This invention relates to plastic bottles and preforms, more specifically plastic performs and bottles blown from such preforms that are suitable for containing beverages and utilize less resin such that they are lighter in weight than conventional bottles.
Plastic containers have been used as a replacement for glass or metal containers in the packaging of beverages for several decades. The most common plastic used in making beverage containers today is polyethylene terephthalate (PET). Containers made of PET are transparent, thin-walled, and have the ability to maintain their shape by withstanding the force exerted on the walls of the container by their contents. PET resins are also reasonably priced and easy to process. PET bottles generally are made by way of a process that includes blow-molding of plastic preforms which have been made by injection molding of PET resin.
Advantages of plastic packaging include lighter weight and decreased breakage as compared to glass, as well as lower costs overall when taking both production and transportation into account. Although plastic packaging is lighter in weight than glass, there is still great interest in creating the lightest possible plastic packaging so as to maximize the cost savings in both transportation and manufacturing by making and using containers that contain less plastic.
The bottling industry is moving in the direction of removing auxiliary packaging from cases or pallets. A case of bottles with film only and no paperboard is called a “film only conversion” or “lightweighting” of auxiliary packaging. The removal of supporting elements such as paperboard places additional stress on a bottle, which increases the structural demands on the bottle. In certain embodiments, a bottle design can provide one or more of the benefits of reducing bending and point loading failures. The disclosed design embodiments can alleviate the stresses during shipping and handling (including film only packaging) while maintaining ease of blow-molding. In certain embodiments, a bottle design uses less resin for the same or similar mechanical performance, resulting in a lightweight product.
Embodiments of the bottle disclosed herein may use polyethylene terephthalate (PET), which has viscoelastic properties of creep and relaxation. As a plastic, PET and other resins tend to relax at temperatures normally seen during use. This relaxation is a time dependent stress relieving response to strain. Bending can provide exaggerated strains over what would be seen in tensile loading. Due to exaggerated strains, the relaxation in bending can be much more severe. Bending happens at multiple length scales. Bending can happen at the length scale of the bottle or on a small length scale. An example of the bottle length scale bending is a person bending the bottle in his/her hands, or bending experienced during packing in a case on a pallet. An example of the small scale is the flexing or folding of ribs or other small features on the wall of the bottle. In response to loads at the first, larger length scale, ribs flex at the local, smaller length scale. When they are held in this position with time, the ribs will permanently deform through relaxation.
Further, embodiments of the bottles disclosed herein may undergo pressurization. Pressure inside a bottle can be due to the bottle containing a carbonated beverage. Pressure inside a bottle can be due to pressurization procedures or processes performed during bottling and packaging. For example, a bottle can be pressurized to help the bottle retain its shape. As another example, the bottle can be pressurized with certain gases to help preserve a beverage contained in the bottle.
Embodiments of the bottles disclosed herein have varying depth ribs that achieve a balance of strength and rigidity to resist the bending described above while maintaining hoop strength, such as, for example, when pressure is not used or relieved. A collection of flattened and/or shallow depth ribs act as recessed columns in the body of the bottle that distribute bending and top load forces along the wall to resist leaning, stretching, and crumbling. The collection of flattened and/or shallow depth ribs can help the bottle retain its shape during pressurization, such as, for example, help inhibit stretching of the bottle when pressurized. Inhibiting stretching of the bottle helps retain desired bottle shape to aid in packaging of the bottles as discussed herein by, for example, maintaining a substantially constant height of the bottle. Inhibiting stretching of the bottle can help with applying a label to a label portion of the bottle. For example, with a label applied to a bottle, inhibiting stretching of the bottle helps retain a constant length or height of the bottle at the label panel portion, which can help prevent tearing of the label and/or prevent the label from at least partially separating from the bottle (i.e., failure of the adhesive between the bottle and the label). Further details on the features and functions of varying depth ribs are disclosed in U.S. patent application Ser. No. 13/705,040, entitled “Plastic Container with Varying Depth Ribs,” filed on Dec. 4, 2012, now U.S. Pat. No. 8,556,098, entitled “Plastic Container Having Sidewall Ribs with Varying Depth,” which claims benefit to U.S. Provisional Patent Application Ser. No. 61/567,086, entitled “Plastic Container with Varying Depth Ribs,” filed on Dec. 5, 2011, the entirety of each of which is incorporated herein by reference and made a part of this disclosure.
A balance may be achieved between flattened and/or shallow ribs and deep ribs to attain a desired resistance to bending, leaning, and/or stretching while maintaining stiffness in a lightweight bottle. In some embodiments, at least some of the aforementioned desired qualities may be further achieved through a steeper bell portion of a bottle. A steeper bell portion can increase top load performance in a lightweight bell. A lightweight bottle body and bell leaves more resin for a thicker base of the bottle, which can increase stability. A thicker base may better resist bending and top load forces and benefits designs with a larger base diameter with respect to the bottle diameter for tolerance even when the base is damaged during packaging, shipping, and/or handling.
Embodiments disclosed herein have a multiplicity of strap ribs that can function as straps from a base to a sidewall of the bottle to the help further achieve resistance to bending, leaning, stretching and/or flexing while maintaining stiffness. A strap rib on a base helps the base resist deformation under pressure without necessitating the base being overly heavy in weight relative to the lightweight bottle (i.e., relative to wall thickness of flat foot base that does not resist pressure as well). The strap base rib can be incorporated into a flat foot base. A flat foot base helps retain base foot thickness. Retaining base foot thickness helps retain bottle integrity during packaging and handling using lightweight packaging, such as, for example, film only packaging that requires the base to directly resist forces, including bending and point loading, during packaging, shipping, and/or handling. A flat foot base performs well with or without internal pressure due to, for example, the ability to maintain relative foot thickness in the base in a lightweight bottle. Without strap ribs, the base may have little internal pressure resistance and may rollout (pop out and create a rocker bottom). The strap ribs help resist damage and deformation as discussed herein without requiring a relatively heavy footed base. Without requiring a relatively heavy footed base, less material is needed for the lightweight bottle. Further, the strapped base design may allow for a relatively easier blowing process than other known pressure bases. Thus, a base with strap ribs as disclosed herein provides for a material efficient, pressure optional bottle base.
Incorporating strap ribs into the base with column formations in the sidewall of the bottle as discussed herein offers pressure resistance for internally pressurized bottles while maintaining strength and performance (i.e., resistance to bending and leaning) when without internal pressure (i.e., pressure release by a user opening a closure of a bottle). The strap ribs can cooperate with the column formations on the sidewall of the bottle to form straps around the bottle to communicate stresses along the height of the bottle.
