The present invention relates to a swash plate type compressor which includes a cylinder block having formed therethrough a plurality of cylinder bores, a rotary shaft rotatably supported by the cylinder block, a swash plate fixed on the rotary shaft for rotation therewith and a plurality of pistons reciprocally slidable received in the cylinder bores and each engaged with the swash plate, wherein the cylinder block has formed therein a chamber accommodating therein the swash plate.
The compressor 80 further includes a rear housing having formed therein a suction chamber 87. A suction passage 88 is formed axially in the rotary shaft 82 for introducing refrigerant gas in the suction chamber 87 into the cylinder bore 85. The rotary shaft 82 has also formed therein a plurality of oil passages 89 extending in radial direction of the rotary shaft 82 for supplying lubricating oil contained in refrigerant gas to the crank chamber 86. Lubricating oil contained in refrigerant gas in the suction passage 88 is supplied to the crank chamber 86 by the centrifugal force resulting from the rotation of the rotary shaft 82.
The cylinder block 90 has also formed therethrough a communication passage 91 for providing fluid communication between the crank chamber 86 and the suction chamber 87. While the swash plate type compressor 80 is operating at a high speed, lubricating oil in the crank chamber 86 returns with refrigerant gas through the communication passage 91 to the suction chamber 87 that is lower in pressure than the crank chamber 86, so that the lubricating oil is prevented from being accumulated excessively in the crank chamber 87.
However, the lubricating oil accumulated in the crank chamber 86, stirred by the swash plate 83 and the piston 84 and splashed during the operation of the swash plate type compressor 80 offers resistance against the rotation of the swash plate 83. To prevent the lubricating oil from being stirred by the swash plate 83 in the crank chamber 86, it may be so arranged that the lubricating oil level in the crank chamber 86 is lowered so as to be located below the space where the swash plate 83 rotates and the piston 84 reciprocates. In order to lower the oil level without increasing the overall size of the swash plate type compressor 80, however, the diameter of the crank chamber 80 need be increased so as to increase the inner volume thereof because the size of the compressor 80 is restricted. In this case, the rigidity of the housing 81 may be reduced at positions around the bolts 92 fastening components (such as the cylinder blocks 90, etc.) that form the housing 81 of the swash plate type compressor 80, with the result that the housing 81 may be deformed and the fluid tightness thereof may be reduced, accordingly.
The present invention is directed to providing a swash plate type compressor which prevents lubricating oil in the crank chamber of the compressor from being stirred by the swash plate and ensures the fluid tightness of the housing, without increasing the size of the housing of the compressor.
A swash plate type compressor includes a cylinder block having a crank chamber, a rotary shaft, a swash plate, pistons and fasteners extending through the crank chamber between any two adjacent pistons. The cylinder block further includes ribs projecting inward from inner surface of the crank chamber, extending in axial direction of the rotary shaft and being arranged so that the pistons and the fasteners are positioned alternately between any two adjacent ribs, a piston-side wall surface forming the inner surface and being positioned between any two adjacent ribs located on opposite side of the piston and a fastener-side wall surface forming the inner surface and being positioned between any two adjacent ribs located on opposite side of the fastener The piston-side wall surface is spaced farther away from the rotary shaft than the fastener-side wall surface in radial direction of the rotary shaft.
Other aspects and advantages of the invention will become apparent from the following description, taken in conjunction with the accompanying drawings, illustrating by way of example the principles of the invention.
The features of the present invention that are believed to be novel are set forth with particularity in the appended claims. The invention together with objects and advantages thereof, may best be understood by reference to the following description of the presently preferred embodiments together with the accompanying drawings in which:
The following will describe the swash plate type compressor with a double-headed piston (hereinafter simply referred to as compressor) according to the preferred embodiment of the present invention with reference to
As shown in
As shown in
A discharge chamber 13A is formed between the front housing 13 and the valve port plate 15. A discharge chamber 14A and a suction chamber 14B are formed between the rear housing 14 and the valve port plate 18. Refrigerant gas discharged into the discharge chambers 13A, 14A flows to external refrigerant circuit 51 through a hole (not shown) and a tube 50. Refrigerant gas in the external refrigerant circuit 51 returns to the compressor 10 through the tube 52 and the suction chamber 14B. The compressor 10 and the external refrigerant circuit 51 cooperate to form a refrigerant circulation circuit. Refrigerant gas containing lubricating oil circulates through the refrigerant circulation circuit, so that the lubricating oil in refrigerant gas lubricates the sliding parts of the compressor 10.
