NA
validation
NA


623
NSCLC
MGH
>12 h
55
F
NA
Y
NA
NA
NA
NA
validation
NA


624
NSCLC
MGH
>12 h
65
M
NA
Y
NA
NA
NA
NA
validation
NA


625
NSCLC
MGH
>12 h
58
F
NA
Y
NA
NA
NA
NA
validation
NA


626
NSCLC
MGH
>12 h
58
F
NA
Y
NA
NA
NA
NA
validation
NA


627
NSCLC
MGH
>12 h
53
M
NA
Y
NA
NA
NA
NA
validation
NA


628
NSCLC
MGH
>12 h
53
M
NA
N
NA
NA
NA
NA
validation
NA


629
NSCLC
MGH
>12 h
58
M
NA
Y
NA
NA
NA
NA
validation
NA


630
NSCLC
MGH
>12 h
72
F
NA
Y
NA
NA
NA
NA
validation
NA


631
NSCLC
MGH
>12 h
67
F
NA
Y
NA
NA
NA
NA
validation
NA


632
NSCLC
MGH
>12 h
63
M
NA
Y
NA
NA
NA
NA
validation
NA


633
NSCLC
MGH
>12 h
60
F
NA
Y
NA
NA
NA
NA
validation
NA


634
NSCLC
MGH
>12 h
68
M
NA
N
NA
NA
NA
NA
validation
NA


635
NSCLC
VUMC
<12 h
88
M
Y
Y
Dabrafenib
SD
NA
NA
validation
NA


636
NSCLC
VUMC
<12 h
88
M
Y
Y
Dabrafenib
SD
NA
NA
validation
NA


637
NSCLC
NKI
<12 h
74
M
Y
Y
Nivolumab
PD
FollowUp
NA
validation
NA


638
NSCLC
NKI
<12 h
75
M
F
Y
NA
NA
NA
NA
validation
NA


639
NSCLC
NKI
<12 h
66
F
F
Y
Nivolumab
PD
Baseline
NA
validation
Training


640
NSCLC
NKI
<12 h
68
M
Y
Y
Nivolumab
PD
NA
NA
validation
Training


641
NSCLC
NKI
<12 h
58
M
Y
Y
Nivolumab
PR
FollowUp
NA
validation
NA


642
NSCLC
NKI
<12 h
69
M
F
Y
Nivolumab
PD
NA
NA
validation
Training


643
NSCLC
NKI
<12 h
69
M
F
Y
Nivolumab
PD
FollowUp
NA
validation
NA


644
NSCLC
NKI
<12 h
74
M
N
Y
Nivol umab
PD
Baseline
NA
validation
Validation


645
NSCLC
NKI
<12 h
58
M
F
Y
Nivolumab
PD
Baseline
NA
validation
Evaluation


646
NSCLC
NKI
<12 h
57
F
Y
Y
Nivolumab
PR
NA
NA
validation
Training


647
NSCLC
NKI
<12 h
66
F
F
Y
Nivolumab
SD
NA
NA
validation
Evaluation


648
NSCLC
NKI
<12 h
67
M
F
Y
Nivolumab
PD
FollowUp
NA
validation
NA


649
NSCLC
NKI
<12 h
75
M
F
Y
Nivolumab
SD
NA
NA
validation
NA


650
NSCLC
NKI
<12 h
74
M
F
Y
Nivolumab
SD
NA
NA
validation
Training


651
NSCLC
NKI
<12 h
63
M
F
Y
Nivolumab
PR
NA
NA
validation
Training


652
NSCLC
NKI
<12 h
58
F
Y
Y
Nivolumab
PR
NA
NA
validation
Training


653
NSCLC
NKI
<12 h
68
M
Y
Y
Nivolumab
PD
NA
NA
validation
Training


654
NSCLC
NKI
<12 h
65
F
Y
Y
Nivolumab
PD
NA
NA
validation
Evaluation


655
NSCLC
NKI
<12 h
70
M
Y
Y
Nivolumab
PR
NA
NA
validation
Training


656
NSCLC
VUMC
<12 h
62
M
N
Y
Nivolumab
PR
Baseline
NA
validation
Training


657
NSCLC
VUMC
<12 h
61
M
N
Y
NA
NA
NA
NA
validation
NA


658
NSCLC
VUMC
<12 h
55
M
Y
Y
Nivolumab
PR
Baseline
NA
validation
Training


659
NSCLC
NKI
<12 h
74
M
Y
Y
Nivolumab
PD
NA
NA
validation
Training


660
NSCLC
NKI
<12 h
53
M
Y
Y
Nivolumab
PR
FollowUp
NA
validation
NA


661
NSCLC
NKI
<12 h
68
F
F
Y
Nivolumab
PD
