Swash plate compressor

Information

  • Patent Grant
  • 6368073
  • Patent Number
    6,368,073
  • Date Filed
    Thursday, June 1, 2000
    24 years ago
  • Date Issued
    Tuesday, April 9, 2002
    22 years ago
Abstract
A swash plate compressor including a housing secured to a cylinder block having cylinder bores axially formed therethrough for receiving respective pistons therein. A swash plate is mounted on a drive shaft extending through a crankcase defined within the housing, for rotation in unison with the drive shaft. The swash plate has sliding surfaces on opposite sides thereof. A pair of shoes, each of which has a substantially semispherical shape, which slide on the sliding surfaces of the swash plate. Each piston is connected to the swash plate via a corresponding pair of the shoes, and performs a linear reciprocating motion within a corresponding cylinder bore. Guide grooves are each axially formed in an inner peripheral wall of the housing along a path of the linear reciprocating motion of the corresponding piston. Each piston has a body having a first concave portion for supporting a corresponding pair of the shoes, a swash plate-side end having a second concave portion for supporting another of the corresponding pair of the shoes, and a bridge integrally connecting the body and the swash plate-side end such that these portions are axially opposed to each other with space therebetween. The bridge extends radially outward with respect to an outer peripheral surface of the body, and is slidably fitted in a corresponding guide groove. The pistons are made of an aluminum-based material and the shoes are made of an iron-based material. A ratio of an outer diameter of the body to a diameter of an imaginary sphere formed by the corresponding pair of the pairs of shoes is 8/10 to 9/10.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




This invention relates to a swash plate compressor.




2. Background Information




In general, a swash plate compressor includes a swash plate which is fitted on a drive shaft, for rotation in unison with the drive shaft, and a plurality of pistons each of which is connected to the swash plate via a pair of generally hemispherical shoes sliding on front and rear sliding surfaces of the swash plate, respectively, for reciprocation within a cylinder bore according to the rotation of the swash plate.




Each of the pistons is comprised of a body formed with a first concave portion for slidably supporting one of the shoes, a front end portion formed with a second concave portion for slidably supporting the other of the shoes, and a bridge integrally formed with the body and the front end portion for connecting the two portions to each other.




The first and second concave portions are opposed to each other axially, i.e., in a direction of reciprocation of the piston with space therebetween.




The pair of shoes are arranged on opposite outer peripheral portions of the swash plate such that they are opposed to each other via the swash plate to form an imaginary sphere.




As the swash plate rotates, each piston reciprocates within a corresponding one of the cylinder bores, whereby refrigerant gas within the cylinder bore is compressed.




In a swash plate compressor for use in a typical refrigeration cycle system using a chlorofluorocarbon as a refrigerant, an imaginary sphere formed by a pair of shoes has a diameter which is approximately half as large as an outer diameter of each piston.




On the other hand, in a swash plate compressor for a transcritical refrigeration cycle system using carbon dioxide (CO


2


) as a refrigerant, delivery quantity or capacity of the compressor is approximately a sixth of that of the compressor using the chlorofluorocarbon, due to differences in properties between the two refrigerants. Therefore, each piston of the compressor using CO


2


has an outer diameter smaller than that of the piston of the compressor using chlorofluorocarbon. More specifically, the former may be less than half of the latter.




However, since the transcritical refrigeration cycle is a high-pressure cycle in which load applied to shoes by compression pressure during each compression stroke is no lower than when the chlorofluorocarbon is compressed, it is required that the imaginary sphere formed by the pair of shoes has a diameter which is substantially equal to or slightly larger than the outer diameter of the piston, in view of rigidity of the shoes and slidability between the shoes and the swash plate.




Therefore, if the conventional construction of the piston (in which the bridge and the front end portion do not extend radially outward with respect to the peripheral surface of the body) is employed, it is inevitably required to reduce the shoes in size, which makes it impossible to obtain the required rigidity and slidability of the shoes.




SUMMARY OF THE INVENTION




It is an object of the present invention to provide a swash plate compressor which is capable of employing shoes suitable in size for a load applied to the shoes and a sliding condition of the shoes.




