1. Technical Field
The present invention relates to swimming pool apparatus. More specifically, the present invention relates to methods and apparatus for a swimming pool ladder having a plurality of rung anchors permanently affixed onto a pair of parallel side rails for mounting rungs thereon and intended to support the body weight of bathers climbing into and out of a large capacity above-the-ground swimming pool.
2. Background Art
The prior art is directed to methods and apparatus for ladders typically used in large capacity above-the-ground swimming pools for facilitating entry into and egress from the swimming pool.
Above-the-ground swimming pools for use by adults and children alike have become very popular in recent years. These pools are typically erected, for example, in the back yard of a residence and typically have the capacity to hold over one-thousand gallons of water. Above-the-ground swimming pools of this size typically can accommodate several adults and children at any one time. Several types of above-the-ground large capacity swimming pools are known in the art. For example, one style of older swimming pool is comprised of a circular metal boundary or wall that requires reinforcing to withstand the lateral component of force caused by the water volume. Another type of an above-the-ground swimming pool is one that utilizes a circular frame comprised of spaced rigid stanchions employed for supporting a plastic polymer liner, such as polyvinylchloride, utilized to contain the volume of water. A third type of swimming pool is one that includes single or multiple inflated air chambers that vertically support the sidewall of a plastic polymer liner as the swimming pool is filled with water.
Each of these large capacity above-the-ground swimming pools requires a means for conveniently entering and exiting the swimming pool so as not to damage the support structure or sidewall of the swimming pool. The method employed in the prior art to enter and exit the pool has been a ladder designed for such use. These ladders can be comprised of metallic supports and plastic components, be lightweight and high strength. This type of ladder typically used in a swimming pool has been known in the past. An example of this type of ladder includes a pair of uprights having a means for attaching a plurality of rungs there between.
In the example being described, a pair of metallic uprights each have a recess on their edges at the location where the step rungs are to be attached. This task is achieved by press drawing the uprights resulting in two opposite and arched recesses separated by two opposite ridges. Two plastic split sleeves are attached on the uprights in each opposite recess by hand threading them onto the uprights. The sleeves are open on one of their generating lines and the opposite generating line has a reduction in thickness. This design creates a plastic hinge affect which allows the sleeve to open to attach it crossways to the upright. In the threading operation of the split sleeve onto the upright (at the location of the recess formed on the upright), a protrusion is fitted in the split sleeve which matches the inside of the split sleeve to the recess on the uprights. This feature enables the split sleeve to achieve a grip (as well as proper location) which prevents coaxial displacement of the split sleeve on the metallic upright and ensures that all rungs will be parallel to each other.
A rung of the ladder is supported and held on the split sleeve by and at its ends. The rung includes two tubular sleeves or tunnels having uninterrupted inner surfaces on these ends which rest on a lower flange of the outer edge of the split sleeve. This attachment in turn keeps the sleeve tightly applied against the upright. To prevent accidental upward displacement of the rung once it is attached, an elastic finger finished with an outer conical rib has been fitted on the edge of the sleeve. The conical rib catches on the edge of the tubular sleeve of the rung to prevent upward displacement of the rung.
This ladder typically designed for use with a swimming pool is characteristic of the current state of the art. Notwithstanding the above described rung sections of the ladder can be assembled without use of tools and fasteners, it is noted that each individual split sleeve must be hand threaded along the entire length of the corresponding metallic upright and positioned over the corresponding recess formed in the upright. Thereafter, each metallic upright with the split sleeves attached thereto must be passed through each corresponding tubular sleeve on each rung in order to assemble the ladder. This results in a time consuming process requiring some physical exertion and patience to achieve assembly.
Thus, there is a need in the art for a swimming pool ladder typically used with a large capacity above-the-ground swimming pool and having a first ladder section and a second ladder section where the second ladder section is inserted into the swimming pool, each ladder section including two pairs of J-shaped side rails each having a plurality of rung anchors permanently affixed thereto, the rung anchors each comprising coplanar surfaces and a load bearing flange each of which corresponds to and cooperates with the construction of each corresponding rung, each rung being conveniently assembled to and disassembled from the corresponding rung anchor with a plurality of slotted retainer pins, the ladder further including a top platform and safety handrails for use by a bather.