The base with strap ribs helps maintain strength and performance of the column formations for internally pressurized bottles. With strap ribs, resistance to bending, leaning, and/or stretching while maintaining stiffness and hoop strength is maintained without pressure while enhancing these characteristics when the bottle is pressurized. For example, strap ribs allow the utilization of a flat foot base for better base strength during processing at a plant (i.e., adding beverage contents), while preventing rollout or popping out of the base during pressurization. Rollout of the base of the bottle leads to what may be called a “rocker bottom.” Preventing rollout of the base helps the bottle stay level when resting on a surface and maintains the flat feet as the contact points on the surface. Further, base rollout can also occur without pressurization or low pressurization of the bottle, such as, for example, during shipping and handling or filling at high speed. Strap base ribs also help prevent base rollout without or low internal pressurization. While the specification herein may discuss preventing or inhibiting deformation under external/internal pressures and/or forces, it is to be understood that some deformation of a bottle may occur without straying outside of the scope of this disclosure. Some deformation of the bottle under external/internal pressures and/or forces may occur while retaining excellent structural properties of the features and functions disclosed herein.
Embodiments disclosed herein can be utilized for bottle pressures of a wide range. The strap base rib can help resist pressurization pressures in the bottle of up to 3 bars, including up to 2.5, up to 2, up to 1.5, up to 1, up to 0.5 bars, and up to 0.3 bars, including ranges bordered and including the foregoing values. The preform design also plays a role in resisting pressures such that much higher pressures than already demonstrated can be resisted with greater strap thickness available from the preform. The strap design provides a more efficient way of resisting the pressure in a bottle that also performs well without pressure.
Embodiments disclosed herein can be utilized in bottle volumes of a wide range. For example, features and functions disclosed herein can be utilized with a 3 ounce bottle up to a multiple gallon bottle. As another example, features and functions disclosed herein can be utilized with an 8 ounce (0.24 liter/0.15 liter) bottle up to a 3 liter bottle, including 12 ounces (0.35 liters) to 2 liters, 16 (0.47 liters) ounces to 1 liter, 18 ounces (0.53 liters) to 0.75 liters, and 0.5 liters, including ranges bordered and including the foregoing values.
Further, a new approach which relies on a general change in preform design, which significantly improves the ability to blow efficient, lightweight bottles is disclosed herein. The design elegantly incorporates features for protecting critical dimensions of the bottle and stabilizing the production blowing process. These features may also utilize less resin while achieving suitable mechanical performance resulting in a reduction in the use of petroleum products by the industry.
In an exemplary embodiment, a container comprises a base, a bell, a sidewall between the base and the bell, a neck and a finish which define an opening to an interior of the container, and a shoulder between the sidewall and the bell. The container further comprises a grip portion of the sidewall comprising a multiplicity of circumferentially positioned grip portion ribs; a label portion of the sidewall comprising a multiplicity of circumferentially positioned label portion ribs; a plurality of strap ribs, wherein each of the strap ribs extends substantially from a central portion of the base and terminates at a sidewall end in the grip portion, and wherein the strap ribs cooperate with a plurality of vertically aligned recessed columns of the sidewall so as to resist at least one of bending, leaning, crumbling, or stretching along the sidewall and the base; a plurality of inwardly offset portions of the sidewall configured to resist outward bowing of the sidewall due to internal pressure of contents in the interior of the container, each of the plurality of inwardly offset portions being disposed between each pair of adjacent vertically aligned recessed columns; a plurality of load ribs spaced equally between adjacent strap ribs, wherein the load ribs are configured to resist deformation of the base; and a plurality of feet formed between the strap ribs and the load ribs, wherein the plurality of feet comprises a resting surface of the container.
In another exemplary embodiment, the plurality of vertically aligned recessed columns comprises three recessed columns equally spaced around the perimeter of the sidewall, such that the sidewall comprises a circumference which is offset from a generally circular cross-sectional shape to a substantially triangular cross-sectional shape. In another exemplary embodiment, each of the plurality of inwardly offset portions is offset from 0 to 30 degrees from the circular cross-sectional shape. In another exemplary embodiment, the plurality of inwardly offset portions is configured to counteract outward-directed forces on the sidewall of the container due to internal pressure, such that the pressurized container assumes a substantially circular cross-sectional shape.
In another exemplary embodiment, the base comprises a diameter which is larger than a diameter of the shoulder, such that the base creates a single point of contact with other substantially similar containers in a production line, or in packaging. In another exemplary embodiment, the diameter of the base is larger than the diameter of the shoulder by 0.5 to 4 millimeters. In another exemplary embodiment, the diameter of the base is larger than the diameter of the shoulder by 1 to 2 millimeters.
In another exemplary embodiment, the plurality of strap ribs comprises three strap ribs equally spaced around the circumference of the base, and wherein the plurality of load ribs comprises six load ribs, such that two load ribs are equally spaced between each pair of adjacent strap ribs. In another exemplary embodiment, the base further comprises a gate centered on a longitudinal axis of the container, a wall extending from the gate toward the resting surface of the container, and a dome immediately surrounding the gate, wherein the dome is a portion of the wall of the base that slopes more steeply toward the resting surface of the container. In another exemplary embodiment, each of the strap ribs has a base end which terminates in the dome, near the periphery of the gate. In another exemplary embodiment, each of the strap ribs begins at the base end substantially parallel to the resting surface of the container and then extends along an upward curved path, a first portion of the upward curved path comprising a first radius, a second portion of the upward curved path comprising a second radius, and a third portion of the upward curved path comprising a straight portion, wherein at a first height the first radius terminates and the second radius begins, and at a second height the straight portion connects to the sidewall end of the strap rib, and wherein the first radius and the second radius cooperate to give the strap rib and the base a spherical configuration, such that the container better accommodates internal pressure. In another exemplary embodiment, each of the strap ribs further comprises two rib side walls that connect the strap rib to portions of the base and the feet, the rib side walls comprising smooth and gradual transitions into the base and the feet, such that the transitions comprise spherical features of the container.
In an exemplary embodiment, a container configured to substantially reduce triangulation of the container due to internal pressure of contents within the container, comprises a base which extends upward to a sidewall of the container; a shoulder connected between the sidewall and a bell, a diameter of the bell decreasing as the bell extends upward to a neck of the container; a finish connected to the neck, the finish configured to receive a closure and defining an opening to an interior of the container; and a plurality of inwardly offset portions of the sidewall configured to resist outward bowing of the sidewall due to the internal pressure of the contents.
In another exemplary embodiment, the sidewall comprises a plurality of vertically aligned recessed columns configured to resist the internal pressure of the contents. In another exemplary embodiment, the plurality of vertically aligned recessed columns comprises three recessed columns disposed uniformly around the circumference of the sidewall, and wherein one inwardly offset portion is disposed between each pair of adjacent recessed columns, such that the circumference of the sidewall is offset from a generally circular cross-sectional shape to a substantially triangular cross-sectional shape. In another exemplary embodiment, each of the inwardly offset portions is offset from 0 to 30 degrees from the circular cross-sectional shape. In another exemplary embodiment, the inwardly offset portions are configured to counteract outward-directed forces on the sidewall of the container due to internal pressure, such that the pressurized container assumes a substantially circular cross-sectional shape.
