This disclosure is generally directed to an operator for a door, specifically, a swing door. A spring is configured to bias the door in a closed position and is pivotally mounted in an offset position to facilitate servicing.
Various operators for automatically opening and/or closing doors are known, particularly with respect to swing doors which swing open by pivoting around hinges mounted to a door frame. Such operators may use an electric motor, for example, to open and close the door by rotating a spindle which is connected to an arm that is, in turn, connected to the door. Rotating the spindle causes displacement of the arm which causes the door to transition between open and closed or vice versa. Some operators use a powered mechanism for opening the door such as a motor, and may use a non-powered mechanism for closing the door such as a spring which biases the door toward the closed position.
In known operators which utilize a spring, the spring is typically positioned within a series of gears, spindles, levers, and other internal components, making the spring difficult to access in the event repair or replacement of the spring becomes necessary. Often, substantial disassembly of the operator is required which can be costly and time-consuming.
Moreover, a variety of factors associated with an installation configuration of a door operator may impact the functionality of the spring. For example, the weight of the door, the length of the arm, the location in which the arm is mounted to the door, the location at which the operator is mounted to the door frame, etc., can all affect the forces exerted on and by the spring. However, many existing door operators do not provide a means for adjusting properties of the spring to account for the installation configuration.
A need accordingly exists for a swing door operator that addresses one or more shortcomings of conventional swing door operators. Some swing door operators described herein may include a spring that can be easily accessed, replaced, and/or adjusted.
The present disclosure is directed to a swing door operator that may address one or more of the challenges described herein. Some implementations may include a pivotally mounted spring that may be adjustably pre-compressed or pre-tensioned and that may be easily replaced with minimal disassembly of the operator.
According to some exemplary aspects, the present disclosure is directed to a swing door operator that may include a spindle, a drive unit operatively coupled to the spindle, a powered driver operatively coupled to the drive unit, a spring, and a spring mount. The powered driver may be operable to move the drive unit to rotate the spindle in a first direction. The spring mount may be engaged with a first end of the spring and may be pivotally connected to the drive unit. The spring mount may be pivotable between: an operating configuration in which the spring is arranged to be compressed by the drive unit as the spindle rotates in the first direction and to expand thereafter to rotate the spindle in a second direction opposite the first direction; and a servicing configuration in which the spring is slidably removable from the spring mount.
In some implementations, a swing door operator may further include a fastener configured to secure a second end of the spring to retain the spring mount in the operating configuration. The fastener may be further configured to adjustably pre-compress the spring by advancing or retracting the fastener with respect to the bracket. Pre-compression in the spring may ensure the door is fully closed after the driver shuts off and may also bias the door toward the closed position to ensure it remains shut until the driver is actuated.
In some implementations, a swing door operator may also include a mounting plate affixed to the second end of the spring and a bracket. The fastener may extend through the bracket and may be threadedly engaged with the bracket to push the second end of the spring as the fastener is advanced through the bracket to pre-compress the spring.
In some implementations, a swing door operator may include a telescoping shaft extending through a central lumen of the spring between the spring mount and the mounting plate. The telescoping shaft may include a first shaft member and a second shaft member. The first shaft member may extend from the spring mount and the second shaft member may extend from the mounting plate. An outer diameter of one of the first shaft member or the second shaft member may be larger than an inner diameter of the other of the first shaft member or the second shaft member to facilitate sliding engagement.
In some implementations, the drive unit may include at least one gear operably coupling the driver to the spindle and a lever operably coupled to the at least one gear. The spring mount may be pivotally connected to the lever. The lever may be configured to compress the spring against the fastener when the driver moves the drive unit to rotate the spindle in the first direction.
In some implementations, the driver may include an electric motor or a pneumatic or hydraulic piston.
In another aspect of the present disclosure, a system may include a door and a swing door operator. The swing door operator may include a spindle, a drive unit operatively coupled to the spindle, a powered driver operatively coupled to the drive unit, a spring, and a spring mount. The driver may be operable to move the drive unit to rotate the spindle in a first direction. The spring mount may be engaged with a first end of the spring and being pivotally connected to the drive unit. The spring mount may be pivotable between: an operating configuration in which the spring is arranged to be compressed by the drive unit as spindle rotates in the first direction and to expand thereafter to rotate the spindle in a second direction opposite the first direction; and a servicing configuration in which the spring is slidably removable from the spring mount.
In some implementations, a system may further include one or more of a swing arm coupling the spindle and the door, a frame hingedly coupled to the door and supporting the swing door operator, a track mounted to the door and slidably supporting an end of the swing arm, or a bracket mounted to the door and pivotally supporting an end of the swing arm.
In another aspect of the present disclosure, a method for replacing a spring in a swing door operator may include releasing a first end of a first spring; pivoting the first end about a spring mount supporting a second end of the first spring; and sliding the first spring away from the spring mount in a direction extending from the second end toward the first end.
In some implementations, the releasing may include retracting a fastener through a bracket and away from the first spring. The fastener may be engaged with a mounting plate affixed to the second end of the first spring prior to the retracting.
