The present invention relates generally to body fluid monitoring devices, and more particularly to a lancing mechanism and body fluid collection system.
It is often necessary to obtain a sample of a body fluid and perform an analysis of an analyte in that body fluid. Preferably, the obtaining of body fluid is as painless as possible, and the collection of the sample is as simple as possible. One example of a need to obtain a sample of a body fluid is in connection with a blood glucose monitoring system where a user must frequently use the system to monitor the user's blood glucose level.
Those who have irregular blood glucose concentration levels are medically required to regularly self-monitor their blood glucose concentration level. An irregular blood glucose level can be brought on by a variety of reasons including illness such as diabetes. The purpose of monitoring the blood glucose concentration level is to determine the blood glucose concentration level and then to take corrective action, based upon whether the level is too high or too low, to bring the level back within a normal range. The failure to take corrective action can have serious implications. When blood glucose levels drop too low—a condition known as hypoglycemia—a person can become nervous, shaky, and confused. That person's judgment may become impaired and that person may eventually pass out. A person can also become very ill if his blood glucose level becomes too high—a condition known as hyperglycemia. Both conditions, hypoglycemia and hyperglycemia, are both potentially life-threatening emergencies.
One method of monitoring a person's blood glucose level is with a portable, hand-held blood glucose testing device. The portable nature of these devices enables the users to conveniently test their blood glucose levels wherever they may be. To check the blood glucose level, a drop of blood is obtained from the fingertip using a separate lancing device. The lancing device contains a needle lance to puncture the skin. Once the requisite amount of blood is produced on the fingertip, the blood is harvested using the blood glucose testing device. The blood is drawn inside the testing device, which then determines the concentration of glucose in the blood. The results of the test are communicated to the user via a display on the testing device.
One problem related with the prior art devices containing a separate lance and sample collection mechanism is that the user must carry both devices with him. The need to carry multiple devices opens the possibility of forgetting or losing one of the devices. If the user forgets to bring both the lance and the testing device with him, he will not be able to test his blood; adverse consequences may result.
Another problem with a monitoring system comprising a lancing device to lance the skin and a separate collection unit to collect the blood is that there is a greater chance of contaminating the sample. The user must be careful that he does not contaminate the blood drop that forms on the lance site or contaminate the collection device used. If any contamination occurs, the test result may not accurately reflect the level of the glucose present in the tested blood.
A third problem with having a device for lancing and a separate device for collection is the size of the sample needed. Users prefer to make smaller cuts, also referred to as lance sites, on their skin to produce a blood sample. A smaller lance site is usually less painful to make than a larger lance site, and should heal more quickly than a larger lance site. Generally, a smaller lance site will produce a smaller blood sample. The smaller the sample, the more important proper collection of the sample becomes. And a smaller sample requires greater precision in placing the collection device relative to the lance site. If the collection device is not properly positioned relative to the lance site on the user's skin, the requisite amount of sample may not be collected. If the requisite amount of sample is not collected an underfill condition occurs. The results of analyzing an underfill will not accurately reflect the amount of glucose present in the sample, or in the user.
Another problem with current lancing devices is that accidental lancing may occur from the exposed lance. If the lance is exposed it may come into contact with the user's skin in a location that the user did not intend to serve as a lance site. This cut may be painful and limit the available locations for a lance site.
Accordingly, there exists the need of a device that combines lancing capability and collection capability into one instrument. The combination device should be suitable for lancing skin and aligning the collection device at the lance site, collecting a small sample of blood from a small lance site on the skin, and reducing risk of accidental lance sites being formed from an exposed lance.
An apparatus for lancing skin and collecting a liquid sample, having a housing with an outer periphery. The apparatus contains a rotatable arm having a lance to puncture the skin and a sample collection chamber attached to the arm. The arm of the apparatus rotates from a first position to a second position. As the arm rotates, the lance extends beyond the housing allowing the lance to contact the user's skin and create a lance site. As the arm continues to move to the second position, the lance is brought out of contact with the user's skin and back within the housing. When the arm is located in the second position, the collection area is in substantially the same location as the lance site on the user's skin.
Other objects and advantages of the invention will become apparent upon reading the following detailed description in conjunction with the drawings in which:
As discussed in the background section, the need to obtain a sample of blood and perform an analysis of that sample occurs frequently for persons with various medical conditions. Many people who suffer from conditions such as diabetes must regularly test the level of glucose contained in their blood. One way to perform this test would be with a device that combines the operation of lancing the skin and collecting the sample.