In another exemplary embodiment, the base comprises a diameter which is larger than a diameter of the shoulder, such that the base creates a single point of contact with other substantially similar containers in a production line, or in packaging. In another exemplary embodiment, the diameter of the base is larger than the diameter of the shoulder by 0.5 to 4 millimeters. In another exemplary embodiment, the diameter of the base is larger than the diameter of the shoulder by 1 to 2 millimeters.
In an exemplary embodiment, a sidewall of a container for storing liquid contents comprises: a grip portion extending from a base of the container; a plurality of grip portion ribs arranged in the grip portion; a label portion extending from the grip portion and transitioning to a shoulder of the container; a plurality of label portion ribs arranged in the grip portion; a bell extending from the shoulder to a neck; and one or more recessed columns extending from the base to the bell.
In another exemplary embodiment, each of the grip portion ribs comprises a deep rib portion that transitions to shallow rib portions at opposite ends of the grip portion rib. In another exemplary embodiment, a flat sidewall portion is disposed between adjacent shallow rib portions. In another exemplary embodiment, the flat sidewall portions are vertically aligned so as to comprise at least a portion of the one or more recessed columns. In another exemplary embodiment, flat sidewall portions divide each grip portion rib into rib segments disposed around a perimeter of the grip portion. In another exemplary embodiment, each grip portion rib includes three rib segments that are circumferentially disposed and substantially perpendicular to the longitudinal axis of the container.
In another exemplary embodiment, each of the label portion ribs comprises one or more deep rib portions that share intervening shallow rib portions. In another exemplary embodiment, a middle of each shallow rib portion comprises a flat sidewall portion. In another exemplary embodiment, each label portion rib includes three deep rib portions separated by shallow rib portions that are circumferentially disposed and substantially perpendicular to the longitudinal axis of the container. In another exemplary embodiment, the flat sidewall portions are vertically aligned so as to comprise at least a portion of the one or more recessed columns.
In another exemplary embodiment, the sidewall further comprises a first rib and a second rib that are respectively disposed above and below the label portion. In another exemplary embodiment, the first rib and the second rib include respective shallow portions that divide the first rib and the second rib into rib segments disposed around the perimeter of the label portion. In another exemplary embodiment, the first rib and the second rib each includes three rib segments that are circumferentially disposed and substantially perpendicular to the longitudinal axis of the container. In another exemplary embodiment, the shallow portions are vertically aligned so as to comprise at least a portion of the one or more recessed columns.
In another exemplary embodiment, the one or more recessed columns are aligned with strap ribs disposed in the base so as to transfer forces along the sidewall of the container and thus provide resistance to leaning, load crushing, and/or stretching of the container. In another exemplary embodiment, at least a portion of the one or more recessed columns comprises a vertical alignment of flat sidewall portions comprising the grip portions ribs. In another exemplary embodiment, at least a portion of the one or more recessed columns comprises a vertical alignment of flat sidewall portions comprising the label portions ribs. In another exemplary embodiment, a shallow portion comprising at least one of a first rib and a second rib respectively disposed above and below the label portion comprises any of the one or more recessed columns.
The drawings refer to embodiments of the present invention in which:
While the present invention is subject to various modifications and alternative forms, specific embodiments thereof have been shown by way of example in the drawings and will herein be described in detail. The invention should be understood to not be limited to the particular forms disclosed, but on the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the present invention.
In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be apparent, however, to one of ordinary skill in the art that the present invention may be practiced without these specific details. In other instances, specific numeric references such as “first load rib,” may be made. However, the specific numeric reference should not be interpreted as a literal sequential order but rather interpreted that the “first load rib” is different than a “second load rib.” Thus, the specific details set forth are merely exemplary. The specific details may be varied from and still be contemplated to be within the spirit and scope of the present invention. The term “coupled” is defined as meaning connected either directly to the component or indirectly to the component through another component. Further, as used herein, the terms “about,” “approximately,” or “substantially” for any numerical values or ranges indicate a suitable dimensional tolerance that allows the part or collection of components to function for its intended purpose as described herein.
In general, the present disclosure provides an apparatus for a container comprising a base, a bell, a sidewall between the base and the bell, a neck and a finish which define an opening to an interior of the container, and a shoulder between the sidewall and the bell. In one embodiment, the base comprises a diameter which is larger than a diameter of the shoulder, such that the base creates a single point of contact with other substantially similar containers in a production line, or in packaging. In some embodiments, the diameter of the base is larger than the diameter of the shoulder by 0.5 to 4 millimeters, and preferably by 1 to 2 millimeters. Strap ribs extend from a central portion of the base and terminate at the sidewall. The strap ribs cooperate with vertically aligned recessed columns of the sidewall to resist bending, leaning, crumbling, or stretching along the sidewall and the base. An inwardly offset portion of the sidewall is disposed between each pair of adjacent recessed columns. In one embodiment, three recessed columns are equally spaced around the perimeter of the sidewall, such that the sidewall comprises a circumference which is offset from a generally circular cross-sectional shape to a substantially triangular cross-sectional shape. In one embodiment, each of the inwardly offset portions is offset from 0 to 30 degrees from the circular cross-sectional shape. The inwardly offset portions of the sidewall are configured to resist outward bowing of the sidewall due to internal pressure of contents within the container.
A substantially vertical sidewall comprising the grip portion 108 and the label portion 116 between the base 104 and the bell 128, extending substantially along a longitudinal axis of the container 100, and defines at least part of the interior of the container 100. In some embodiments, the sidewall may include the bell 128, the shoulder 124, and/or the base 104. A perimeter (i.e., periphery) of the sidewall is substantially perpendicular to the longitudinal axis of the container 100. The finish 140, the neck 136, the bell 128, the shoulder 124, the label portion 116, the grip portion 108, and the base 104 each comprises a respective perimeter (i.e., periphery) which is substantially perpendicular to the longitudinal axis of the container 100. For example, the label portion 116 comprises a label portion perimeter, whereas the grip portion 108 comprises a grip portion perimeter, both of which perimeters being substantially perpendicular to the longitudinal axis of the container 100.
In the embodiment illustrated in
In some embodiments, the shallow rib portions 168 of the label portion 116 may be vertically misaligned with the shallow rib portions 156 of the grip portion 108, such that the label portion 116 has a first set of recessed columns and the grip portion 108 has a second set of recessed columns. In some embodiments, the container 100 may have recessed columns solely in the grip portion 108 or solely in the label panel portion 116.