To attain the above object, the present invention provides a swash plate compressor comprising:




a cylinder block having a plurality of cylinder bores axially formed therethrough;




a housing secured to the cylinder block and having a crankcase defined therein;




a drive shaft extending through the crankcase;




a swash plate received within the crankcase and mounted on the drive shaft, for rotation in unison with the drive shaft, the swash plate having sliding surface on one side facing toward the cylinder block and another side remote from the cylinder block, respectively;




a plurality of pairs of shoes each having a substantially semispherical shape, each pair of the shoes sliding on the sliding surfaces of the swash plate on the one side and the another side, respectively;




a plurality of pistons received in the cylinder bores, respectively, the pistons each connected to the swash plate via a corresponding pair of the pairs of shoes and performing a linear reciprocating motion within a corresponding one of the cylinder bores, as the swash plate rotates; and




a plurality of guide grooves each axially formed in an inner peripheral wall of the housing in a manner such that the guide grooves each extend along a path of the linear reciprocating motion of a corresponding one of the pistons,




the pistons each having:




a body having a first concave portion formed therein for supporting one of a corresponding pair of the pairs of shoes,




a swash plate-side end having a second concave portion formed therein for supporting another of the corresponding pair of the pairs of shoes, and




a bridge formed integrally with the body and the swash plate-side end, the bridge integrally connecting the body and the swash plate-side end in a manner such that the first concave portion and the second concave portion are axially opposed to each other with space therebetween,




the bridge extending radially outward with respect to a peripheral surface of the body of the piston, and being slidably fitted in a corresponding one of the guide grooves,




wherein the pistons are made of an aluminum-based material,




wherein the shoes are made of an iron-based material, and




wherein a ratio of an outer diameter of the body to a diameter of an imaginary sphere formed by the corresponding pair of the pairs of shoes is within a range of 8/10 to 9/10.




According to this swash plate compressor, the bridge of each of the piston is formed radially outward with respect to the outer peripheral surface of the body of the piston. Therefore, the first and second concave portions are formed to have a sufficiently large size, allowing each shoe to have a correspondingly large size which ensures required rigidity of the shoe.




Preferably, the swash plate compressor includes a bearing supporting one end of the drive shaft,




the cylinder block having a central portion formed with a bearing-receiving chamber for receiving the bearing therein, and at least one lubricant supply passage for supplying lubricant collected in at least one of the guide grooves to the bearing-receiving chamber.




According to this preferred embodiment, the bridge of the piston reciprocates within the guide groove along the path of the linear reciprocating motion of the piston to thereby supply lubricant from the guide groove to the bearing-receiving chamber via the lubricant supply passage. This ensures lubrication of the bearing within the bearing-receiving chamber, which improves durability of the bearing.




Preferably, the at least one of the guide grooves includes a guide groove formed at a lowermost location of the inner peripheral wall of the housing.




Preferably, the at least one lubricant supply passage opens into a cylinder block-side end of a corresponding one of the guide grooves.




The above and other objects, features and advantages of the present invention will become more apparent from the following detailed description taken in conjunction with accompanying drawings.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a longitudinal cross-sectional view showing the whole arrangement of a variable capacity swash plate compressor according to an embodiment of the present invention.





FIG. 2

is a cross-sectional view taken on line II—II of FIG.


1


.





FIG. 3

is an enlarged sectional view showing a guide groove and a bearing-receiving chamber.





FIG. 4

is an enlarged side view showing a piston, a pair of shoes, and a swash plate.





FIG. 5

is a view showing an imaginary sphere formed by the pair of shoes.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT




The present invention will now be described in detail with reference to drawings showing a preferred embodiment thereof.





FIG.1

shows the whole arrangement of a variable capacity swash plate compressor according to an embodiment of the present invention.

FIG. 2

is a cross-sectional view taken on line II—II of FIG.


1


.

FIG. 3

shows a guide groove and a bearing-receiving chamber on an enlarged scale, while

FIG. 4

shows a piston, a swash plate, and a pair of shoes on an enlarged scale.

FIG. 5

shows an imaginary sphere formed by the pair of shoes.




The variable capacity swash plate compressor has a cylinder block


1


having one end thereof secured to a rear head


3


via a valve plate


2


and the other end thereof secured to a front head (housing)


4


.




The cylinder block


1


has a plurality of cylinder bores


6


axially extending therethrough at predetermined circumferential intervals about a drive shaft


5


. Each cylinder bore


6


has the piston


7


slidably received herein.




The front head


4


defines a crankcase


8


in which are received the swash plate


10


and other components related thereto. The swash plate


10


is fitted on the drive shaft


5


, for rotation in unison with the drive shaft


5


. The swash plate


10


has each piston


7


connected thereto via the pair of shoes


60


,


70


, and the piston


7


reciprocates within the cylinder bore


6


as the swash plate


10


rotates.