Referring now to
Referring now to
In one embodiment of the current invention, the collection area 13 includes a capillary channel 15 through which the sample moves as it is collected. As the sample moves up the capillary channel 15, displaced air exits from the capillary channel 15 via a vent hole 17. In the illustrated embodiment, the collection area 13 includes a biosensor 16.
When an electrochemical biosensor is used, the biosensor 16 contains a reagent designed to react with the analyte in the sample and produce a change in current. The change in current is measured across traces 18 and 19. Additional detail concerning electrochemical biosensors is found in commonly owned U.S. Pat. No. 5,759,364, which is incorporated herein by reference in its entirety. The change in current is measured by a meter coupled to terminals 20 and 21 of traces 18 and 19 coupled to electrodes (not shown) in the capillary.
The collection area 13 may be provided with the biosensor 16 having a reaction area that includes a reagent for producing a reaction with an analyte within the liquid sample 25. The reaction is indicative of the concentration of the analyte within that sample. In the case of a glucose tester, the reagent could be a mixture containing glucose oxidase and potassium ferricyanide. In one embodiment of the current invention, the biosensor is an electrochemical sensor. An optical sensor may also be used to analyze the liquid sample.
Another suitable biosensor is a colorimetric sensor; details of which is described in U.S. Pat. No. 5,723,284, which is incorporated herein by reference in its entirety.
To obtain a sample of blood, the user places the apparatus 10 on his skin 24 at a site to lance. In
Referring now to
Referring now to
A rotating lance, such as for example illustrated in
Referring now to
Referring now to
Referring now to
The disc 46 is rotated ninety more degrees clockwise to eject the now used sensor 53 and store the nest 50. The disc 46 is then in the position shown in
Further details concerning disposable sensors and device for dispensing sensors is found in U.S. Pat. Nos. D456,514; 6,316,264; 5,854,074; 5,810,199; and 5,632,410, all of which are incorporated herein by reference in their entirety.
While the invention is susceptible to various modifications and alternative forms, specific embodiments thereof have been shown by way of example in the drawings herein described in detail. It should be understood, however, that it is not intended to limit the invention to the particular forms disclosed, but on the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims.
This application is a continuation of allowed U.S. patent application Ser. No. 10/899,774, filed Jul. 27, 2004, that claims the benefit of the U.S. Provisional Application 60/490,019, filed on Jul. 28, 2003.
Number | Name | Date | Kind |
---|---|---|---|
4637403 | Garcia et al. | Jan 1987 | A |
4643189 | Mintz | Feb 1987 | A |
4924879 | O'Brien | May 1990 | A |
5035704 | Lambert et al. | Jul 1991 | A |
5231993 | Haber et al. | Aug 1993 | A |
5314441 | Cusack et al. | May 1994 | A |
5632410 | Moulton et al. | May 1997 | A |
5723284 | Ye | Mar 1998 | A |
5759364 | Charlton et al. | Jun 1998 | A |
5772677 | Mawhirt et al. | Jun 1998 | A |
5810199 | Charlton et al. | Sep 1998 | A |
5854074 | Charlton et al. | Dec 1998 | A |
5879310 | Sopp et al. | Mar 1999 | A |
5879311 | Duchon et al. | Mar 1999 | A |
5971941 | Simons et al. | Oct 1999 | A |
6316264 | Corey et al. | Nov 2001 | B1 |
D456514 | Brown et al. | Apr 2002 | S |
6626851 | Hirao et al. | Sep 2003 | B2 |
6706159 | Moerman et al. | Mar 2004 | B2 |
6783502 | Orloff et al. | Aug 2004 | B2 |
6988996 | Roe et al. | Jan 2006 | B2 |
7582063 | Wurster et al. | Sep 2009 | B2 |
20020188224 | Roe et al. | Dec 2002 | A1 |
20030073933 | Hirao et al. | Apr 2003 | A1 |
20030191415 | Moerman et al. | Oct 2003 | A1 |
20040039303 | Wurster et al. | Feb 2004 | A1 |
20040225312 | Orloff et al. | Nov 2004 | A1 |
Number | Date | Country |
---|---|---|
9858260 | Dec 1998 | WO |
Number | Date | Country | |
---|---|---|---|
20100152617 A1 | Jun 2010 | US |
Number | Date | Country | |
---|---|---|---|
60490019 | Jul 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10899774 | Jul 2004 | US |
Child | 12686942 | US |