The aforementioned rotary shaft 21 is rotatably supported in the housing H. The part of the rotary shaft 21 which is located in the front of the housing H passes through a shaft hole 11A formed through the front cylinder block 11. The part of the rotary shaft 21 which is located in the rear of the housing H passes through a shaft hole 12A formed through the rear cylinder block 12. The rotary shaft 21 is rotatably supported by the front cylinder block 11 at the shaft hole 11A and by the rear cylinder block 12 at the shaft hole 12A. A lip type shaft seal 22 is interposed between the front housing 13 and the rotary shaft 21 and accommodated in a seal chamber 13B formed in the front housing 13. The discharge chamber 13A is formed in the front housing 13 around and outward of the seal chamber 13B.
The swash plate 23 is fixedly mounted on the rotary shaft 21 for rotation therewith. The housing H that is formed by a pair of the front and the rear cylinder blocks 11, 12 has formed therein a crank chamber 24 accommodating therein the swash plate 23. Thrust bearing 25, 26 are interposed between the rear end of the front cylinder block 11 and annular base 23A of the swash plate 23 and between the front end of the rear cylinder block 12 and annular base 23A of the swash plate 23, respectively, and hold the swash plate 23 therebetween to prevent the rotary shaft 21 from being moved in the axial direction thereof.
The front and the rear cylinder blocks 11, 12 have formed therethrough a plurality of cylinder bores (five cylinder bores in the illustrated embodiment) angularly spaced around the rotary shaft 21 and each receiving therein a double-headed piston 29. Each cylinder bore is divided by the double-headed piston 29 into a pair of front and rear cylinder bores 27, 28. Each double-headed piston 29 is reciprocally slidable in its associated cylinder bores 27, 28 in the axial direction thereof. The double-headed piston 29 is engaged with the swash plate 23. The double-headed piston 29 serves as the piston of the present invention. The bolts B extend through the front and the rear cylinder blocks 11, 12 and also through the crank chamber 24 parallel to the rotary shaft 21 at positions between any two adjacent double-headed pistons 29.
The swash plate 23 rotates with the rotary shaft 21 integrally and the rotating movement of the swash plate 23 is converted through a pair of shoes 30 into the reciprocal movement of the double-headed piston 29 in its corresponding pair of front and rear cylinder bores 27, 28. Each of the valve port plates 15, 18 and the double-headed piston 29 cooperate to form a compression chamber 28A in the front and the rear cylinder bores 27, 28, respectively.
Sealing surfaces 11B, 12B are formed on the inner peripheries of the shaft holes 11A, 12A, respectively, through which the rotary shaft 21 is inserted. The rotary shaft 21 is supported directly by the front and the rear cylinder blocks 11, 12 at the sealing surfaces 11B, 12B, respectively. The rotary shaft 21 has formed therein a supply passage 21A that extends axially and is in communication at the rear end thereof with the suction chamber 14B. The rotary shaft 21 has also formed therein radial oil holes 21B that allow the supply passage 21A to be in communication with the crank chamber 24. The oil holes 21B are formed at positions where the oil holes 21B face the respective thrust bearings 25, 26.
The rear cylinder block 12 has formed therethrough at a position that is radially outward of the shaft hole 12A a release passage 12K that extends in the axial direction of the rotary shaft 21 and is opened at the opposite ends thereof to the crank chamber 24 and to the valve port plate 18, respectively. The valve port plate 18 and the valve plate 19 have formed therethrough at a position corresponding to the release passage 12K communication holes 18B, 19B, respectively. The retainer plate 20 has formed therethrough a communication hole 20B that allows the communication hole 19B to be in communication with the suction chamber 14B. Therefore, the crank chamber 24 is in communication with the suction chamber 14B through the release passage 12K and the communication holes 18B, 19B, 20B. The release passage 12K and the communication holes 18B, 19B, 20B cooperate to form the return passage of the present invention.