Briefly, and in general terms, the present invention provides a new and improved swimming pool ladder for use with large capacity above-the-ground swimming pools. The inventive swimming pool ladder includes a first ladder section and a second ladder section which are connected by a top platform having a pair of safety handrails. The first ladder section is securely positioned on the ground side while the second ladder section is inserted into the swimming pool to enable bathers to conveniently enter and exit the swimming pool.
In a preferred embodiment, the swimming pool ladder includes a first ladder section and a second ladder section with each ladder section having a pair of J-shaped side rails for providing a ladder frame. Each of the pair of side rails includes a plurality of rung anchors permanently affixed to the side rails for supporting a plurality of rungs which in turn support the body weight of the bather climbing the ladder. Each of the rung anchors comprise a load bearing flange and a cylinder body upon which the load bearing flange is formed. Each rung includes a pair of U-shaped openings for receiving the cylinder body of each of a corresponding pair of rung anchors mounted on each of a corresponding pair of side rails. Each U-shaped opening of each rung further includes a groove for receiving the load bearing flange of each of the pair of corresponding rung anchors mounted on the pair of corresponding side rails in a tongue and groove construction.
Each rung anchor also includes a pair of coplanar surfaces which correspond to and cooperate with the construction of each corresponding rung. A first coplanar surface of each rung anchor aligns with a top surface of the corresponding rung while a second coplanar surface of each rung anchor aligns with a rear surface of the corresponding rung. Consequently, when a particular rung is mounted upon the corresponding rung anchor, the U-shaped openings formed in each rung are closed. This feature eliminates any possibility of accidental tripping by a bather while climbing the inventive swimming pool ladder. Finally, each of the rungs is conveniently assembled to and disassembled from the corresponding rung anchor mounted on the side rails by employing a plurality of slotted retainer pins. The retainer pins are inserted into a plurality of penetrations formed in the top surface of each rung and in the load bearing flange of each rung anchor. When assembled, the penetrations formed in each rung are aligned with the penetrations formed in each corresponding rung anchor.
The cylinder body of each of the rung anchors includes a plurality of protuberances formed therein. Additionally, each of the J-shaped side rails includes a corresponding plurality of compression indentations formed therein. The protuberances formed on the inside of the cylinder body cooperate with the compression indentations formed on the side rails to maintain the rung anchors in position on the side rails. Additionally, each of the rung anchors are ultrasonically welded to the corresponding side rail. The J-shaped side rails and the safety hand rails are each comprised of cylindrical metal tubing. However, the rungs, rung anchors and top platform are comprised of high strength plastic. Each of the rungs includes a heavy duty construction having a reinforced lattice structure in the under surface thereof. Each of the rung anchors exhibit a construction that exceeds the industry accepted strength requirements.
The present invention is generally directed to a swimming pool ladder typically utilized with a large capacity swimming pool for enabling bathers to conveniently enter and exit the swimming pool. In its most fundamental embodiment, the swimming pool ladder for use with a large capacity swimming pool exhibits a construction having a first ladder section connected to a second ladder section by a top platform. This ladder construction provides an entry and an exit to the large capacity swimming pool. Each of the ladder sections includes a pair of J-shaped side rails for providing a ladder frame. A plurality of rung anchors are mounted upon each of the side rails for supporting a plurality of rungs. Each of the rung anchors includes a load bearing flange. Further, each of the rungs includes a pair of U-shaped openings and a pair of grooves formed within the U-shaped openings for receiving and cooperating with one of the rung anchors and the corresponding load bearing flange. Finally, a plurality of retainer pins are provided for removably securing the rungs to the rung anchors.
These and other objects and advantages of the present invention will become apparent from the following more detailed description, taken in conjunction with the accompanying drawings which illustrate the invention, by way of example.