In the illustrated embodiment of
In some embodiments, the label portion 116 may comprise a different number of recessed columns 172 than the grip portion 108. For example, the label portion 116 may comprise six equally spaced recessed columns, wherein three are vertically aligned with the recessed columns 172 of the grip portion 108 while the remaining three recessed columns are limited to the label portion 116. With six equally spaced recessed columns around the perimeter of the label portion 116, the recessed columns are positioned every 60 degrees around the circumference of the container 100. More recessed columns can help prevent triangulation of the label portion 116. As will be appreciated, shallow rib portions coupled with recessed columns better resists radial outward flexing, at least partially because the shallow rib portions possess a relatively smaller radial depth available for flexing. Correspondingly, shallow rib portions coupled with recessed columns provides a greater resistance to internal pressure relative to deep rib portions. Thus, incorporating more frequent shallow rib portions and/or recessed columns around the circumference of the container 100 helps inhibit outward triangulation of the container due to internal pressure of contents within the container.
The vertical alignment of the shallow rib portions 156, 168 that form the recessed columns 172 provides resistance to leaning, load crushing, and/or stretching of the container 100. Leaning can occur when, during and/or after bottle packaging, a bottle, such as the container 100, experiences top load forces (tangential forces or otherwise) from other bottles and/or other objects stacked on top of the container. Similarly, top load crushing can occur due to vertical compression (or otherwise) forces from bottles and/or other objects stacked on top. Stretching can occur when the container is pressurized. The recessed columns 172 transfer the resulting forces along the sidewall of the container 100 to the base 104 and thus increase rigidity of the container 100. The deep rib portions 148, 160 of the grip portion ribs 112 and label panel ribs 120, respectively, provide a hoop strength that can be equivalent to the hoop strength imparted by ribs comprising a uniform depth. The number of ribs, including the grip portion ribs 112, and/or the label panel ribs 120 may vary between 1 and 30 ribs positioned, for example, every 10 centimeters along any rib-containing portion of the container 100, such as, but not necessarily limited to the grip portion 108 and/or the label portion 116. It should be understood that the aforementioned 10-centimeters that is used to measure the number of ribs in a portion of the container need not be actually 10 centimeters in length, but rather the 10-centimeters is used illustratively to provide a relationship between the number of ribs incorporated into a given length of a portion of the container.
As discussed above, the three recessed columns 172 operate to prevent outward triangulation of the sidewall of the container 100, wherein the shallow rib portions 156, 168 coupled with the recessed columns 172 better resists radial outward flexing of the sidewall of the container 100. Preferably, the portions of the sidewall between the recessed columns 172 are bowed inward, or offset, toward the interior of the container 100, such that the perimeter of the sidewall is offset from a generally circular cross-sectional shape to a substantially inwardly triangular cross-sectional shape. In some embodiments, the offset portions of the sidewall may be offset from 0 to 30 degrees from the circular cross-sectional shape. The offset portions of the sidewall are configured to resist outward bowing of the sidewall due to internal pressure when the container 100 is filled with contents, particularly carbonated contents. It is envisioned that outward-directed forces on the sidewall of the container 100 due to internal pressure are counteracted by inward-directed resistance forces produced by the offset portions, such that the pressurized container assumes a substantially circular cross-sectional shape rather than becoming outwardly triangulated, as discussed herein. Thus, incorporating inwardly offset portions between the recessed columns 172 around the perimeter of the container 100 further inhibits outward triangulation of the container.
With reference to
The strap ribs 176 is relatively larger and deeper than the load ribs 184, as discussed herein. As illustrated in
As best illustrated in
It will be recognized that the strap ribs 176 illustrated in
As illustrated in
As mentioned above, each of the load ribs 184 comprises a base end 212 that terminates at, or near the dome 204. In the embodiment illustrated in
In the embodiment of
In some embodiments, a depth of the shallow rib portions 156 may range from 0 to 2.5 millimeters. In some embodiments, a ratio of the depth of the deep rib portions 148 to the depth of the shallow rib portions 156 may vary from 1:1 to 100:1, including where the shallow rib portions 156 have zero depth, resulting in substantially an infinite ratio. In some embodiments, a ratio of the depth of the middle rib portions 152 to the depth of the shallow rib portions 156 may vary from 1:1 to 50:1, including where shallow rib portions 156 have zero depth, resulting in substantially an infinite ratio.
In some embodiments, a depth of the shallow rib portions 168 may vary from 0 to 2.5 millimeters. In some embodiments, a ratio of the depth of the deep rib portions 148 to the depth of the shallow rib portions 168 may vary from 1:1 to 100:1, including where the shallow rib portions 168 have zero depth, resulting in substantially an infinite ratio. In some embodiments, a ratio of the depth of the deep rib portions 160 to the depth of the shallow rib portions 168 may range from 1:1 to 100:1, including where the shallow rib portions 168 have zero depth, resulting in substantially an infinite ratio. In some embodiments, a ratio of the depth of the middle rib portions 152, 164 to the depth of the shallow rib portions 168 may vary from 1:1 to 50:1, including where the depth of the shallow rib portions 168 is zero, resulting in substantially an infinite ratio. In some embodiments, a ratio of the depth of the deep rib portions 160 to the depth of the shallow rib portions 168 may vary from 1:1 to 100:1, including a substantially infinite ratio arising when the shallow rib portions 168 have zero depth.
Transitions between the various depths of the rib portions are smooth, as illustrated in
The body portion 234 is an elongated structure extending down from the neck portion 232 and culminating in an end cap 242. In some embodiments, the body portion 234 is generally cylindrical, and the end cap 242 is conical or frustoconical, and may also be hemispherical, and the very terminus of the end cap 242 may be flattened or rounded. The preform 230 comprises a wall thickness 244 throughout most of the body portion 234 which depends upon an overall size of the preform 230, as well as a predetermined wall thickness and overall size of the resulting container 100. As illustrated in
Once the preform 230 has been prepared by way of injection molding, or other equivalent process, the preform 230 may be subjected to a stretch blow-molding process. As illustrated in
A substantially vertical sidewall comprises the grip portion 308 and the label portion 316 between the base 304 and the bell 328, extending substantially along a longitudinal axis of the container 300, and defines at least part of the interior of the container 300. In some embodiments, the sidewall may include the bell 328, the shoulder 324, and/or the base 304. A perimeter (i.e., periphery) of the sidewall is substantially perpendicular to the longitudinal axis of the container 300. The finish 340, the neck 336, the bell 328, the shoulder 324, the label portion 316, the grip portion 308, and the base 304 each comprises a respective perimeter (i.e., periphery) which is substantially perpendicular to the longitudinal axis of the container 300. For example, the label portion 316 comprises a label portion perimeter, whereas the grip portion 308 comprises a grip portion perimeter, both of which perimeters being substantially perpendicular to the longitudinal axis of the container 300.
In the embodiment illustrated in
With continuing reference to
In the embodiment illustrated in
In some embodiments, the flat sidewall portions 368 of the label portion 316 may be vertically misaligned with the flat sidewall portions 356 of the grip portion 308, such that the label portion 316 has a first set of recessed columns and the grip portion 308 has a second set of recessed columns. In some embodiments, the container 300 may have recessed columns solely in the grip portion 308 or solely in the label panel portion 316.