FollowUp
NA
validation
NA


662
NSCLC
NKI
<12 h
68
F
F
Y
Nivolumab
SD
FollowUp
NA
validation
NA


663
NSCLC
NKI
<12 h
59
F
F
Y
Nivolumab
PD
FollowUp
NA
validation
NA


664
NSCLC
NKI
<12 h
67
M
F
Y
Nivolumab
PD
Baseline
NA
validation
Training


665
NSCLC
NKI
<12 h
59
F
F
Y
Nivolumab
PD
NA
NA
validation
Training


666
NSCLC
NKI
<12 h
61
F
F
Y
Nivolumab
PR
NA
NA
validation
Training


667
NSCLC
NKI
<12 h
68
F
F
Y
Nivolumab
SD
NA
NA
validation
Training


668
NSCLC
NKI
<12 h
65
M
F
Y
Nivolumab
PR
NA
NA
validation
Training


669
NSCLC
NKI
<12 h
74
M
F
Y
Nivolumab
SD
FollowUp
NA
validation
NA


670
NSCLC
NKI
<12 h
69
M
F
Y
Nivolumab
NA
NA
NA
validation
NA


671
NSCLC
NKI
<12 h
69
M
F
Y
Nivolumab
PD
Baseline
NA
validation
Training


672
NSCLC
NKI
<12 h
58
M
Y
Y
Nivolumab
MR
NA
NA
validation
NA


673
NSCLC
NKI
<12 h
NA
M
F
Y
Nivolumab
PR
NA
NA
validation
Training


674
NSCLC
NKI
<12 h
72
F
N
Y
Nivolumab
SD
NA
NA
validation
NA


675
NSCLC
NKI
<12 h
73
M
F
Y
Nivolumab
PD
Baseline
NA
validation
Evaluation


676
NSCLC
NKI
<12 h
58
M
Y
Y
Nivolumab
PR
Baseline
NA
validation
Training


677
NSCLC
NKI
<12 h
50
F
F
Y
Nivolumab
SD
NA
NA
validation
NA


678
NSCLC
NKI
<12 h
66
F
F
Y
Nivolumab
PD
FollowUp
NA
validation
NA


679
NSCLC
NKI
<12 h
73
M
F
Y
Nivolumab
SD
NA
NA
validation
NA


680
NSCLC
VUMC
<12 h
53
F
F
N
Nivolumab
PR
Baseline
NA
validation
Evaluation


681
NSCLC
VUMC
<12 h
65
M
F
Y
Nivolumab
PD
NA
NA
validation
NA


682
NSCLC
NKI
<12 h
57
F
Y
Y
Nivolumab
PR
FollowUp
NA
validation
NA


683
NSCLC
NKI
<12 h
65
M
F
Y
Nivolumab
PR
FollowUp
NA
validation
NA


684
NSCLC
NKI
<12 h
60
F
Y
Y
Nivolumab
PD
NA
NA
validation
NA


685
NSCLC
NKI
<12 h
38
M
N
Y
Nivolumab
PD
NA
NA
validation
Training


686
NSCLC
NKI
<12 h
68
F
F
Y
Nivolumab
SD
FollowUp
NA
validation
NA


687
NSCLC
NKI
<12 h
38
M
N
Y
Nivolumab
PD
FollowUp
NA
validation
NA


688
NSCLC
NKI
<12 h
65
M
F
Y
Nivolumab
PR
FollowUp
NA
validation
NA


689
NSCLC
NKI
<12 h
62
F
N
Y
Nivolumab
SD
FollowUp
NA
validation
NA


690
NSCLC
NKI
<12 h
74
M
F
Y
Nivolumab
SD
FollowUp
NA
validation
NA


691
NSCLC
VUMC
<12 h
73
M
F
Y
Nivolumab
SD
NA
NA
validation
NA


692
NSCLC
VUMC
<12 h
69
M
N
Y
Nivolumab
PR
NA
NA
validation
NA


693
NSCLC
NKI
<12 h
68
M
Y
Y
Nivolumab
PD
FollowUp
NA
validation
NA


694
NSCLC
NKI
<12 h
42
M
F
Y
NA
NA
NA
NA
validation
NA


695
NSCLC
NKI
<12 h
49
F
F
Y
NA
NA
NA
NA
validation
NA


696
NSCLC
NKI
<12 h
77
F
F
Y
Nivolumab
PD
NA
NA
validation
Training


697
NSCLC
NKI
<12 h
58
M
F
Y
NA
NA
NA
NA
validation
NA


698
NSCLC
NKI
<12 h
72
F
Y
Y
Crizotinib
PD
NA
NA
validation
NA


699
NSCLC
NKI
<12 h
75
M
N