The present invention is a swimming pool ladder 100 for use with a large capacity above-the-ground swimming pool 102 typically erected in the out-of-doors as is shown in
In a preferred embodiment, the swimming pool ladder 100 includes the first ladder section 104 and the second ladder section 106 as shown in
Referring now to the first ladder section 104 (and also to the identical ladder section 106), a pair of J-shaped side rails 112 are employed to form a ladder frame. In other words, each of the first and second ladder sections 104 and 106, respectively, includes the pair of J-shaped side rails 112 which forms the basic framework of the inventive swimming pool ladder 100. The J-shaped side rails 112 are comprised of rigid cylindrical metal tubing and can be comprised of, for example, aluminum or other suitable metal. The length of each J-shaped side rail 112 is a function of the height of the swimming pool ladder 100 which is dependent upon the size of the swimming pool 102 shown in phantom in
The bottom end 114 of each side rail 112 is fanned out so that the cylindrical metal tubing exhibits somewhat less than a ninety degree turn so that it appears to be J-shaped as shown in
A top end 118 of each of the J-shaped side rails 112 exhibits a reduction in diameter for interfacing with the top platform 108 and a pair of safety hand rails 119 as is clearly shown in the exploded view of
The top platform 108 is rectangular in shape and is comprised of a heavy duty plastic polymer such as Acrylonitrile Butadiene Styrene (ABS) or Polyvinylchloride (PVC). One of the functions of the top platform 108 is to serve as a passageway between the first ladder section 104 and the second ladder section 106. This is possible since the pair of J-shaped side rails 112 of the first ladder section 104 and the pair of J-shaped side rails 112 of the second ladder section 106 each connect to the top platform 108. The top platform 108 also serves to enable the top end 118 of each of the J-shaped side rails 112 to connect to a corresponding one of a plurality of hollow terminal ends 126 of the pair of safety hand rails 119. The top platform 108 also includes a downward extending skirt 128 on each side of a non-slip rectangular top surface 130.
At each corner of the top platform 108 defined by the intersection of the rectangular top surface 130 and a pair of the downward extending skirts 128, a cylindrical channel 132 is formed. The cylindrical channel 132 formed in each corner of the top platform 108 is set at an angle somewhat greater than ninety degrees. Each of the four cylindrical channels 132 further includes a third penetration 134 on the outer surface Of the channel 132 and a slot 136 (not shown) formed on the inner surface of the channel 132. Each of the third penetrations 134 is aligned with the corresponding slot 136 to enable the passage of a fastener there through. Additionally, the platform 108 includes a pair of vertical signboards 138 attached to opposing downward extending skirts 128 with plastic fasteners (not shown). The signboards 138 are utilized to post safety and warning messages to bathers.
The pair of safety hand rails 119 are shown mounted above the top platform 108 is
After this task is accomplished, the top end 118 of the side rail 112 is extending above the cylindrical channel 132 of the platform 108. One of the hollow terminal ends 126 of each of the safety hand rails 119 is placed over the top end 118 of the corresponding side rail 112. Thereafter, the fourth penetration 140 of the corresponding safety hand rail 119 is aligned with the second penetration 122 formed in the top end 118 of the corresponding side rail 112 and one of the plurality of fasteners 142 is passed there through. Once each of the fasteners 142 is secured, the platform 108 is attached to and stabilized by the J-shaped hand rails 112 and the safety hand rails 119 are secured to the top platform 108. Disassembly is achieved by the reverse of this procedure.
Each of the pair of J-shaped side rails 112 for both the first ladder section 104 and the second ladder section 106 includes a plurality of rung anchors 146 permanently affixed to the side rails 112 as is clearly shown in
Each of the plurality of step anchors 146 includes a cylinder body 154 that encloses a portion of the corresponding side rail 112. Thus, an inner surface 156 of the cylinder body 154 of each of the rung anchors 146 is in physical contact with outer surface 150 of the side rails 112. The inner surface 156 of the cylinder body 154 of each of the plurality of rung anchors 146 includes a pair of protuberances 158 formed thereon. The situs of each of the pair of protuberances 158 correspond to and cooperate with the location of the corresponding compression indentations 152 formed on the outer surface 150 of each of the side rails 112. Consequently, each of the plurality of rung anchors 146 is mechanically attached to the outer surface 150 of the corresponding J-shaped side rail 112.