In the illustrated embodiment of
In some embodiments, the label portion 316 may comprise a different number of recessed columns 372 than the grip portion 308. For example, the label portion 316 may comprise six equally spaced recessed columns, wherein three are vertically aligned with the recessed columns 372 of the grip portion 308 while the remaining three recessed columns are limited to the label portion 316. With six equally spaced recessed columns around the perimeter of the label portion 316, the recessed columns are positioned every 60 degrees around the circumference of the container 300. More recessed columns can help prevent triangulation of the label portion 316. As will be appreciated, flat sidewall portions coupled with recessed columns better resists radial outward flexing, at least partially because the flat sidewall portions possess a smaller radial depth available for flexing. Correspondingly, flat sidewall portions coupled with recessed columns provides a greater resistance to internal pressure relative to deep rib portions. Thus, it is contemplated that incorporating more frequent flat sidewall portions and/or recessed columns around the circumference of the container 300 helps inhibit outward triangulation of the container due to internal pressure of contents within the container 300.
The vertical alignment of the flat sidewall portions 356, 368 that form the recessed columns 372 provides resistance to leaning, load crushing, and/or stretching of the container 300. As described hereinabove, leaning can occur when, during and/or after bottle packaging, a bottle, such as the container 300, experiences top load forces (tangential forces or otherwise) from other bottles and/or other objects stacked on top of the container. Similarly, top load crushing can occur due to vertical compression (or otherwise) forces from bottles and/or other objects stacked on top. Stretching can occur when the container is pressurized. The recessed columns 372 transfer the resulting forces along the sidewall of the container 300 to the base 304 and thus increase rigidity of the container 300. The deep rib portions 348, 360 of the grip portion ribs 312 and label panel ribs 320, respectively, provide a hoop strength that can be equivalent to the hoop strength imparted by ribs comprising a uniform depth. The number of ribs, including the grip portion ribs 312, and/or the label panel ribs 320 may vary between 1 and 30 ribs positioned, for example, every 10 centimeters along any rib-containing portion of the container 300, such as, but not necessarily limited to the grip portion 308 and/or the label portion 316. It should be understood that the aforementioned 10-centimeters that is used to measure the number of ribs in a portion of the container need not be actually 10 centimeters in length, but rather the 10-centimeters is used illustratively to provide a relationship between the number of ribs incorporated into a given length of a portion of the container.
As discussed above, the three recessed columns 372 operate to prevent outward triangulation of the sidewall of the container 300, wherein the flat sidewall portions 356, 368 coupled with the recessed columns 372 better resists radial outward flexing of the sidewall of the container 300. Preferably, the portions of the sidewall between the recessed columns 372 are bowed inward, or offset, toward the interior of the container 300, such that the perimeter of the sidewall is offset from a generally circular cross-sectional shape to a substantially inwardly triangular cross-sectional shape. In some embodiments, the offset portions of the sidewall may be offset from 0 to 30 degrees from the circular cross-sectional shape. The offset portions of the sidewall are configured to resist outward bowing of the sidewall due to internal pressure when the container 300 is filled with contents, particularly carbonated contents. It is envisioned that outward-directed forces on the sidewall of the container 300 due to internal pressure are counteracted by inward-directed resistance forces produced by the offset portions, such that the pressurized container assumes a substantially circular cross-sectional shape rather than becoming outwardly triangulated, as discussed herein. Thus, incorporating inwardly offset portions between the recessed columns 372 around the perimeter of the container 300 further inhibits outward triangulation of the container.
Turning, again, to
The strap ribs 376 are relatively larger and deeper than the load ribs 384, as discussed herein. In general, each of the strap ribs 376 is vertically aligned with one of the recessed columns 372, and thus the strap ribs 376 are spaced equally around the circumference of the container 300. As will be recognized, three equally spaced strap ribs 376 are positioned every 120 degrees around the circumference of the container 300. The load ribs 384 are vertically aligned with the grip portion ribs 312 between the recessed columns 372. In some embodiments, the strap ribs 376 may be vertically misaligned with the recessed columns 372. In some embodiments, the strap ribs 376 may be spaced unequally around the circumference of the container 300. In some embodiments, the base 304 may comprise more or less strap ribs 376 than the number of recessed columns 372. In some embodiments, the strap ribs 376 may be vertically aligned with the deep rib portions 348, 360 and may terminate into a first deep rib portion 348 (first from the base 304).
As best illustrated in
With continuing reference to
As mentioned hereinabove, each of the load ribs 384 comprises a base end 412 that terminates at, or near the dome 404. In the embodiment illustrated in
In the embodiment of
In some embodiments, the containers 100, 264, 300 described herein may be made from any suitable thermoplastic material, such as polyesters including polyethylene terephthalate (PET), polyolefins, including polypropylene and polyethylene, polycarbonate, polyamides, including nylons (e.g. Nylon 6, Nylon 66, MXD6), polystyrenes, epoxies, acrylics, copolymers, blends, grafted polymers, and/or modified polymers (monomers or portion thereof having another group as a side group, e.g. olefin-modified polyesters). These materials may be used alone or in conjunction with each other. More specific material examples include, but are not limited to, ethylene vinyl alcohol copolymer (“EVOH”), ethylene vinyl acetate (“EVA”), ethylene acrylic acid (“EAA”), linear low density polyethylene (“LLDPE”), polyethylene 2,6- and 1,5-naphthalate (PEN), polyethylene terephthalate glycol (PETG), poly(cyclohexylenedimethylene terephthalate), polystryrene, cycloolefin, copolymer, poly-4-methylpentene-1, poly(methyl methacrylate), acrylonitrile, polyvinyl chloride, polyvinylidine chloride, styrene acrylonitrile, acrylonitrile-butadiene-styrene, polyacetal, polybutylene terephthalate, ionomer, polysulfone, polytetra-fluoroethylene, polytetramethylene 1,2-dioxybenzoate and copolymers of ethylene terephthalate and ethylene isophthalate. In certain embodiments, preferred materials may be virgin, pre-consumer, post-consumer, regrind, recycled, and/or combinations thereof.
In some embodiments, polypropylene also refers to clarified polypropylene. As used herein, the term “clarified polypropylene” is a broad term and is used in accordance with its ordinary meaning and may include, without limitation, a polypropylene that includes nucleation inhibitors and/or clarifying additives. Clarified polypropylene is a generally transparent material as compared to the homopolymer or block copolymer of polypropylene. The inclusion of nucleation inhibitors helps prevent and/or reduce crystallinity, which contributes to the haziness of polypropylene, within the polypropylene. Clarified polypropylene may be purchased from various sources such as Dow Chemical Co. Alternatively, nucleation inhibitors may be added to polypropylene.