As shown in

FIG. 4

, the piston


7


is comprised of a body


71


formed with a concave portion (first concave portion)


71




a


for slidably supporting one shoe


70


, a front end portion


72


formed with a concave portion (second concave portion)


72




a


for slidably supporting the other shoe


60


, and a bridge


73


integrally formed with the body


71


and the front end portion


72


for connecting the two portions


71


,


72


to each other.




The concave portions


71




a


and


72




a


are opposed to each other in a direction of reciprocation of the piston


7


, with space


74


therebetween.




The bridge


73


is formed in a manner protruding radially outward from a peripheral surface of the body


71


in a direction of the inner peripheral surface of the front head


4


(see FIG.


4


).




The shoe


60


(


70


) has a convex portion


60




a


(


70




a


) slidably fitted in the concave portion


72




a


(


71




a


) and a flat portion


70




b


(


60




b


) which is in sliding contact with a sliding surface


10




a


(


10




b


) of the swash plate


10


.




As shown in

FIG. 5

, a radius of curvature r


1


of the convex portion


70




a


of the shoe


70


is equal to a radius of curvature r


2


of the convex portion


60




a


of the shoe


60


, and the convex portions


70




a


,


60




a


have an identical center of curvature C in common. The shoes


60


,


70


are arranged in a manner sandwiching the swash plate


10


to form an imaginary sphere G having the center of curvature C as a center thereof.




The ratio of the diameter D


2


of the body


71


of each piston


7


to a diameter D


1


of the imaginary sphere G formed by the pair of shoes


60


and


70


associated with the piston


7


is within a range of 8/10 to 9/10. To reduce wear between the piston


7


and the shoes


60


and


70


, it is necessary to prevent an excessively large surface pressure from acting on the shoes


60


and


70


. Therefore, the shoes


60


and


70


are required to be increased in size to some extent such that the diameter D


1


has an appropriately large value.




However, if the diameter D


1


of the imaginary sphere G is set to be too large, the thickness of the bridge


73


is required to be increased, and at the same time, the bridge


73


largely protrudes outwardly to increase the outer diameter of the compressor. When the use of the compressor or installation on a vehicle is considered, the outer diameter of the compressor cannot be made very large. Further, if the weight of shoes


60


and


70


or the bridge


73


increases, the variable controllability is degraded (destroking becomes difficult to be carried out).




Consequently, the diameter of the imaginary sphere G of the shoes


60


and


70


cannot be increased much.




According to the present invention, by setting the ratio of the outer diameter D


2


of the body


71


of the piston


7


to the diameter D


1


of the imaginary sphere G formed by each pair of shoes


60


and


70


within a range of 8/10 to 9/10, it is possible to prevent an excessively large surface pressure from acting on the shoes


60


and


70


, and at the same time prevent the outer diameter of the compressor from becoming too large, while suppressing an increase in the weight of the shoes


60


and


70


and the bridge


73


.




The piston


7


is made of an aluminum-based material such as an Al-Si alloy. The shoes


60


and


70


are made of an iron-based material such as a bearing steel having a composition, for example, comprising 0.95 to 1.1 weight % C, 0.15 to 0.35 weight % Si, ≦0.5 weight % Mn, 0.9 to 1.2 weight % Cr, and with the remainder being Fe.




A bearing-receiving chamber


22


is formed in a central portion of a front end face of the cylinder block


1


. The bearing-receiving chamber


22


is open to the crankcase


8


. Within the bearing-receiving chamber


22


, there are received a radial bearing


24


and a thrust bearing


25


. The bearings


24


,


25


rotatably support a rear end of the drive shaft


5


.




The rear head


3


defines a discharge chamber


12


and a suction chamber


13


surrounding the discharge chamber


12


. Further, the rear head


3


is formed with a suction port


3




a


and a discharge port


3




b.


The suction port


3




a


communicates with a suction chamber


13


, while the discharge port


3




b


communicates with a discharge chamber


12


.