In addition to the mechanical connection between each of the rung anchors 146 and the corresponding side rail 112, each of the rung anchors 146 is also ultrasonically welded to the corresponding side rail 112. Ultrasonic welds are well known in the art and includes the use of sound waves to create kinetic energy which in turn generates heat. The generation of heat results in the melting of components in contact to form a bonded joint. Each of the plurality of rung anchors 146 is an injection molded part that can be comprised of a plastic polymer, for example, nylon or in the alternative another high strength plastic. By the use of ultrasonic welding, each of the rung anchors 146 is welded directly to the corresponding J-shaped side rail 112 as is shown in
Each of the plurality of rung anchors 146 includes a load bearing flange 160 formed upon an exterior surface of the cylinder body 154 as is clearly shown in
Each of the rung anchors 146 also includes a pair of coplanar surfaces including a first coplanar surface 170 and a second coplanar surface 172. The first coplanar surface 170 is also injection molded to the cylinder body 154 and extends upward at a slight angle from the horizontal. The second coplanar surface 172 is injection molded to the first coplanar surface 170, load bearing flange 160, and to a support member 174. The support member 174 is injection molded to the cylinder body 154, load bearing flange 160, and first coplanar surface 170 in addition to the second coplanar surface 172. The function of the support member 174 is to provide rigidity and strength to each of the rung anchors 146. The first coplanar surface 170 and the second coplanar surface 172 correspond to and cooperate with the construction of each corresponding rung 148.
The first coplanar surface 170 of each rung anchor 146 aligns with a top surface 176 of the corresponding rung 148. Thus, the first coplanar surface 170 is a surface that is planar (i.e., occurs in the same plane) with the top surface 176 of the corresponding rung 148. Additionally, the second coplanar surface 172 of each rung anchor 146 aligns with a rear surface 178 of the corresponding rung 148. Consequently, the second coplanar surface 172 is a surface that is planar (i.e., occurs in the same plane) with the rear surface 178 of the corresponding rung 148. Therefore, when a rung 148 is mounted upon a corresponding rung anchor 146 on a side rail 112, the U-shaped opening 168 formed in each rung 148 is closed as is shown in
Each of the plurality of rungs 148 is generally rectangular in shape as shown in
Each of the U-shaped openings 168 also includes a raised collar 186 which rises above the top surface 176 of each of the rungs 148. The raised collar 186 as part of the structure of each of the rungs 148 assists in securing the cylinder body 154 of the rung anchor 146 in the U-shaped opening 168. In particular, the raised collar 186 provides more surface area in the U-shaped opening 168 of each of the rungs 148 to more securely grasp the cylinder body 154 of the rung anchor 146. The underneath of each of the rungs 148 of the inventive swimming pool ladder 100 is illustrated in
Each of the plurality of slotted retainer pins 182 serves to enable the convenient assembly and disassembly of each rung 148 to and from the corresponding rung anchor 146. Each retainer pin 182 is also comprised of a suitable plastic polymer, such as nylon, and is shown clearly in
During assembly of the swimming pool ladder 100 of the present invention, the load bearing flange 160 of each of the rung anchors 146 is aligned with the groove 166 of the U-shaped opening 168 of the corresponding rung 148. By utilizing hand pressure, the load bearing flange 160 is entirely inserted into the groove 166 of the corresponding U-shaped opening 168. Once the rung 148 is mounted upon the corresponding rung anchor 146, the penetrations 184 vertically formed through each rung 148 align with the corresponding penetrations 180 formed through the rearward portion 164 of the load bearing flange 160 as shown in
Thereafter, the top platform 108 is installed on the first ladder section 104 and subsequently on the second ladder section 106. Once the top platform 108 is installed on the first ladder section 104, the corresponding safety hand rail 119 is installed. Next, the top platform 108 is installed on the second ladder section 106 and the corresponding safety hand rail 119 is installed. Once the components are assembled, the first penetrations 120 in the side rails 112 are aligned with the third penetrations 134 of the top platform 108. The plurality of fasteners 142 are then installed and secured. Next, the second penetrations 122 in the top ends 118 are aligned with the fourth penetrations 140 in the safety hand rails 119. Thereafter, the plurality of fasteners 142 are then installed and secured. The second ladder section 106 is then positioned within the large capacity, out-of-doors, above-the-ground swimming pool 102 and the first ladder section 104 is positioned on the ground side external to the swimming pool 102. The swimming pool ladder 100 is now ready for use. Reversing the order of this procedure enables the swimming pool ladder 100 to be disassembled.