As used herein, “PET” includes, but is not limited to, modified PET as well as PET blended with other materials. One example of a modified PET is IP A-modified PET, which refers to PET in which the IPA content is preferably more than about 2% by weight, including about 2-10% IP A by weight, also including about 5-10% IP A by weight. In another modified PET, an additional comonomer, cylohexane dimethanol (CHDM) is added in significant amounts (e.g. approximately 40% by weight or more) to the PET mixture during manufacture of the resin. Additional techniques for forming the container 264, including additional materials, properties of the materials, as well as various advantageous additives are discussed in detail in U.S. patent application Ser. No. 13/295,699, entitled “Preform Extended Finish for Processing Light Weight Ecologically Beneficial Bottles,” filed on Nov. 14, 2011, the entirety of which is incorporated herein by reference and forms a part of the present disclosure.
While the invention has been described in terms of particular variations and illustrative figures, those of ordinary skill in the art will recognize that the invention is not limited to the variations or figures described. In addition, where methods and steps described above indicate certain events occurring in certain order, those of ordinary skill in the art will recognize that the ordering of certain steps may be modified and that such modifications are in accordance with the variations of the invention. Additionally, certain of the steps may be performed concurrently in a parallel process when possible, as well as performed sequentially as described above. To the extent there are variations of the invention, which are within the spirit of the disclosure or equivalent to the inventions found in the claims, it is the intent that this patent will cover those variations as well. Therefore, the present invention is to be understood as not limited by the specific embodiments described herein, but only by scope of the appended claims.
This application is a continuation-in-part application which claims priority to U.S. patent application Ser. No. 16/012,029 filed on Jun. 19, 2018, U.S. Provisional Patent Application No. 62/945,794 filed on Dec. 9, 2019 and which is a continuation of, and claims the benefit of, U.S. patent application Ser. No. 14/610,940 filed on Jan. 30, 2015, now U.S. Pat. No. 10,023,346, which is a continuation-in-part of, and claims the benefit of, U.S. patent application Ser. No. 14/157,400, entitled “Plastic Container With Strapped Base,” filed on Jan. 16, 2014, which is a continuation-in-part of, and claims the benefit of, U.S. patent application Ser. No. 14/141,224, entitled “Plastic Container with Strapped Base,” filed on Dec. 26, 2013, which claims the benefit of U.S. Provisional Application No. 61/746,535, filed on Dec. 27, 2012. This application also claims the benefit of U.S. patent application Ser. No. 13/705,040, entitled “Plastic Container with Varying Depth Ribs,” filed on Dec. 4, 2012, now U.S. Pat. No. 8,556,098, entitled “Plastic Container Having Sidewall Ribs with Varying Depth,” which claims benefit to U.S. Provisional Patent Application Ser. No. 61/567,086, entitled “Plastic Container with Varying Depth Ribs,” filed on Dec. 5, 2011. Each of the aforementioned applications is incorporated by reference in its entirety into this application.
Number | Name | Date | Kind |
---|---|---|---|
D53694 | Taylor | Aug 1919 | S |
D63200 | Root | Oct 1923 | S |
D97600 | Fuerst | Nov 1935 | S |
D98396 | Gray | Jan 1936 | S |
D103426 | Fuerst | Mar 1937 | S |
D176487 | Sherman | Dec 1955 | S |
3029963 | Evers | Apr 1962 | A |
D212460 | Pettengil | Oct 1968 | S |
3438578 | Moyer et al. | Apr 1969 | A |
D249121 | Strand | Aug 1978 | S |
4170622 | Uhlig | Oct 1979 | A |
4316551 | Belokin, Jr. | Feb 1982 | A |
4374878 | Jakobsen et al. | Feb 1983 | A |
D294462 | Ota et al. | Mar 1988 | S |
4756439 | Perock | Jul 1988 | A |
4818575 | Hirata et al. | Apr 1989 | A |
4847129 | Collette et al. | Jul 1989 | A |
4863046 | Collette et al. | Sep 1989 | A |
4907709 | Abe et al. | Mar 1990 | A |
4997692 | Yoshino | Mar 1991 | A |
D315869 | Collette | Apr 1991 | S |
D321830 | York et al. | Nov 1991 | S |
5067622 | Garver et al. | Nov 1991 | A |
5092475 | Krishnakumar et al. | Mar 1992 | A |
5133468 | Brunson et al. | Jul 1992 | A |
5178289 | Krishnakumar et al. | Jan 1993 | A |
5199588 | Hayashi | Apr 1993 | A |
5255889 | Collette et al. | Oct 1993 | A |
5279433 | Krishnakumar et al. | Jan 1994 | A |
5281387 | Collette et al. | Jan 1994 | A |
D345693 | Edstrom | Apr 1994 | S |
5303833 | Hayashi et al. | Apr 1994 | A |
5303834 | Krishnakumar et al. | Apr 1994 | A |
5337909 | Vailliencourt | Aug 1994 | A |
5341946 | Vailliencourt et al. | Aug 1994 | A |
D352238 | Vailliencourt et al. | Nov 1994 | S |
D352245 | Krishnakumar et al. | Nov 1994 | S |
5381910 | Sigiura et al. | Jan 1995 | A |
5407086 | Ota et al. | Apr 1995 | A |
D358766 | Vailliencourt et al. | May 1995 | S |
5411699 | Collette et al. | May 1995 | A |
D364565 | Vailliencourt et al. | Nov 1995 | S |
D366416 | Semersky | Jan 1996 | S |
D366417 | Semersky | Jan 1996 | S |
5632397 | Fandeu et al. | May 1997 | A |