Y
Nivolumab
PD
Baseline
NA
validation
Training


700
NSCLC
NKI
<12 h
56
F
F
Y
Nivolumab
SD
NA
NA
validation
NA


701
NSCLC
NKI
<12 h
63
F
F
Y
Nivolumab
PD
NA
NA
validation
Validation


702
NSCLC
NKI
<12 h
44
F
Y
Y
Crizotinib
PD
NA
NA
validation
NA


703
NSCLC
NKI
<12 h
49
M
N
Y
Nivolumab
PD
Baseline
NA
validation
Training


704
NSCLC
NKI
<12 h
55
F
Y
Y
Nivolumab
PD
FollowUp
NA
validation
NA


705
NSCLC
NKI
<12 h
73
F
F
Y
Nivolumab
PR
NA
NA
validation
Training


706
NSCLC
NKI
<12 h
67
F
F
Y
Nivolumab
SD
NA
NA
validation
NA


707
NSCLC
NKI
<12 h
68
F
F
Y
Nivolumab
PR
Baseline
NA
validation
Validation


708
NSCLC
NKI
<12 h
55
F
F
Y
Nivolumab
PD
NA
NA
validation
Training


709
NSCLC
NKI
<12 h
65
M
Y
Y
Nivolumab
PR
NA
NA
validation
Evaluation


710
NSCLC
NKI
<12 h
64
F
N
Y
Nivolumab
PR
Baseline
NA
validation
Training


711
NSCLC
NKI
<12 h
70
F
F
Y
Nivolumab
PR
Baseline
NA
validation
Evaluation


712
NSCLC
NKI
<12 h
77
F
F
Y
Nivolumab
PD
Baseline
NA
validation
Evaluation


713
NSCLC
NKI
<12 h
64
F
Y
Y
Nivolumab
PD
Baseline
NA
validation
Training


714
NSCLC
NKI
<12 h
60
M
N
Y
Nivolumab
PD
Baseline
NA
validation
Validation


715
NSCLC
NKI
<12 h
68
F
F
Y
Nivolumab
SD
Baseline
NA
validation
Validation


716
NSCLC
NKI
<12 h
60
F
F
Y
Nivolumab
PD
Baseline
NA
validation
Validation


717
NSCLC
NKI
<12 h
50
F
F
Y
NA
NA
NA
NA
validation
NA


718
NSCLC
NKI
<12 h
62
M
F
Y
Nivolumab
PD
Baseline
NA
validation
Evaluation


719
NSCLC
NKI
<12 h
50
F
F
Y
NA
NA
NA
NA
validation
NA


720
NSCLC
NKI
<12 h
68
M
Y
Y
Nivolumab
PD
Baseline
NA
validation
Validation


721
NSCLC
NKI
<12 h
30
F
N
Y
Nivolumab
PD
Baseline
NA
validation
Evaluation


722
NSCLC
NKI
<12 h
58
M
F
Y
Nivolumab
PD
Baseline
NA
validation
Validation


723
NSCLC
NKI
<12 h
46
F
N
Y
Nivolumab
PD
Baseline
NA
validation
Evaluation


724
NSCLC
NKI
<12 h
75
M
F
Y
Nivolumab
PD
Baseline
NA
validation
Training


725
NSCLC
NKI
<12 h
66
F
Y
Y
Nivolumab
PD
Baseline
NA
validation
Evaluation


726
NSCLC
NKI
<12 h
58
M
F
Y
Nivolumab
PD
Baseline
NA
validation
Training


727
NSCLC
NKI
<12 h
68
M
F
Y
Nivolumab
PR
Baseline
NA
validation
NA


728
NSCLC
NKI
<12 h
60
M
N
Y
NA
NA
NA
NA
validation
NA


729
NSCLC
NKI
<12 h
77
F
F
Y
Nivolumab
PD
Baseline
NA
NA
Training


730
NSCLC
NKI
<12 h
56
F
F
Y
Nivolumab
PD
Baseline
NA
NA
Validation


731
NSCLC
NKI
<12 h
63
F
F
Y
Nivolumab
PD
Baseline
NA
NA
Validation


732
NSCLC
NKI
<12 h
73
F
F
Y
Nivolumab
PR
Baseline
NA
NA
Training


733
NSCLC
NKI
<12 h
67
F
F
Y
Nivolumab
PD
Baseline
NA
NA
Validation


734
NSCLC
NKI
<12 h
55
F
F
Y
Nivolumab
PD
Baseline
NA
NA
Training


735
NSCLC
NKI