In some implementations, a telescoping shaft may extend through the first spring. The sliding may include separating a first shaft member of the telescoping shaft from a second shaft member of the telescoping shaft.
In some implementations, the pivoting may swing the first spring away from a drive unit of the swing door operator.
In some implementations, a method may further include: engaging a second end of a second spring with the spring mount; pivoting a first end of the second spring about the spring mount; and securing the first end of the second spring to the bracket.
In some implementations, the second spring may have a spring constant that is different than a spring constant of the first spring.
In another aspect of the present disclosure, a swing door operator includes a housing, a drive unit, a powered driver, a spring, and a spring mount. The housing may include a top, a bottom, an outward facing side and an inward facing side. The inward facing side may be configured to face a wall or door structure when installed for use. The outward facing side may be configured to face away from the wall or door structure when installed for use. The housing may have a longitudinal axis. The drive unit may be disposed in the housing and at least partially disposed adjacent the inward facing side of the housing.
The powered driver may be carried by the housing and operatively coupled to the drive unit and may also be operable to move the drive unit to rotate the spindle in a first direction. The spring may be offset from a central portion of the housing and disposed adjacent the outer facing side when the housing is installed for use. The spring mount may support the spring and be displaceable relative to the housing to move the spring between an operating position substantially parallel to the longitudinal axis of the housing and a servicing configuration in which the spring is angled relative to the longitudinal axis of the housing.
In some implementations, a swing door operator may also include a removeable housing cover sized and shaped to cover the spring. A portion of the drive unit may be disposed between the spring and the inward facing side of the housing.
In some implementations, a swing door operator may include a swing arm extending between the spindle and the other of the wall or door structure.
It is to be understood that both the foregoing general description and the following drawings and detailed description are exemplary and explanatory in nature and are intended to provide an understanding of the present disclosure without limiting the scope of the present disclosure. In that regard, additional aspects, features, and advantages of the present disclosure will be apparent to one skilled in the art from the following. One or more features of any embodiment or aspect may be combinable with one or more features of other embodiment or aspect.
The accompanying drawings illustrate implementations of the systems, devices, and methods disclosed herein and together with the description, serve to explain the principles of the present disclosure.
These Figures will be better understood by reference to the following Detailed Description.
For the purpose of promoting an understanding of the principles of the present disclosure, reference will now be made to the implementations illustrated in the drawings and specific language will be used to describe them. It will nevertheless be understood that no limitation of the scope of the disclosure is intended. Any alterations and further modifications to the described devices, instruments, methods, and any further application of the principles of the present disclosure are fully contemplated as would normally occur to one skilled in the art to which the disclosure relates. In addition, this disclosure describes some elements or features in detail with respect to one or more implementations or Figures, when those same elements or features appear in subsequent Figures, without such a high level of detail. It is fully contemplated that the features, components, and/or steps described with respect to one or more implementations or Figures may be combined with the features, components, and/or steps described with respect to other implementations or Figures of the present disclosure. For simplicity, in some instances the same or similar reference numbers are used throughout the drawings to refer to the same or like parts.
The present disclosure is directed to a swing door operator that includes a removable housing and a spring disposed in an offset position with respect to a drive unit and pivotally mounted on one end. This configuration of the spring allows for ease of access and removal without complicated disassembly of the drive unit.
In
Housing cover 120 may be secured to the swing door operator 101 with fastener 116. A knob of fastener 116 may be rotated to remove fastener 116 from bracket 118 to unsecure an end of the housing cover 120, allowing it to be opened to expose the drive unit (not shown). For example, the housing cover 120 may be completely removable after the fastener 116 is retracted therefrom or it may be secured to the swing door operator 101 at an opposing end and may pivot with respect thereto via a hinge, tether, or other mechanism. It should be appreciated that fastener 116 may be disposed at any location around the housing cover 120, or an alternatively means of retaining the housing cover 120 in a closed position may be used, for example, a snap fit or a latch.
A housing 121 of swing door operator 101 may have a top side 113a, a bottom side 113b, an outward facing side 113c, and an inward facing side 113d. The inward facing side 113d may be configured to face a wall, door, or other structure when installed for use. The outward facing side 113c may be configured to face away from the wall, door, or other structure when installed for use. The housing may have a longitudinal axis 111 along its length. The drive unit 122 may be at least partially disposed adjacent the inward facing side 113d. The spring 130 may be offset from a central portion of the housing near the longitudinal axis 111 and may be disposed adjacent the outer facing side 113c. This arrangement may facilitate access to the spring 130 when the swing door operator 101 is installed. For example, the housing cover 120 may be swung open or removed and the spring 130 may be accessible without disassembly of or interference from the drive unit 122. The spring 130 may be substantially parallel to the longitudinal axis 111 when in an operating configuration and may be angled with respect to the longitudinal axis 111 when in a servicing configuration.