5669520 | Simpson | Sep 1997 | A |
5704503 | Krishnakumar et al. | Jan 1998 | A |
D391168 | Ogg | Feb 1998 | S |
D393802 | Collette et al. | Apr 1998 | S |
5762221 | Tobias et al. | Jun 1998 | A |
5785197 | Slat | Jul 1998 | A |
D397614 | Krishnakumar et al. | Sep 1998 | S |
D402895 | Takahashi et al. | Dec 1998 | S |
D404308 | Takahashi et al. | Jan 1999 | S |
5888598 | Brewster et al. | Mar 1999 | A |
D407649 | Mccallister et al. | Apr 1999 | S |
D407650 | Takahashi et al. | Apr 1999 | S |
D411453 | Piccioli et al. | Jun 1999 | S |
5908128 | Krishnakumar et al. | Jun 1999 | A |
D413519 | Eberle et al. | Sep 1999 | S |
5971184 | Krishnakumar et al. | Oct 1999 | A |
5988417 | Cheng et al. | Nov 1999 | A |
6016932 | Gaydosh et al. | Jan 2000 | A |
D419882 | Bretz et al. | Feb 2000 | S |
D420592 | Bretz et al. | Feb 2000 | S |
6036037 | Scheffer et al. | Mar 2000 | A |
D423365 | Eberle | Apr 2000 | S |
6044996 | Carew et al. | Apr 2000 | A |
6044997 | Ogg | Apr 2000 | A |
6062409 | Eberle | May 2000 | A |
D426460 | Krishnakumar et al. | Jun 2000 | S |
D427905 | Eberle | Jul 2000 | S |
6092688 | Eberle | Jul 2000 | A |
D427649 | Warner et al. | Aug 2000 | S |
6095360 | Shmagin et al. | Aug 2000 | A |
D430493 | Weick | Sep 2000 | S |
6112925 | Nahill et al. | Sep 2000 | A |
D434330 | Rowe et al. | Nov 2000 | S |
6149024 | Deemer et al. | Nov 2000 | A |
D440157 | Lichtman et al. | Apr 2001 | S |
D440158 | Bretz et al. | Apr 2001 | S |
D440877 | Lichtman et al. | Apr 2001 | S |
D441294 | Lichtman et al. | May 2001 | S |
6230912 | Rashid | May 2001 | B1 |
6248413 | Barel et al. | Jun 2001 | B1 |
D445033 | Bretz et al. | Jul 2001 | S |
6257433 | Ogg et al. | Jul 2001 | B1 |
D446126 | Bretz et al. | Aug 2001 | S |
D447411 | Lichtman et al. | Sep 2001 | S |
6296131 | Rashid | Oct 2001 | B2 |
D452655 | Considine | Jan 2002 | S |
6347717 | Eberle | Feb 2002 | B1 |
D454500 | Bretz et al. | Mar 2002 | S |
D465158 | Peet et al. | Nov 2002 | S |
D466021 | Thierjung et al. | Nov 2002 | S |
D466819 | Darr et al. | Dec 2002 | S |
6494333 | Sasaki et al. | Dec 2002 | B2 |
D469358 | Bryant et al. | Jan 2003 | S |
D469359 | Bryant et al. | Jan 2003 | S |
D469695 | Bryant et al. | Feb 2003 | S |
D469696 | Bryant et al. | Feb 2003 | S |
D470773 | Darr et al. | Feb 2003 | S |
6554146 | DeGroff et al. | Apr 2003 | B1 |
6585125 | Peek | Jul 2003 | B1 |
6616001 | Saito et al. | Sep 2003 | B2 |
6722514 | Renz | Apr 2004 | B2 |
6739467 | Saito et al. | May 2004 | B2 |
6830158 | Yourist | Dec 2004 | B2 |
6841262 | Beck et al. | Jan 2005 | B1 |
D504063 | Bretz et al. | Apr 2005 | S |
D506675 | Bretz et al. | Jun 2005 | S |
D506676 | Bretz et al. | Jun 2005 | S |
D506677 | Bretz et al. | Jun 2005 | S |
D507491 | Bretz et al. | Jul 2005 | S |
D507609 | Bretz et al. | Jul 2005 | S |
D507749 | Bretz et al. | Jul 2005 | S |
D508857 | Bretz et al. | Aug 2005 | S |
6932230 | Pedmo et al. | Aug 2005 | B2 |
D510526 | Bretz et al. | Oct 2005 | S |
6974047 | Kelley et al. | Dec 2005 | B2 |
7017763 | Kelley | Mar 2006 | B2 |
7025219 | Heisner et al. | Apr 2006 | B2 |
7032770 | Finlay et al. | Apr 2006 | B2 |
7051892 | O'Day, Jr. | May 2006 | B1 |
D525530 | Livingston et al. | Jul 2006 | S |
D527643 | Gottlieb | Sep 2006 | S |
7172087 | Axe et al. | Feb 2007 | B1 |
D538660 | Gatewood | Mar 2007 | S |
7198164 | Yourist et al. | Apr 2007 | B2 |
D548106 | Martinez et al. | Aug 2007 | S |
7258244 | Ungrady | Aug 2007 | B2 |
D551081 | Ohara et al. | Sep 2007 | S |
7267242 | Tanaka et al. | Sep 2007 | B2 |
D555499 | Ross | Nov 2007 | S |
7334695 | Bysick et al. | Feb 2008 | B2 |
7334696 | Tanaka et al. | Feb 2008 | B2 |
7347339 | Bangi et al. | Mar 2008 | B2 |
7364046 | Joshi et al. | Apr 2008 | B2 |
7416089 | Kraft et al. | Aug 2008 | B2 |
7416090 | Mooney et al. | Aug 2008 | B2 |
D579339 | Shmagin | Oct 2008 | S |
7445826 | Collette et al. | Nov 2008 | B2 |
7455189 | Lane et al. | Nov 2008 | B2 |
7469796 | Kamineni et al. | Dec 2008 | B2 |
D584627 | Lepoitevin | Jan 2009 | S |
7543713 | Trude et al. | Jun 2009 | B2 |
D598779 | Lepoitevin | Aug 2009 | S |
D610015 | Yourist et al. | Feb 2010 | S |
7694842 | Melrose | Apr 2010 | B2 |
7699183 | Matsuoka et al. | Apr 2010 | B2 |
7748551 | Gatewood et al. | Jul 2010 | B2 |
7748552 | Livingston et al. | Jul 2010 | B2 |
7757874 | Ross | Jul 2010 | B2 |
D621271 | Soni | Aug 2010 | S |
7780025 | Simpson, Jr. et al. | Aug 2010 | B2 |
D623529 | Yourist et al. | Sep 2010 | S |
D624427 | Yourist et al. | Sep 2010 | S |
7798349 | Maczek et al. | Sep 2010 | B2 |
7802691 | Musalek et al. | Sep 2010 | B2 |
D626850 | Xoppas | Nov 2010 | S |
D630515 | Bretz et al. | Jan 2011 | S |
7861876 | Stowitts | Jan 2011 | B2 |
7874442 | Nievierowski et al. | Jan 2011 | B2 |
7980404 | Trude et al. | Jul 2011 | B2 |
8020717 | Patel | Sep 2011 | B2 |
8047388 | Kelley et al. | Nov 2011 | B2 |
8091720 | Colloud | Jan 2012 | B2 |
8113368 | Oguchi et al. | Feb 2012 | B2 |
D658065 | Oommen et al. | Apr 2012 | S |
8162162 | Hata et al. | Apr 2012 | B2 |
8256634 | Tanaka | Sep 2012 | B2 |
8276774 | Patcheak et al. | Oct 2012 | B2 |
8276775 | Boukobza | Oct 2012 | B2 |
8286814 | Prichett, Jr. | Oct 2012 | B2 |
8308007 | Mast et al. | Nov 2012 | B2 |