The valve plate


2


is formed with refrigerant outlet ports


16


for each communicating between a compression chamber within a corresponding one of the cylinder bores


6


and the discharge chamber


12


, and refrigerant inlet ports


15


for each communicating between a compression chamber within a corresponding one of the cylinder bores


6


and the discharge chamber


12


. The refrigerant outlet ports


16


and the refrigerant inlet ports


15


are arranged at predetermined circumferential intervals about the drive shaft


5


. The refrigerant outlet ports


16


are opened and closed by respective discharge valves


17


formed as a unitary member. The unitary member of the discharge valves


17


is fixed to a rear head-side end face of the valve plate


2


by a bolt


19


and a nut


20


, together with a valve stopper


18


. On the other hand, the refrigerant inlet ports


15


are opened and closed by respective suction valves


21


formed as a unitary member arranged between the valve plate


2


and the cylinder block


1


.




The front head


4


has a central portion of a front end thereof formed with a bearing-receiving chamber


23


through which a front end of the drive shaft


5


extends. The bearing-receiving chamber


23


has a radial bearing


26


and a sealing member


27


received therein. The radial bearing


26


rotatably supports the front end of the drive shaft


5


.




Further, the cylinder block


1


is formed with a communication passage, not shown, for communicating between the suction chamber


13


and the crankcase


8


. A pressure control valve, not shown, is arranged at an intermediate portion of the communication passage for controlling pressure within the suction chamber


13


and pressure within the crankcase


8


.




The drive shaft


5


has a thrust flange


40


rigidly fitted on a front portion thereof, for transmitting torque from the drive shaft


5


to the swash plate


10


. The thrust flange


40


is rotatably supported on an inner wall of the front head


4


by a thrust bearing


33


arranged between the thrust flange


40


and the inner wall of the front head


4


. The thrust flange


40


and the swash plate


10


are connected with each other via a linkage


41


. The swash plate


10


can tilt with respect to an imaginary plane perpendicular to the drive shaft


5


.




The linkage


41


is comprised of an arm


42


extending from a surface of the swash plate


10


, a pin


43


fixed to an end of the arm


42


, and a projection


40




a


formed on the thrust flange


40


with a slot


44


formed therethrough. The pin


43


is engaged with the slot


44


.




The swash plate


10


is fitted on the drive shaft


5


via a hinge ball


9


axially slidably mounted on the drive shaft


5


.




On the drive shaft


5


is fitted a coil spring


46


between the thrust flange


40


and the hinge ball


9


to urge the hinge ball


9


in a direction of decreasing the inclination of the swash plate


10


, while a coil spring


47


is fitted on the drive shaft


5


between the hinge ball


9


and the cylinder block


1


to urge the hinge


9


in a direction of increasing the inclination of the swash plate


10


.




The swash plate


10


, the thrust flange


40


, and a portion of each piston


7


are received in the crankcase


8


as shown in FIG.


1


. The crankcase


8


has an inner peripheral wall thereof formed with a plurality of guide grooves


61


each extending along a path of linear reciprocation motion of each piston


7


, at predetermined circumferential intervals. Each of the guide grooves


61


has the bridge


73


of a corresponding one of the pistons


7


slidably fitted therein.




As best shown in

FIG. 3

, the guide groove


61


includes a groove


61




a


and a lubricant-collecting recess


61




b.


The lubricant-collecting recess


61




b


is formed such that it extends from a cylinder block-side end of the groove


61




a


at right angles to the groove


61




a.






One guide groove


61


that is located at the bottom of the crankcase


8


(i.e., the lowermost guide groove


61


as viewed in

FIG. 1

) has the lubricant-collecting recess


61




b


thereof communicating with the bearing-receiving chamber


22


via a lubricant supply passage


62


formed within the cylinder block


1


as shown in

FIGS. 2 and 3

.




Next, the operation of the variable capacity swash plate compressor constructed as above will be described.




The torque of an engine, not shown, installed on an automotive vehicle, not shown, is transmitted to the drive shaft


5


to rotate the same. The torque is transmitted from the drive shaft


5


to the swash plate


10


via the thrust flange


40


and the linkage


41


to cause rotation of the swash plate


10


.