The rotary shaft 21 has formed therein a first introduction hole 31 that faces the front cylinder block 11 and also a second introduction hole 32 that faces the rear cylinder block 12. The front cylinder block 11 has formed therein a plurality of first suction passages 33 that allow the shaft hole 11A of the front cylinder block 11 to be in communication with the respective front cylinder bores 27. Similarly, the rear cylinder block 12 has formed therein a plurality of second suction passages 34 that allow the shaft hole 12A of the rear cylinder block 12 to be in communication with the respective rear cylinder bores 28. The part of the rotary shaft 21 surrounded by the sealing surface 11B of the front cylinder block 11 forms a first rotary valve 35. Similarly, the part of the rotary shaft 21 surrounded by the sealing surface 12B of the rear cylinder block 12 forms a second rotary valve 36.
In the front cylinder block 11, when the first introduction hole 31 is in communication with the first suction passage 33 while the double-headed piston 29 is moving toward the bottom dead center, refrigerant gas in the supply passage 21A is drawn into the corresponding front cylinder bore 27. Subsequently, the refrigerant gas drawn into the front cylinder bore 27 is compressed by the movement of the double-headed piston 29 toward the top dead center.
While refrigerant gas is being compressed in the front cylinder bore 27, the double-headed piston 29 moves toward the bottom dead center in the corresponding rear cylinder bore 28. When the second introduction hole 32 is in communication with the second suction passage 34 during such movement of the double-headed piston 29, refrigerant gas in the supply passage 21A is drawn into the rear cylinder bore 28. While refrigerant gas is being drawn into the front cylinder bore 27, in the corresponding rear cylinder bore 28, the double-headed piston 29 moves toward the top dead center of the corresponding rear cylinder bore 28 for compression of refrigerant gas. Refrigerant gas that is compressed in the front and the rear cylinder bores 27, 28 is discharged into the discharge chambers 13A, 14A through the discharge ports 15A, 18A while pushing open the discharge valves 16A, 19A, respectively.
As shown in
The peripheral walls 11D, 12D forming the crank chamber 24 have a plurality of ribs 11F, 12F projecting inward from inner surfaces of the peripheral walls 11D, 12D, respectively. The ribs 11F, 12 F extend in the axial direction of the rotary shaft 21 and are spaced angularly around the rotary shaft 21 from each other. The ribs 11F, 12F are arranged in the circumferential direction of the peripheral wall 11D, 12D so that the double-headed pistons 29 and the bolts B are positioned alternately between any two adjacent ribs 11F, 12F in the front and the rear cylinder blocks 11, 12, respectively. With the front and the rear cylinder blocks 11, 12 joined together, the ribs 11F of the front cylinder block 11 and the ribs 12F of the rear cylinder block 12 are set in contact with each other, respectively. 11H and 12H designate joint surfaces of the front and the rear cylinder blocks 11, 12, respectively. The joint surfaces 11H, 12H extend perpendicularly to the axis of the rotary shaft 21. The end surfaces of the ribs 11F, 12F are flush with the joint surfaces 11H, 12H of the front and the rear cylinder blocks 11, 12, respectively. The provision of the ribs 11F, 12F help to enhance the rigidity of the joint surfaces 11H, 12H of the front and the rear cylinder blocks 11, 12, respectively.
Recesses 11G, 12G are formed in ends of the ribs 11F, 12F so as to extend in the axial direction of the front and the rear cylinder blocks 11, 12, respectively and locating pins P are inserted in the recesses 11G, 12G.
The following will describe the oil reservoir F in detail. As shown in
The part of the inner surface of the peripheral walls 11D, 12D forming the crank chamber 24 between the two adjacent ribs 11F, 12F located on opposite side of the lowermost double-headed piston 29 will be referred to as the piston-side wall surface Fa. On the other hand, the part of the inner surface of the peripheral walls 11D, 12D forming the crank chamber 24 between the two adjacent ribs 11F, 12F located on opposite side of the lowermost bolt B will be referred to as the fastener-side wall surface T. The piston-side wall surface Fa forms the bottom of the oil reservoir F. The piston-side wall surface Fa is spaced farther away from the rotary shaft 21 than the fastener-side wall surface T as seen in the radial direction of the rotary shaft 21. The peripheral walls 11D, 12D forming the piston-side wall surface Fa are formed thinner than the peripheral walls 11D, 12D forming the fastener-side wall surface T, so that the volume of the oil reservoir F can be increased.
