The present invention is in the field of connector deck plates with electrical contacts, mounted on essentially horizontal surfaces, in corrosive environments such as swimming pool facilities.
When a swimming pool has a timing system installed to measure the swim times of athletes one component of such a system may be connector deck plates on the pool deck. These deck plates are typically situated close to the beginning and end of each lane and present mating connections to connectors of devices such as touchpads, pushbuttons, speakers, relay judging platforms etc. to the central timer unit. Some of these connected devices, for example touchpads, push buttons and relay judging platforms, are used to create timing signals for the timer system to measure the swim times of the athletes. Other connected devices, for example speakers, communicate to the athletes, for example the start signal tone.
In many cases these deckplates are mounted on the pool deck or on a bulkhead. A bulkhead is a moveable device, spanning the pool like a bridge and allowing for partitioning of the pool in variable segments. It can be walked on and it can carry starting blocks.
When deckplates are mounted on the pool deck or a bulkhead, their orientation is essentially horizontal. These horizontally-installed deckplates are the theme of the current invention.
Since these deckplates are adjacent to a swim lane they are typically splashed repeatedly with pool water. Since they present an essentially horizontal plane, that water tends to stay in puddles on the deckplate by virtue of its surface tension.
An essentially horizontal surface in this case is defined as a surface with small angles relative to the horizontal plane, where the water does not flow off from the surface due to surface tension.
Pool water contains aggressive chemicals such as chlorine or bromine. Chlorine, bromine and other chemicals used in swimming pools are corrosive to materials used in electrical connectors such as metals. This corrosion effect is greatly intensified by electrolysis.
When water or corrosive water sits in a puddle on the deckplate it creates a bridge between the electrical connectors of one or several mating connections. The signal voltage for the connected devices (typically 3.3 VDC or 5 VDC) creates a potential difference between said electrical contacts. That potential difference creates an electrolytic current through the slightly conductive water bridge between said electrical connectors. This electrolysis leads to faster corrosion of the electrical contacts. Therefore the traditional deck plates need high maintenance in cleaning and frequent replacement.
Frequent cleaning of the electrical contacts to maintain clean, well conducting surfaces usually makes the long term effect of corrosion worse by abrading protective layers of the electrical contacts.
An adverse electrical effect of pool water sitting on the deckplate and bridging electrical contacts of mating connections is that the added conductance of the water bridge reduces the signal to noise ratio of the timing signals.
Another adverse electrical effect of corrosion is that the serial resistance of the corroded electrical contacts in the signal path adds to the reduction of the signal to noise ratio. In many cases of strong corrosion the signal becomes unreadable by the timer and the connection is therefore useless, demanding immediate intervention of cleaning or replacement.
In summary, aggressive pool water itself and electrolysis through aggressive pool water bridging contacts together with signal voltages results in corrosion of pool deck connections and thus signal degradation, which the current invention targets to improve.
In order to break the pool water bridge between electrical contacts of mating connections the current invention places said contacts of the horizontally-mounted deckplate on an integrated slope steep enough to let the corrosive water flow off through gravity, overcoming the surface tension of the water. Once the water bridge is broken, even when water pearls are still sitting around the electrical contacts, the conductance for the electrolytic current between corresponding contacts is greatly reduced thus reducing electrolysis and corrosion.
Thus electrolysis can only take place in the short instances of water directly splashed on a mating connection by creating a water bridge between corresponding electrical contacts and the time it takes for said water bridge to flow off and break.
In order for the corrosive water to flow off, the surface tension of said water needs to be overcome. That calls for a gap of 4-5 mm between the surfaces of the deck plate and an inserted plug. In addition the slope needs to be steep enough to sufficiently break a standing water bridge. A standing water bridge typically has a height of around 3 mm.
A deck plate typically has more than one mating connection. The integrated slopes of all mating connections combined result in the overall shape of the deck plate. Depending on the embodiment this can result in a partially sloped design or a domed design should the mating connections be arranged in a semi-circular pattern.