When the swash plate


10


is rotated, the shoes


60


,


70


slide along the sliding surface


10




a


,


10




b


of the swash plate


10


. Because of the angle that the swash plate


10


forms with the imaginary plane perpendicular to the drive shaft


5


, the torque transmitted from the swash plate


10


is converted into the reciprocating motion of each piston


7


. As the piston


7


reciprocates within the cylinder bore


6


associated therewith, the volume of a compression chamber within the cylinder bore


6


changes. As a result, suction, compression and delivery of refrigerant gas are sequentially carried out in the compression chamber, whereby high-pressure refrigerant gas is delivered from the compression chamber in an amount corresponding to the inclination of the swash plate


10


. During the suction stroke of the piston


7


, the corresponding suction valve


21


opens to draw low-pressure refrigerant gas from the suction chamber


13


into the compression chamber within the cylinder bore


6


. During the discharge stroke of the piston


7


, the corresponding discharge valve


17


opens to deliver high-pressure refrigerant gas from the compression chamber to the discharge chamber


12


.




In accordance with the reciprocating motion of the piston


7


within the cylinder bore


6


, the bridge


73


of the piston


7


reciprocates along the groove


61




a


of the guide groove


61


in the direction of reciprocation of the piston


7


. As the bridge


73


reciprocates, lubricant trapped within the groove


61




a


is collected by the bridge


73


in the lubricant-collecting recess


61




b


and supplied to the bearing-receiving chamber


22


via the lubricant supply passage


62


. The lubricant in the bearing-receiving chamber


22


is supplied to the radial bearing


24


and the thrust bearing


25


, followed by being returned to the crankcase


8


. Thus, the radial bearing


24


and the thrust bearing


25


are lubricated.




When thermal load on the compressor decreases to lower the pressure in the suction chamber


13


, the pressure control valve closes to interrupt communication between the crankcase


8


and the suction chamber


13


. As a result, the pressure within the crankcase


8


is increased by blow-by gas leaking into the crankcase


8


from the compression chambers, to decrease the inclination of the swash plate


10


. Accordingly, the length of stroke of the piston


7


is decreased to reduce the delivery quantity or capacity of the compressor.




On the other hand, when the thermal load on the compressor increases, the pressure control valve opens to communicate between the crankcase


8


and the suction chamber


13


. As a result, the blow-by gas leaked into the crankcase


8


from the compression chambers escapes into the suction chamber


13


, so that the pressure within the crankcase


8


is lowered to increase the inclination of the swash plate


10


, whereby the length of stroke of the piston


7


is increased to increase the delivery quantity or capacity of the compressor.




According to the variable capacity swash plate compressor, the bridge


73


of the piston


7


extends radially outward from the peripheral surface of the body


71


thereof and is slidably engaged with the opposed guide groove


61


formed in the inner peripheral wall of the front head


4


in a manner extending in the direction of reciprocation of the piston


7


, so that it is possible to set the ratio of the outer diameter D


2


of the body


71


of the piston


7


to the diameter D


1


of the imaginary sphere G formed by the pair of shoes


60


and


70


within the range of 8/10 to 9/10. Further, the piston


7


is made of an aluminum-based material, and the shoes


60


and


70


are made of an iron-based material. Therefore, it is possible to form the shoes


60


,


70


such that they have required rigidity, and hence makes the variable capacity swash plate compressor according to an embodiment suitable for a refrigerant compressor for use in a transcritical refrigeration cycle system using, e.g., carbon dioxide as a refrigerant.




Further, the bridge


73


of the piston


7


reciprocates in the groove


61




a


of the guide groove


61


in the direction of reciprocation of the piston


7


, whereby lubricant is collected in the lubricant-collecting recess


61




a


and supplied to the bearing-receiving chamber


22


via the lubricant supply passage


62


. This makes it possible to lubricate the radial bearing


24


and the thrust bearing


25


within the bearing-receiving chamber


22


, enhancing the durability of the two bearings


24


and


25


.




Although in the above embodiment, only one guide groove


61


out of the plurality of guide grooves


61


, which is located at the bottom of the crankcase


8


, communicates with the bearing-receiving chamber


22


, this is not limitative, but each of the plurality of guide groves


61


may communicate with the bearing-receiving chamber


22


.




However, to limit the required driving force for a minimum feeding of lubricant, it is preferable to employ the construction described in the above embodiment.




Further, it is possible to provide a check valve, not shown, at an intermediate portion of the lubricant supply passage


62


, for permitting only a lubricant flow toward the bearing-receiving chamber


22


. Moreover, it is also possible to progressively reduce a cross-sectional area of the lubricant supply passage toward the bearing-receiving chamber


22


. The former ensures a reliable supply of lubricant to the bearing-receiving chamber


22


, while the latter improves lubricant feeding efficiency.




Although in the above embodiment, description is made of a case in which the invention is applied to a variable capacity swash plate compressor, this is not limitative, but the present invention may be applied to a fixed capacity swash plate compressor.