As illustrated, powered driver 114 may extend from an end of the housing. Alternatively, the driver 114 may be concealed within the housing and may be disposed in any orientation or arrangement which facilitates powering the drive unit with the driver 114. Although illustrated as an electric motor, driver 114 may comprise any suitable mechanism for powering the drive unit, such as a pneumatic or hydraulic piston.
Turning to
A telescoping shaft extends through a central lumen of the spring 130. The telescoping shaft includes a first shaft member 132 and a second shaft member 134. An outer diameter of one of the first shaft member 132 and second shaft member 134 may be slightly less than an inner diameter of the other. This configuration allows for telescoping movement of the first shaft member 132 with respect to the second shaft member 134 as the spring 130 compresses and expands. The rigidity of the telescoping shaft, as provided by a tight fit between overlapping portions of the first shaft member 132 and second shaft member 134, may provide lateral support to prevent the spring 130 from bowing or flexing laterally and may constrain movement of the spring 130 to compression and expansion along its longitudinal axis. In some embodiments, the telescoping shaft may be a gas-filled piston with a seal to provide buffering as the spring 130 compresses and/or expands. In the illustrated embodiment, mounting plate 136 is affixed to the first shaft member 132.
Fastener 112 may be threadedly engaged with the bracket 118 to advance or retract with respect thereto. A head of the fastener 112 may be rotated by hand or by a tool (e.g., screwdriver or hex key) inserted into a tool engagement feature (e.g., recess). An end of the fastener 112 opposite the head may engage mounting plate 136. In this regard, as the fastener is advanced through the bracket 118, it may push the mounting plate away from the bracket 118 and increase a pre-compression force in the spring 130. Similarly, retracting the fastener 112 may allow the spring 130 to expand and push the mounting plate 136 toward the bracket, thereby reducing pre-compression.
It can be seen that bracket 118 includes a tubular member 119 through which fastener 112 extends. An inner wall 117 (
When the fastener 112 is retracted from the mounting plate 136, the second end of the spring 130 may be free to pivot away from the drive unit 122 of the swing door operator 101 as the spring mount 124 at the first end pivots around a pivot point defined by pin 128 extending through the spring mount 124 and a lever 126. Releasing the spring 130 to enable pivoting of the spring mount 124 may require a user to manually compress the spring 130 to free the mounting plate 136 from the tubular member 119 of the bracket 118.
As can be partially seen in
Pin 142 may extend transversely with respect the longitudinal axis of the spring 130 and may define a pivot axis of lever 126 to which spring mount 124 is pivotally attached, as described below.
Turning to
As can be seen in
In alternative embodiments of a swing door operator, a spring may be configured for tension rather than compression. In such an embodiment, spring 130 may be secured to mounting plate 138 and spring mount 124 and a threaded aperture may be provided in lieu of recess 144. In this regard, the fastener may engage the aperture to pull the mounting plate 136 and thereby stretch the spring.
When the driver 114 is powered off, disengaged from the drive unit 122, or otherwise ceases powering the drive unit 122, the potential energy stored in the compressed spring 130 is converted into kinetic energy as the spring 130 expands, pushes the spring mount 124, and in turn, rotates the lever 126 about pin 142. Rotation of the lever 126 about the pin 142 as the spring 130 expands operates the drive unit 122 in a direction opposite to that caused by the driver 114, thereby rotating the spindle 110 in a second direction associated with closing the door as the lever 126 returns to the configuration shown in
It should be appreciated that the offset mounting position of the spring, in accordance with the present disclosure, provides for ease of access in comparison to known door operators. Moreover, the pivotable attachment of the spring provides for simplified removable with, in some embodiments, only a single fastener needing to be removed to service the spring. The fastener may also, in addition to securing the spring, provide for applying and adjusting a pre-compression force in the spring to provide a selectable degree of biasing of the operator toward a closed-door configuration.
Persons of ordinary skill in the art will appreciate that the implementations encompassed by the present disclosure are not limited to the particular exemplary implementations described above. In that regard, although illustrative implementations have been shown and described, a wide range of modification, change, combination, and substitution is contemplated in the foregoing disclosure. It is understood that such variations may be made to the foregoing without departing from the scope of the present disclosure. Accordingly, it is appropriate that the appended claims be construed broadly and in a manner consistent with the present disclosure.
Number | Name | Date | Kind |
---|---|---|---|
3864875 | Hewitt | Feb 1975 | A |
4501090 | Yoshida et al. | Feb 1985 | A |
5488896 | Current | Feb 1996 | A |
6151753 | Salutzki | Nov 2000 | A |
7401759 | Alfieri | Jul 2008 | B2 |
8393054 | Bienek | Mar 2013 | B2 |
20160002965 | Janak | Jan 2016 | A1 |
20170081892 | Fan | Mar 2017 | A1 |
20210230924 | Romero | Jul 2021 | A1 |
Number | Date | Country |
---|---|---|
106014051 | Oct 2016 | CN |
106703586 | May 2017 | CN |
102014212351 | Dec 2015 | DE |
WO-2020020866 | Jan 2020 | WO |
Number | Date | Country | |
---|---|---|---|
20210230924 A1 | Jul 2021 | US |