<12 h
65
M
Y
Y
Nivolumab
PR
Baseline
NA
NA
Evaluation


736
NSCLC
NKI
<12 h
74
M
F
Y
Nivolumab
PD
Baseline
NA
NA
Validation


737
NSCLC
NKI
<12 h
62
M
N
N
Nivolumab
PD
Baseline
NA
NA
Evaluation


738
NSCLC
VUMC
<12 h
61
M
N
N
Nivolumab
PR
Baseline
NA
NA
Evaluation


739
NSCLC
VUMC
<12 h
61
F
N
N
Nivolumab
PR
Baseline
NA
NA
Training


740
NSCLC
VUMC
<12 h
69
M
N
N
Nivolumab
PR
Baseline
NA
NA
Training


741
NSCLC
VUMC
<12 h
69
F
N
N
Nivolumab
PR
Baseline
NA
NA
Evaluation


742
NSCLC
VUMC
<12 h
54
F
N
N
Nivolumab
PD
Baseline
NA
NA
Training


743
NSCLC
VUMC
<12 h
68
M
N
N
Nivolumab
PD
Baseline
NA
NA
Training


744
NSCLC
VUMC
<12 h
69
M
N
N
Nivolumab
PR
Baseline
NA
NA
Training


745
NSCLC
VUMC
<12 h
67
M
N
N
Nivolumab
PR
Baseline
NA
NA
Training


746
NSCLC
VUMC
<12 h
62
M
N
N
Nivolumab
PD
Baseline
NA
NA
Training


747
NSCLC
VUMC
<12 h
72
F
N
N
Nivolumab
PD
Baseline
NA
NA
Training


748
NSCLC
VUMC
<12 h
56
M
N
N
Nivolumab
PD
Baseline
NA
NA
Training


749
NSCLC
VUMC
<12 h
56
F
N
N
Nivolumab
PD
Baseline
NA
NA
Training


750
NSCLC
VUMC
<12 h
65
M
N
N
Nivolumab
PD
Baseline
NA
NA
Training


751
NSCLC
VUMC
<12 h
69
F
N
N
Nivolumab
PR
Baseline
NA
NA
Training


752
NSCLC
VUMC
<12 h
69
M
N
N
Nivolumab
PD
Baseline
NA
NA
Training


753
NSCLC
VUMC
<12 h
60
F
N
N
Nivolumab
PD
Baseline
NA
NA
Training


754
NSCLC
VUMC
<12 h
70
M
N
N
Nivolumab
PD
Baseline
NA
NA
Training


755
NSCLC
VUMC
<12 h
58
M
N
N
Nivolumab
PD
Baseline
NA
NA
Validation


756
NSCLC
VUMC
<12 h
64
M
N
N
Nivolumab
PD
Baseline
NA
NA
Evaluation


757
NSCLC
VUMC
<12 h
69
F
N
N
Nivolumab
PR
Baseline
NA
NA
Evaluation


758
NSCLC
NKI
<12 h
65
M
N
N
Nivolumab
PD
Baseline
NA
NA
Training


759
NSCLC
NKI
<12 h
54
F
N
N
Nivolumab
PR
Baseline
NA
NA
Validation


760
NSCLC
NKI
<12 h
58
M
N
N
Nivolumab
PR
Baseline
NA
NA
Validation


761
NSCLC
NKI
<12 h
64
F
N
N
Nivolumab
PR
Baseline
NA
NA
Validation


762
NSCLC
NKI
<12 h
66
M
N
N
Nivolumab
PR
Baseline
NA
NA
Training


763
NSCLC
NKI
<12 h
73
F
N
N
Nivolumab
PR
Baseline
NA
NA
Training


764
NSCLC
NKI
<12 h
57
M
N
N
Nivolumab
PD
Baseline
NA
NA
Training


765
NSCLC
NKI
<12 h
68
M
N
N
Nivolumab
PD
Baseline
NA
NA
Validation


766
NSCLC
NKI
<12 h
73
M
N
N
Nivolumab
PR
Baseline
NA
NA
Evaluation


767
NSCLC
NKI
<12 h
68
M
N
N
Nivolumab
PD
Baseline
NA
NA
Training


768
NSCLC
NKI
<12 h
64
M
N
N
Nivolumab
PD
Baseline
NA
NA
Validation


769
NSCLC
NKI
<12 h
62
M
N
N
Nivolumab
PD
Baseline
NA
NA
Training


770
NSCLC
NKI
<12 h
51
F
N
N
Nivolumab
PR
Baseline
NA
NA
Training


771
NSCLC
NKI
<12 h
69
F
N
N
Nivolumab
PD
Baseline
NA
NA
Validation


772
NSCLC
NKI
<12 h
54
M
N
N