It is further understood by those skilled in the art that the foregoing is the preferred embodiment and variations of the present invention are possible, and that various changes and modifications may be made without departing from the spirit and scope thereof.



Claims
  • 1. A swash plate compressor comprising:a cylinder block having a plurality of cylinder bores axially formed therethrough; a housing secured to said cylinder block and having a crankcase defined therein; a drive-shaft extending through said crankcase; a swash plate received within said crankcase and mounted on said drive shaft, for rotation in unison with said drive shaft, said swash plate having sliding surfaces on one side facing toward said cylinder block and another side remote from said cylinder block, respectively; a plurality of pairs of shoes each having a substantially semispherical shape, each pair of said shoes sliding on said sliding surfaces of said swash plate on said one side and said another side, respectively; a plurality of pistons received in said cylinder bores, respectively, said pistons each connected to said swash plate via a corresponding pair of said pairs of shoes and performing a linear reciprocating motion within a corresponding one of said cylinder bores, as said swash plate rotates; and a plurality of guide grooves each axially formed in an inner peripheral wall of said housing in a manner such that said guide grooves each extend along a path of said linear reciprocating motion of a corresponding one of said pistons, said pistons each having: a body having a first concave portion formed therein for supporting one of a corresponding pair of said pairs of shoes, a swash plate-side end having a second concave portion formed therein for supporting another of said corresponding pair of said pairs of shoes, and a bridge formed integrally with said body and said swash plate-side end, said bridge integrally connecting said body and said swash plate-side end in a manner such that said first concave portion and said second concave portion are axially opposed to each other with space therebetween, said bridge extending radially outward with respect to a peripheral surface of said body of said piston, and being slidably fitted in a corresponding one of said guide grooves, and wherein said pistons are made of an aluminum-based material, wherein said shoes are made of an iron-based material, and wherein a ratio of an outer diameter of said body to a diameter of an imaginary sphere formed by said corresponding pair of said pairs of shoes is within a range of 8/10 to 9/10.
  • 2. The swash plate compressor according to claim 1, further comprising a bearing supporting one end of said drive shaft,said cylinder block having a central portion formed with a bearing-receiving chamber for receiving said bearing therein, and at least one lubricant supply passage for supplying lubricant collected in at least one of said guide grooves to said bearing-receiving chamber.
  • 3. The swash plate compressor according to claim 2, wherein said at least one of said guide grooves includes a guide groove formed at a lowermost location of said inner peripheral wall of said housing.
  • 4. The swash plate compressor according to claim 2, wherein said at least one lubricant supply passage opens into a cylinder block-side end of a corresponding one of said guide grooves.
  • 5. The swash plate compressor according to claim 1, wherein the aluminum-based material is an Al—Si alloy.
  • 6. The swash plate compressor according to claim 1, wherein the iron-based material is a bearing steel having a composition comprising 0.95 to 1.1 weight % C, 0.15 to 0.35 weight % Si, ≦0.5 weight % Mn, 0.9 to 1.2 weight % Cr and the remainder being Fe.
  • 7. The swash plate compressor according to claim 5, wherein the iron-based material is a bearing steel having a composition comprising 0.95 to 1.1 weight % C, 0.15 to 0.35 weight % Si, ≦0.5 weight % Mn, 0.9 to 1.2 weight % Cr and the remainder being Fe.
Priority Claims (1)
Number Date Country Kind
9-151656 May 1997 JP
Parent Case Info

This application is a continuation-in-part application of application Ser. No. 09/081,510, filed May 20, 1998 U.S. Pat. No. 6,095,761.

US Referenced Citations (13)
Number Name Date Kind
3183848 Raymond May 1965 A
3380651 Niki Apr 1968 A
3557664 Akaike Jan 1971 A
3939717 Teisen Feb 1976 A
4763563 Ikeda et al. Aug 1988 A
4950132 Brian et al. Aug 1990 A
5056417 Kato et al. Oct 1991 A
5382139 Kawaguchi et al. Jan 1995 A
5615599 Terauchi Apr 1997 A
5706716 Umemura Jan 1998 A
5738000 Forster Apr 1998 A
5809863 Tominaga et al. Sep 1998 A
5897298 Umemura Apr 1999 A
Continuation in Parts (1)
Number Date Country
Parent 09/081510 May 1998 US
Child 09/585043 US