The invention relates to faucet spouts. More specifically, the invention is related, but not limited, to a swing spout having a locking feature as the spout rotates into a predetermined position.
Some faucets have a spout which is capable of rotating to allow water to be distributed to different parts of a sink or tub. This feature allows a user to rotate the spout in a circumferential direction to a desired location. Once the spout has been moved to the desired location, the spout generally remains in that position but is not locked into that position. At any time, a user may reposition the spout by applying a small circumferentially-directed force to the spout and removing the force when the spout has rotated to the desired position. Again, the spout will generally remain in the desired position, in an unlocked state, until another small circumferentially-directed force is applied to the spout. However, since the spout is not locked into position, it may be unintentionally moved.
In one embodiment of the present invention, a locking device is provided with a faucet spout. The locking device is operable to lock the spout into a fixed position. The spout is rotated by pushing the spout in a desired direction. As the spout is rotated, the locking device locks the spout into a fixed position when the spout reaches a predetermined position.
Numerous other advantages and features of the present invention will become readily apparent from the following detailed description of the invention and the embodiments thereof, from the claims and from the accompanying drawings.
The invention as well as embodiments and advantages thereof are described below in greater detail, by way of example, with reference to the drawings in which:
While this invention is susceptible of embodiment in many different forms, there are shown in the drawings and will be described herein in detail specific embodiments thereof with the understanding that the present disclosure is to be considered as an exemplification of the principles of the invention and is not intended to limit the invention to the specific embodiments illustrated.
Referring now to
The spout apparatus 3 comprises a spout tube 4 and a spout hub 5. The spout tube 4 extends from the spout hub 5. Both the spout tube 4 and spout hub 5 have inter-connecting waterways which allow water to flow therethrough. The size, shape and material used to form the spout tube 4 and spout hub 5 may vary. In one embodiment, the base 2 comprises an escutcheon 7 and a nipple 8. Like the spout tube 4 and spout hub 5, the escutcheon 7 and the nipple 8 may vary in size, shape and material.
A lower portion 16 of the nipple 8 sits within the escutcheon 7. The nipple 8 provides a central waterway to allow water to flow from a water supply pipe to the spout tube 4. Although the waterway in the nipple 8 is centralized, the nipple 8 may have a non-centralized waterway and may even have a plurality of inter-connected waterways to provide passage of the incoming water to the spout tube 4.
A collar 6 is disposed around an upper portion 17 of the nipple 8, and between the spout hub 5 and the escutcheon 7. The collar 6 is used to disengage the stop 12 when the stop is engaged in the aperture 11.
The spout hub 5 is disposed over the upper portion 17 of the nipple 8. The area between the outer surface of the nipple 8 and the inner surface of the spout hub 5 are sealed using sealing devices (not shown) such as o-rings. This prevents water flowing through the nipple 8 and spout hub 5 from leaking.
A lower portion of the spout hub 5 comprises a rotational limiting portion 9, a rotating channel 10 and an aperture 11. These components work in conjunction with a stop 12 and a spring 13 that are disposed within a cavity 14 of the lower portion 16 of the nipple 8 to provide rotational limits and a locking feature. The rotational limitation and locking feature will be explained in more detail with respect to
Also shown in an optional lock out collar 15. The lock out collar 15, when used, is disposed between the lower surface of the lower portion of the spout hub 5 and the ledge on the nipple 8 having the cavity 14. The lock out collar 15 may be inserted to prevent the stop 12 from engaging the aperture 11 by raising the spout hub 5 away from the stop 12.
Referring to
In the unlocked position, the spout apparatus 3 is free to rotate about the stationary base 2 while the stop 12 is disposed in the rotating channel 10. As shown in
As shown in
When the spout apparatus 3 shown in
Referring now to
As shown in
In
While the embodiment in
Similarly, at stated previously, other types of urging members may be used in place of or in addition to the spring 13. For example, a magnet or even water pressure may be used to provide the necessary urging force to the stop 12.
Depending on the desired design, the aperture 11, rotating channel 10 and rotational limiting portion 9 may be disposed or located on parts other than the spout hub 5. For example, the aperture 11 may be disposed on the nipple 8 instead of the spout hub 5. Such designs may require additional parts in order to operate properly, however, such embodiments are within the scope of the present invention.
When the spout apparatus 3 is in the locked position, the collar 6 (as shown in
Referring now to
The force is applied to the outer surface of the collar 6 by a user. The collar 6 transfers that force to the stop 12. The collar 6 has an interior surface which abuts the top of the stop 12 when the spout apparatus 3 is in the locked position as shown in
Once the stop 12 is moved out of engagement with the aperture 11, the spout apparatus 3 is free to rotate about the base 2. The downward force must remain, holding the stop 12 out of engagement with the aperture 11, until the spout apparatus 3 is rotated far enough that the stop 12 is not properly aligned with the aperture 11 (i.e. the unlocked position). At this point, the downward force may be removed and the stop 12 will be urged by the spring 13 against the upper surface 19 of the rotating channel 10 (bottom surface of the spout hub 5).
The shape, design and location of the collar 6 may vary depending on the specific design of the swing spout 1. For example, if the collar 6 is not used, a user may manually have to disengage the stop 12 from the aperture 11 by pushing the stop 12 down or by lifting up on the spout apparatus 3.
Finally, if a user does not wish to have the spout apparatus 3 rotate, but instead wishes for the spout apparatus to always remain in the locked position, a lock out collar 15 is disposed between the interior surface 20 of the collar 6 and a ledge 21 of the nipple 8. The lock out collar 15 prevents the collar 6 from moving downward since the interior surface 20 of the collar 6 abuts the lock out collar 15. As a result, if a user applies a downward force on the collar 6, the collar 6 would not be able to move downward because the lock out collar 15 would prevent its downward movement. Therefore, the downward force applied by the user cannot be transferred to the stop 12 sufficiently enough to cause the stop 12 to move downward and become disengaged from the aperture 11.
The above description of the preferred embodiments has been given by way of example. From the disclosure given, those skilled in the art will not only understand the present invention and its attendant advantages, but will also find apparent various changes and modifications to the structures and methods disclosed. It is sought, therefore, to cover all such changes and modifications as fall within the spirit and scope of the invention, as defined by the appended claims, and equivalents thereof.