Nivolumab
PD
Baseline
NA
NA
Training


773
NSCLC
NKI
<12 h
60
M
N
N
Nivolumab
PR
Baseline
NA
NA
Validation


774
NSCLC
NKI
<12 h
38
F
N
N
Nivolumab
PD
Baseline
NA
NA
Validation


775
NSCLC
NKI
<12 h
79
M
N
N
Nivolumab
PD
Baseline
NA
NA
Training


776
NSCLC
NKI
<12 h
64
M
N
N
Nivolumab
PD
Baseline
NA
NA
Evaluation


777
NSCLC
NKI
<12 h
68
F
N
N
Nivolumab
PR
Baseline
NA
NA
Validation


778
NSCLC
NKI
<12 h
55
F
Y
Y
Nivolumab
PD
FollowUp
NA
NA
NA


779
NSCLC
VUMC
<12 h
47
F
N
N
Nivolumab
PR
FollowUp
NA
NA
NA


780
NSCLC
VUMC
<12 h
67
F
N
N
Nivolumab
PR
FollowUp
NA
NA
NA


781
NSCLC
VUMC
<12 h
60
F
N
N
Nivolumab
PR
FollowUp
NA
NA
NA


782
NSCLC
VUMC
<12 h
67
F
N
N
Nivolumab
PR
FollowUp
NA
NA
NA








Claims
  • 1. A method of administering immunotherapy that modulates an interaction between PD-1 and its ligand, to a cancer patient, comprising the steps of: providing a sample from the patient, the sample comprising mRNA products that are obtained from anucleated cells of said patient;determining a gene expression level for at least four genes listed in Table 1;comparing said determined gene expression level to a reference expression level of said genes in a reference sample;typing the patient as a positive responder to said immunotherapy, or as a not-positive responder, based on the comparison with the reference; andadministering immunotherapy to a cancer patient that is typed as a positive responder.
  • 2. The method according to claim 1, whereby said cancer patient is a lung cancer patient, preferably a non-small cell lung cancer patient.
  • 3. The method according to claim 1, wherein the anucleated cell is a thrombocyte.
  • 4. The method according to claim 1, comprising determining the gene expression level for at least 10 genes, preferably all genes, listed in Table 1.
  • 5. The method according to claim 1, wherein the sample is obtained by isolating anucleated cells, preferably thrombocytes, from a blood sample of said patient and isolating mRNA from said isolated cells.
  • 6. The method according to claim 1, wherein the gene expression level is determined by next generation sequencing.
  • 7. The method according to claim 1, wherein the immunotherapy comprises nivolumab.
  • 8. A method of typing a sample of a subject for the presence or absence of a cancer, comprising the steps of: providing a sample from the subject, whereby the sample comprises mRNA products that are obtained from anucleated cells of said subject;determining a gene expression level for at least five genes listed in Table 2;comparing said determined gene expression level to a reference expression level of said genes in a reference sample; andtyping said sample for the presence or absence of a cancer on the basis of the comparison between the determined gene expression level and the reference gene expression level.