The part of the peripheral walls 11D, 12D which forms the piston-side wall surfaces Fa is formed with a constant thickness. On the other hand, the part of the peripheral walls 11D, 12D which forms the fastener-side wall surface T is formed so that the fastener-side wall surface T is arcuate in shape between the two adjacent ribs 11F, 12F located on opposite sides of the bolt B. Furthermore, the part of the peripheral walls 12D which forms the fastener-side wall surface T is formed with a thickness that is greater than that forming the piston-side wall surface Fa, so that the rigidity of the front and the rear cylinder blocks 11, 12 and the fluid tightness thereof at the joint surfaces 11H, 12H are ensured. Lubricating oil flowed into the crank chamber 24 can be accumulated in the oil reservoir F.
The following will describe the operation of the compressor 10. During the operation of the compressor 10, lubricating oil contained in refrigerant gas in the supply passage 21A is separated from the refrigerant gas by the centrifugal force due to the rotation of the rotary shaft 21 and flows into the crank chamber 24 through the oil hole 21B. Thus, the lubricating oil is supplied to the crank chamber 24 and accumulated in the oil reservoir F.
The amount of lubricating oil flowed into the crank chamber 24 through the oil hole 21B by the centrifugal force varies according to the rotational speed of the rotary shaft 21. The amount of lubricating oil that flows into the crank chamber 24 is increased with an increase of the rotational speed of the rotary shaft 21. During the high-speed operation of the compressor 10 when the pressure in the suction chamber 14B is lower than that in the crank chamber 24, airborne lubricating oil that exists in the form of mist in the crank chamber 24 is returned with refrigerant gas to the suction chamber 14B, the pressure of which is lower than that of the crank chamber 24, through the return passage (or the release passage 12K and the communication holes 18B, 19B, 20B) and then flows through the refrigerant circulation circuit. On the other hand, during the low-speed operation of the compressor 10 when the pressure difference between the crank chamber 24 and the suction chamber 14B is small, only a small amount of lubricating oil flows into the suction chamber 14B.
During the operation of the swash plate type compressor, part of the lubricating oil that flows into the crank chamber 24 but fails to be returned to the suction chamber 14B is attached to inner surface of the crank chamber 24 and then accumulated in the oil reservoir F. Referring to
Therefore, the lubricating oil accumulated in the oil reservoir F is prevented from being stirred in the crank chamber 24 by the swash plate 23 and the double-headed piston 29, so that the lubricating oil is prevented from becoming resistance against the rotation of the swash plate 23.
The swash plate type compressor according to the preferred embodiment offers the following advantageous effects.
The compressor 10 according to the preferred embodiment can be modified in various ways as exemplified below.
As long as the oil reservoir F is positioned below the space where the swash plate 23 rotates and the double-headed piston 29 reciprocates, the ribs 11F, 12F need not be formed to be thin on the side of the ribs 11F, 12F exposed to the oil reservoir F and the peripheral walls 11D, 12D forming the piston-side wall surface Fa need not be formed to be thin.
Number | Date | Country | Kind |
---|---|---|---|
P2012-080029 | Mar 2012 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
3749523 | Wahl, Jr. | Jul 1973 | A |
3801227 | Nakayama | Apr 1974 | A |
4289453 | Shibuya | Sep 1981 | A |
4321019 | Degawa et al. | Mar 1982 | A |
6179576 | Morita | Jan 2001 | B1 |
6862975 | Shintoku et al. | Mar 2005 | B2 |
20030141149 | Shintoku et al. | Jul 2003 | A1 |
20070269319 | Inoue et al. | Nov 2007 | A1 |
Number | Date | Country |
---|---|---|
2922307 | Dec 1979 | DE |
19944477 | Mar 2000 | DE |
52-18208 | Feb 1977 | JP |
52-36312 | Mar 1977 | JP |
57-121782 | Jul 1982 | JP |
2000-018154 | Jan 2000 | JP |
2000-097150 | Apr 2000 | JP |
2003-247488 | Sep 2003 | JP |
10-0840916 | Jun 2008 | KR |
Entry |
---|
Korean Office Action, dated Apr. 15, 2014. |
China Office action, mail date is Apr. 3, 2015 along with an English language translation thereof. |
Number | Date | Country | |
---|---|---|---|
20130259713 A1 | Oct 2013 | US |