The present invention pertains generally to actuator mechanisms, and, more specifically, to actuator mechanisms for switches such as found in a throttle control mechanism of a gas powered golf cart.
Remote actuators having cam surfaces for driving one or more levers are known for various purposes. By way of example, in a known design of a throttle control mechanism for a gas powered golf cart, several different switches are actuated when the driver depresses an acceleration pedal. Through appropriate linkage mechanism, depressing the pedal causes rotational movement of a rotor in an actuator. The rotor has a cam surface, the movement of which moves levers having cam followers. Movement of the levers actuates switches. Two such switches are actuated in known gas-powered golf cart designs. Upon depressing the pedal, a kill switch opens, and a solenoid switch closes, thereby starting the gas engine. When the cart is stopped, and the accelerator pedal is released from continued pressure, the kill switch is closed stopping the engine, and the solenoid switch is opened, preventing ignition.
It is desirable to keep the circuitry, actuators, levers and linkages compact, to minimize space requirements and reduce overall vehicle size. Thus, it is desirable to control the magnitude of movement required of the levers for complete actuation of the switches. When properly adjusted within specification tolerances, operation is smooth and efficient. However, relatively small adjustment errors can be magnified along the linkage train, resulting in over rotation of the cam rotor. In a vehicle such as a golf cart, which operates over uneven terrain, and may be subject to a degree of misuse or abuse, misadjustment can occur with some regularity. Components can move slightly, as mounting structures loosen over time. The resultant change in switch mechanism location and/or linkage operation can be either an under rotation or an over-rotation of the cam relative to the switch operation in either or both directions.
Over rotation of the cam rotor, and excessive movement of the levers relative to the switch position can cause levers to bottom out on the switch casing and be subjected to excessive continued force. The result can be damage to the levers and/or damage to the switches operated by the levers. Problems associated with over-rotation of the cam rotor are particularly troublesome when the over-rotation occurs in the static or at-rest position of the device, which may exist for an extended period of time. The prolonged effect of over-rotation present in the at-rest position can lead to unsuspected damage the next time the device is operated.
What is needed is a means for absorbing the excessive force and over rotation, to minimize potential damage of the levers or switches in a cam-operated linkage mechanism.
The present invention provides a means for protecting switches and levers from excessive force caused by over rotation of a cam rotor operating the levers, by providing the lever with a moveable fulcrum, thereby limiting the pressure exerted by the lever against the switch mechanism.
In one aspect thereof, the present invention provides an actuator unit with a housing, a cam and a lever. The lever has a first end, a second end and a cam follower slidably engaged against the cam. A connection between the lever second end and the housing defines a fulcrum for the lever relative to the housing. The connection is movable relative to the cam. Biasing means urges the lever second end in one direction.
In another aspect thereof, the invention provides an actuator with a housing, and a rotor in the housing. The rotor has a cam surface. A third class lever has a cam follower engaged against the cam surface, and has a fulcrum at a location that is movable relative to the rotor.
In yet another aspect thereof, the invention provides a throttle control unit for a golf cart with a housing and a rotor rotatably disposed in the housing. The rotor has a cam surface. A drive linkage is connected to the rotor for imparting rotation thereto. A third class lever has a first end, a second end and a cam follower riding on the cam surface. A fulcrum at one of the ends is movable relative to the rotor. A switch is engaged against the lever at the other end of the lever, and a biasing means urges the location of the fulcrum toward the rotor.
In a further aspect thereof, the invention provides a method for actuating a switch, with steps of providing a switch and a third class lever for operating the switch, the lever having a first end operatively engaged against the switch and a second end defining a fulcrum; providing a rotor adjacent the lever, a cam surface on the rotor and a cam follower on the lever engaged against the cam surface of the rotor; rotating the rotor for moving the lever; providing a stop for the first end of the lever; stopping the first end of the lever; and moving the second end of the lever in response to continued rotation of the rotor after stopping the first end of the lever.
An advantage of the present invention is providing a switch actuator that relieves excess pressure on a switch caused by over rotation of a cam lever actuator.
Another advantage of the present invention is providing a switch actuator that is robust and suitable for use on a golf cart.
Yet another advantage of the present invention is providing a switch actuator that compensates for over rotation of a cam in the actuator.