The present invention provides novel advantages over other swimming pool ladders known in the prior art. A main advantage of the swimming pool ladder 100 for use with large capacity, out-of-doors swimming pools 102 of the present invention is that it comprises a simple yet robust design particularly in relation to attaching the rungs 148 to the corresponding rung anchors 146. Further, the swimming pool ladder 100 is easy and time efficient to assembly and disassemble, is lightweight and transportable, and is easily stored in a small space. Additionally, once assembled, there are no sharp edges or corners to cause injury to children in a swimming pool environment. The design of the swimming pool ladder 100 of the present invention enables adults as well as children to enter and exit the swimming pool 102 in a convenient and safe manner. Further, the ladder design of the present invention eliminates many of the articulated and mechanical components present in prior art pool ladders which made assembly, use and disassembly difficult and inconvenient.
While the present invention is described herein with reference to illustrative embodiments for particular applications, it should be understood that the invention is not limited thereto. Those having ordinary skill in the art and access to the teachings provided herein will recognize additional modifications, applications and embodiments within the scope thereof and additional fields in which the present invention would be of significant utility.
It is therefore intended by the appended claims to cover any and all such modifications, applications and embodiments within the scope of the present invention.
Number | Name | Date | Kind |
---|---|---|---|
1349125 | Full | Aug 1920 | A |
2992697 | Klages | Jul 1961 | A |
D208630 | Wesley | Sep 1967 | S |
3586124 | Kunzweiler et al. | Jun 1971 | A |
3820801 | Lindler | Jun 1974 | A |
3829935 | Critchfield | Aug 1974 | A |
3858683 | Rachocki | Jan 1975 | A |
3871780 | Svensson | Mar 1975 | A |
3908795 | Gannon | Sep 1975 | A |
3944024 | Adas | Mar 1976 | A |
4025216 | Hives | May 1977 | A |
4189123 | Johnson | Feb 1980 | A |
4193477 | Broyles | Mar 1980 | A |
4247216 | Pansini | Jan 1981 | A |
4471854 | Heilskov | Sep 1984 | A |
4474515 | Pitzer | Oct 1984 | A |
4597687 | Colas | Jul 1986 | A |
4621937 | Maccuaig | Nov 1986 | A |
4648616 | Diekman et al. | Mar 1987 | A |
4656721 | Werner | Apr 1987 | A |
4685706 | Kowal et al. | Aug 1987 | A |
4716987 | Lindberg, Jr. | Jan 1988 | A |
4858938 | Terwilliger et al. | Aug 1989 | A |
4951746 | Setterberg, Jr. | Aug 1990 | A |
4967879 | Klafs | Nov 1990 | A |
4997061 | Aymes | Mar 1991 | A |
5005668 | Nowlan | Apr 1991 | A |
5064228 | Bisbing | Nov 1991 | A |
5230539 | Olson | Jul 1993 | A |
5240289 | Gottling et al. | Aug 1993 | A |
5251986 | Arena | Oct 1993 | A |
5267806 | Bock | Dec 1993 | A |
5284369 | Kitamura | Feb 1994 | A |
5341559 | Reid et al. | Aug 1994 | A |
5388665 | Newman | Feb 1995 | A |
5417503 | Brennan, III | May 1995 | A |
5427198 | Walsh | Jun 1995 | A |
5465638 | Mesmer | Nov 1995 | A |
5495425 | Kanaan | Feb 1996 | A |
5542717 | Rea et al. | Aug 1996 | A |
5547041 | Morral Gispert | Aug 1996 | A |
5584404 | Tsai | Dec 1996 | A |
5738387 | Guest | Apr 1998 | A |
5882139 | Valin | Mar 1999 | A |
Number | Date | Country |
---|---|---|
0 607 740 | Jul 1994 | EP |
0 644 314 | Mar 1995 | EP |
064431 | Mar 1995 | EP |
0 644 314 | Oct 1997 | EP |
1214561 | Apr 1960 | FR |
1530108 | Jul 1967 | FR |
1484080 | Sep 1967 | FR |
1530108 | Oct 1968 | FR |
2230847 | Dec 1974 | FR |
2369411 | May 1978 | FR |
1484080 | Jun 1996 | FR |
0657746 | Sep 1951 | GB |
657746 | Sep 1951 | GB |
1089761 | Nov 1967 | GB |
1203572 | Aug 1970 | GB |
2235236 | Feb 1991 | GB |
2251262 | Jul 1992 | GB |
Number | Date | Country | |
---|---|---|---|
Parent | 10047120 | Jan 2002 | US |
Child | 16033163 | US |