8328033 | Mast | Dec 2012 | B2 |
8365915 | Hunter et al. | Feb 2013 | B2 |
8381496 | Trude et al. | Feb 2013 | B2 |
8486325 | Siegl | Jul 2013 | B2 |
8496130 | Lane et al. | Jul 2013 | B2 |
8544663 | Barel | Oct 2013 | B2 |
8556098 | Peykoff et al. | Oct 2013 | B2 |
8561822 | Beck | Oct 2013 | B2 |
8567625 | Nemoto | Oct 2013 | B2 |
D696126 | Sanderson | Dec 2013 | S |
D699116 | Sanderson | Feb 2014 | S |
9120589 | Hanan | Sep 2015 | B2 |
9132933 | Hanan | Sep 2015 | B2 |
10023346 | Hanan et al. | Jul 2018 | B2 |
10150585 | Peykoff et al. | Dec 2018 | B2 |
10202217 | Hanan et al. | Feb 2019 | B2 |
10358252 | Hanan et al. | Jul 2019 | B2 |
10654609 | Hanan et al. | May 2020 | B2 |
10807759 | Hanan et al. | Oct 2020 | B2 |
20010027978 | Finlay | Oct 2001 | A1 |
20010030166 | Ozawa et al. | Oct 2001 | A1 |
20040000533 | Kamineni et al. | Jan 2004 | A1 |
20050279728 | Finlay et al. | Dec 2005 | A1 |
20060070977 | Howell et al. | Apr 2006 | A1 |
20060113274 | Keller et al. | Jun 2006 | A1 |
20060131257 | Gatewood et al. | Jun 2006 | A1 |
20060157439 | Howell | Jul 2006 | A1 |
20060186083 | Joshi et al. | Aug 2006 | A1 |
20070131644 | Melrose | Jun 2007 | A1 |
20070145000 | Musalek | Jun 2007 | A1 |
20080073315 | Hermel | Mar 2008 | A1 |
20080087628 | Sangi et al. | Apr 2008 | A1 |
20080173614 | Matsuoka | Jul 2008 | A1 |
20080197105 | Boukobuza | Aug 2008 | A1 |
20080223816 | Darr et al. | Sep 2008 | A1 |
20080257855 | Patel | Oct 2008 | A1 |
20090020497 | Tanaka et al. | Jan 2009 | A1 |
20090057263 | Barker | Mar 2009 | A1 |
20090065468 | Hata et al. | Mar 2009 | A1 |
20090308835 | Boukobza | Mar 2009 | A1 |
20090159556 | Patcheak et al. | Jun 2009 | A1 |
20090166314 | Matsouka | Jul 2009 | A1 |
20090184127 | Mooney | Jul 2009 | A1 |
20090261058 | Prichett, Jr. | Oct 2009 | A1 |
20090261059 | Prichett, Jr. | Oct 2009 | A1 |
20090283495 | Lane et al. | Nov 2009 | A1 |
20090321383 | Lane | Dec 2009 | A1 |
20100028577 | Siegl | Feb 2010 | A1 |
20100089856 | Oguchi et al. | Apr 2010 | A1 |
20100155359 | Simon et al. | Jun 2010 | A1 |
20100163513 | Pedmo | Jul 2010 | A1 |
20100176081 | Kamineni et al. | Jul 2010 | A1 |
20100206837 | Deemer et al. | Aug 2010 | A1 |
20100206838 | Mast et al. | Aug 2010 | A1 |
20100206839 | Tanaka et al. | Aug 2010 | A1 |
20100206892 | Mast | Aug 2010 | A1 |
20100213204 | Melrose | Aug 2010 | A1 |
20100230378 | Colloud | Sep 2010 | A1 |
20100270259 | Russell et al. | Oct 2010 | A1 |
20100297375 | Protais et al. | Nov 2010 | A1 |
20100304168 | Dornback | Dec 2010 | A1 |
20100304169 | Dornback | Dec 2010 | A1 |
20100314348 | Zoppas et al. | Dec 2010 | A1 |
20100320218 | Tanaka | Dec 2010 | A1 |
20110017700 | Patcheak et al. | Jan 2011 | A1 |
20110073559 | Schlies et al. | Mar 2011 | A1 |
20110115135 | Siegl | May 2011 | A1 |
20110132863 | Dorn | Jun 2011 | A1 |
20120231191 | Siegl | Sep 2012 | A1 |
20120248003 | Hunter et al. | Oct 2012 | A1 |
20130140264 | Hanan | Jun 2013 | A1 |
20130213925 | Forsthovel et al. | Aug 2013 | A1 |
20130264305 | Boukobza | Oct 2013 | A1 |
20140183202 | Hanan | Jul 2014 | A1 |
20140197127 | Lane | Jul 2014 | A1 |
20150298848 | Hermel | Oct 2015 | A1 |
20150314906 | Kira et al. | Nov 2015 | A1 |
20180362205 | Pierre et al. | Dec 2018 | A1 |
Number | Date | Country |
---|---|---|
69813841 | Dec 2003 | DE |
602004008115 | Apr 2008 | DE |
202008012290 | Nov 2008 | DE |
2846946 | May 2004 | FR |
2899204 | Oct 2007 | FR |
S5632016 | Mar 1981 | JP |
7164436 | Jun 1995 | JP |
9240647 | Sep 1997 | JP |
10029614 | Feb 1998 | JP |
2004090425 | Mar 2004 | JP |
2006016076 | Jan 2006 | JP |
2008189721 | Aug 2008 | JP |
2009045877 | Mar 2009 | JP |
2010036942 | Feb 2010 | JP |
0068095 | Nov 2000 | WO |
WO2004080828 | Sep 2004 | WO |
WO2006005413 | Jan 2006 | WO |
WO2006027092 | Mar 2006 | WO |
WO2006067590 | Jun 2006 | WO |
WO2007033722 | Mar 2007 | WO |
WO2007124894 | Nov 2007 | WO |
WO2011160748 | Nov 2007 | WO |
2008130987 | Oct 2008 | WO |
WO2012095285 | Dec 2011 | WO |
WO2012156048 | Jul 2012 | WO |
WO2013085919 | Jun 2013 | WO |
WO2014105956 | Jun 2013 | WO |
2019131542 | Jul 2019 | WO |
Entry |
---|
International Search Report with Written Opinion for related Application No. PCT/US2014/011923 dated May 19, 2014 (6 Pages). |
International Search Report with Written Opinion for related Application No. PCT/US2013/077810 dated Feb. 26, 2014 (11 Pages). |
Examination Report issued from the Australian Patent Office for related Application No. 2019250198 dated Nov. 6, 2020 (4 Pages). |
International Search Report with Written Opinion for related Application No. PCT/US2021/059028 dated Mar. 4, 2022 (13 Pages). |
Number | Date | Country | |
---|---|---|---|
20210061510 A1 | Mar 2021 | US |
Number | Date | Country | |
---|---|---|---|
61746535 | Dec 2012 | US | |
61567086 | Dec 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14610940 | Jan 2015 | US |
Child | 16012029 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16012029 | Jun 2018 | US |
Child | 17095130 | US | |
Parent | 14157400 | Jan 2014 | US |
Child | 14610940 | US | |
Parent | 14141224 | Dec 2013 | US |
Child | 14157400 | US | |
Parent | 17095130 | US | |
Child | 14157400 | US | |
Parent | 13705040 | Dec 2012 | US |
Child | 17095130 | US |