Other features and advantages of the invention will become apparent to those skilled in the art upon review of the following detailed description, claims and drawings in which like numerals are used to designate like features.
Before the embodiments of the invention are explained in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangements of the components set forth in the following description, or illustrated in the drawings. The invention is capable of other embodiments, and of being practiced or being carried out in various ways. Also, it is understood that the phraseology and terminology used herein are for the purpose of description and should not be regarded as limiting. The use herein of “including”, “comprising”, and variations thereof is meant to encompass the items listed thereafter and equivalents thereof, as well as additional items and equivalents thereof.
Referring now more specifically to the drawings, and to
Switch actuator 12 is shown disproportionately large in
Switch actuator 12 includes a rotor 30 attached to shaft 20, for rotation of rotor 30 by shaft 20 upon a user depressing pedal 26, or releasing pedal 26 from a depressed position. Rotor 30 is contained within a housing 32, and is suitably mounted in housing 32 for rotation therein. Rotor 30 rotates upon depressing pedal 26, or upon releasing pedal 26 from a depressed position, and may rotate through only a relatively small arc less than a complete revolution of rotor 30. Rotor 30 is shaped to include one or more lobes or cams 34, 36, and as depicted in the drawings (
Lever 60 is a third class lever, having a first end 62 operatively positioned in association with switch 40 for depressing button 48, and a second end 64 forming and defining with housing 12 a fulcrum 66 for lever 60. A cam follower 68 is provided between first end 62 and second end 64. Cam follower 68 is operatively associated with cams 34, 36 of rotor 30.
Fulcrum 66 is created by a knob 70 of housing 32 disposed in an oblong opening 72 formed in lever 60 at second end 64. Knob 70 and opening 72 are operatively associated such that lever 60 can rotate about knob 70 in opening 72. The shape of opening 72 is oriented with respect to rotor 30 such that opening 72, and thus second end 64 of lever 60, can slide slightly away from rotor 30 under conditions to be described subsequently herein.
A biasing means in the nature of a spring 74 is provided to urge second end 64 of lever 60 toward rotor 30. Spring 74 is operatively connected between a boss 76 on lever 60 and a spring retainer 78 in housing 32.
A desirable “at rest” position for switch actuator 12 is shown in FIG. 2. Lever 60 is moved by cam 36 to depress button 48. To activate system 10 from the “at rest” position, foot pedal 26 is depressed, causing rotor 30 to rotate in a clockwise direction as depicted in FIG. 3. First end 62 of lever 60 falls away from button 48 as cam follower 68 slides past cam 36.
Under desired “at rest” conditions, first end 62 of lever 60 gently touches casing 50 of switch 40, with switch button 48 being fully depressed. However, as illustrated in
The present invention compensates for tolerance stack-up or potential component mispositioning by allowing flexibility in the relative position of a lever fulcrum with respect to the force applied to the lever. In the present invention, a third class lever has force applied thereto intermediate first and second ends of the lever. The first end of the lever moves as a spring biased fulcrum is created at the second end. Upon the lever first end encountering resistance to continued movement, continued application of force on the lever overcomes the spring biasing force, causing the fulcrum of the lever to occur at the first end, and allowing the second end of the lever to move.
Variations and modifications of the foregoing are within the scope of the present invention. It is understood that the invention disclosed and defined herein extends to all alternative combinations of two or more of the individual features mentioned, or evident from the text and/or drawings. All of these different combinations constitute various alternative aspects of the present invention. The embodiments described herein explain the best modes known for practicing the invention and will enable others skilled in the art to utilize the invention. The claims are to be construed to include alternative embodiments to the extent permitted by the prior art.
Various features of the invention are set forth in the following claims.
Number | Name | Date | Kind |
---|---|---|---|
2238383 | Collins | Apr 1941 | A |
2255012 | Lake et al. | Sep 1941 | A |
2539567 | Best | Jan 1951 | A |
2578632 | Miller | Dec 1951 | A |
2956437 | Opocensky | Oct 1960 | A |
4876764 | Teague, Jr. | Oct 1989 | A |
6242706 | Miyata | Jun 2001 | B1 |
Number | Date | Country | |
---|---|---|---|
20040003676 A1 | Jan 2004 | US |