  • 9. The method according to claim 8, wherein the cancer is a lung cancer, preferably a non-small cell lung cancer.
  • 10. The method according to claim 8, comprising determining the gene expression level for at least 10 genes, preferably all genes, listed in Table 2.
  • 11. The method according to claim 8, wherein the anucleated cells are thrombocytes.
  • 12. The method according to claim 8, wherein the sample is obtained by isolating anucleated cells, preferably thrombocytes, from a blood sample of said subject and isolating mRNA from said isolated cells.
  • 13. Immunotherapy that modulates an interaction between PD-1 and its ligand, for use in a method of treating a cancer patient, preferably a lung cancer patient, wherein said cancer patient is selected by: typing a sample from the patient, the sample comprising mRNA products that are obtained from anucleated cells of said subject;determining a gene expression level for at least four genes listed in Table 1;comparing said determined gene expression level to an expression level of said genes in a reference sample;typing the patient as a positive responder to said immunotherapy, or as a not-positive responder, based on the comparison with the reference; andassigning immunotherapy to a cancer patient that is selected as a positive responder.
  • 14. A method for obtaining a biomarker panel for typing of a sample from a subject, the method comprising isolating anucleated cells, preferably thrombocytes, from a liquid sample of a subject having condition A;isolating RNA from said isolated cells;determining RNA expression levels for at least 100 genes in said isolated RNA;determining RNA expression levels for said at least 100 genes in a control sample from a subject not having condition A; andusing particle swarm optimization-based algorithms to obtain a biomarker panel that discriminates between a subject having condition A and a subject not having condition A.
  • 15. The method according to claim 14, wherein the subject having condition A is suffering from a cancer, preferably a lung cancer, or had a known response to a cancer treatment.
Priority Claims (2)
Number Date Country Kind
2018391 Feb 2017 NL national
2018567 Mar 2017 NL national
PCT Information
Filing Document Filing Date Country Kind
PCT/NL2018/050110 2/19/2018 WO 00