To reduce corrosion effects through abrasion of protective surfaces it is beneficial to first select a material which is corrosion resistant in a swimming pool environment and then manufacture the connectors out of solid said material without plating. One of the materials that holds up well in a corrosive environment is titanium. One embodiment of the described deckplate is with titanium connectors.
A preferred embodiment of a deckplate is given in
On the underside of the deckplate is typically a compartment 10 situated around the electric connectors. Once the connection wires are affixed to the connectors in the manufacturing process, the deckplate is turned upside down and this compartment is filled with potting material to seal off the electric connections from the environment.
Typically during races touchpads, pushbuttons, speakers etc. are connected via plugs (see 11 in
When the deck plate is not in use and no connectors are plugged in on the top, which is the majority of the time, it is designed to be stepped on and rolled over with light equipment.
In
In the top view of the deckplate of
As soon as the water has flowed off and ended the bridge in area 19 the situation changes as shown in
Mating connections can have two or more electrical contacts. In
Each integrated slope can be arranged in a manner that corrosive water can flow off in order to break the water bridge between any electrical contacts which have a potential difference and thus reduce an electrolytic current flow between them.
Integrated slope areas such as 17 between mating connections define the overall shape of a deckplate, when more than one mating connections are arranged in said deckplate. In the views of
The slopes around the connectors themselves form embossments (for example embossment 25) up to the ends 15, 16 of the electric connectors on the horizontal plane. These embossments serve the purpose of creating a relatively smooth surface which can be walked on as well as deflecting any horizontal forces on the electric connectors upwards away from the electric connectors, such as from toys being thrown on the pool deck or cleaning machines. This enhances the robustness and longevity of the deck plate.
The embodiments so far described assume that the tops of the electric connectors of a given mating connection are on the same horizontal plane. The tops of the electric connectors can be on different horizontal planes and also the axis of the electric connectors can be tilted so that the tops of the electric connectors are in the same plane as the integrated slope or in its proximity. In any case the design has to let the water bridge between electric connectors flow off to break the bridge and reduce electrolysis.
The electric connectors, for example 13 and 14 of mating connections, are exposed to the aggressive chemicals of the pool environment. The exposition is from being splashed on and from being exposed to chemicals in the air.
Many customary electric connectors are comprised of a carrier material such as brass and various protective platings such as nickel. In the course of corrosion and subsequent frequent cleaning the protective layers are mechanically and chemically abraded and the carrier material is exposed. Cleaning solvents as well as pool water, intensified through electrolysis, and airborne corrosive chemicals can accelerate the corrosive processes of the carrier material and thus the electric connector as a whole.
Therefore a material which is corrosion resistant in pool environment and not comprised of carrier material and protective layers is preferable for the electric connectors. The preferred embodiment of the current invention uses titanium as a possible electric connector material. Titanium is known to be extremely resistant to chlorine and other chemicals found in pool environments, carried through the water or the air.
The disclosed embodiments are representative of presently preferred forms of the invention, but are intended to be illustrative rather than definitive of the invention.
Number | Name | Date | Kind |
---|---|---|---|
3522398 | Heimann | Jul 1970 | A |
3678496 | Stalp | Jul 1972 | A |
3784768 | Hunt | Jan 1974 | A |
3944763 | Beierwaltes | Mar 1976 | A |
4475016 | Berger | Oct 1984 | A |
4700369 | Siegal et al. | Oct 1987 | A |
5291845 | Vallery | Mar 1994 | A |
5349569 | Tanaka | Sep 1994 | A |
5549487 | Nortier | Aug 1996 | A |
5812049 | Uzi | Sep 1998 | A |
5837952 | Oshiro et al. | Nov 1998 | A |
6054658 | Duhon et al. | Apr 2000 | A |
6156987 | Warne | Dec 2000 | A |
6744378 | Tyburski | Jun 2004 | B1 |
7029170 | Bailey | Apr 2006 | B2 |
7119799 | Kaski | Oct 2006 | B2 |
7372014 | Stebbins et al. | May 2008 | B1 |
Number | Date | Country | |
---|---|---|---|
20130059465 A1 | Mar 2013 | US |