The subject matter herein generally relates to switches, and particular to a slide switch including a folding structure and an electronic device using the slide switch.
A switch can be coupled to an electronic device, to control an electrical power, for example. However, switches having complex structures may not be suitable for thinner electronic devices.
Implementations of the present technology will now be described, by way of example only, with reference to the attached figures.
It will be appreciated that for simplicity and clarity of illustration, where appropriate, reference numerals have been repeated among the different figures to indicate corresponding or analogous elements. In addition, numerous specific details are set forth in order to provide a thorough understanding of the embodiments described herein. However, it will be understood by those of ordinary skill in the art that the embodiments described herein can be practiced without these specific details. In other instances, methods, procedures, and components have not been described in detail so as not to obscure the related relevant feature being described. Also, the description is not to be considered as limiting the scope of the embodiments described herein. The drawings are not necessarily to scale and the proportions of certain parts have been exaggerated to better illustrate details and features of the present disclosure.
Several definitions that apply throughout this disclosure will now be presented.
The term “coupled” is defined as connected, whether directly or indirectly through intervening components, and is not necessarily limited to physical connections. The connection can be such that the objects are permanently connected or releasably connected. The term “substantially” is defined to be essentially conforming to the particular dimension, shape, or other feature that the term modifies, such that the component need not be exact. For example, “substantially cylindrical” means that the object resembles a cylinder, but can have one or more deviations from a true cylinder. The term “comprising,” when utilized, means “including, but not necessarily limited to”; it specifically indicates open-ended inclusion or membership in the so-described combination, group, series and the like.
The present disclosure is in relation to an electronic device which can include a housing, a support member coupled to the housing, a trigger member coupled to the support member, a sliding member, a first magnet member coupled to the sliding member, and a second magnet member coupled to the support member and corresponding to the first magnet member. The housing can define a receiving hole. The trigger member can include a trigger portion. The sliding member can be slidably received in the receiving hole and positioned reciprocally with the trigger portion. The first magnet member can include at least two first magnets, at least one second magnet, and at least one first magnetic conductive block. The at least two first magnets can be coupled to each other via the at least one first magnetic conductive block. The at least one second magnet can be coupled to the corresponding first magnet. The magnetic pole of the at least two first magnets can be opposite to the magnetic pole of the at least one second magnet.
The second magnet member can be coupled to the support member and corresponding to the first magnet member. The second magnet member can include at least one third magnet, at least two fourth magnets, and at least one second magnetic conductive block. The magnetic pole of the at least one third magnet can be same as the magnetic pole of the at least one second magnet. The magnetic pole of the at least two fourth magnets can be same as the magnetic pole of the at least two first magnets. The at least two fourth magnets can be coupled to each other via the at least one second magnetic conductive block. The at least one third magnet can be coupled to the corresponding fourth magnet and positioned at a side of the at least two fourth magnets away from the second magnet.
The switch 103 can include a folding structure 110 and a trigger member 60 coupled to the folding structure 110. The folding structure 110 can include a sliding member 10, a fixing bracket 20, a support member 30, two first magnet members 40, and two second magnet members 50.
The sliding member 10 can include a main body 11 and a limiting portion 13 coupled to the main body 11. The main body 11 can be in a shape of a stripe. A length of the main body 11 can be less than that of the receiving hole 102. Thus, the main body 11 can be configured to slide along the longitudinal direction of the receiving hole 102. The limiting portion 13 can extend outward from an edge of the main body 11. A size of the limiting portion 13 can be larger than that of the receiving hole 102. The limiting portion 13 can be positioned at an inner side of the housing 101 and latched with the housing 101 to prevent the sliding member 10 from getting out of the receiving hole 102.
The fixing bracket 20 includes a first fixing portion 21, two second fixing portions 23, and a third fixing portion 25. The first fixing portion 21 can be substantially rectangular and coupled to the inner side of the housing 101. The second fixing portions 23 can extend from opposite ends of the first fixing portion 21 and coupled to opposite ends of the third fixing portion 25. The first fixing portion 21, the second fixing portions 23, and the third fixing portion 25 can cooperatively form a substantially closed bracket. In at least one embodiment, the first fixing portion 21 can be coupled to the inner side surface of the housing 101 by welding. The third fixing portion 25 can be configured to couple other components (not shown) of the electronic device 100.
The support member 30 can include a support portion 32 and a pair of extending portions 31 respectively extending from opposite ends of the support portion 32. Each extending portion 31 can define a through hole 312. The extending portions 31 can be coupled to the second fixing portion 23 of the fixing bracket 20 via fasteners (not labeled) received in the through holes 312.
The first magnetic conductive block 43 can be magnetized by the first magnets 41 or the second magnet 42. Thus, the first magnetic conductive block 43 can couple the adjacent first magnets 41 or couple the second magnet 42 with the adjacent first magnet 41. The at least two the first magnets 41, the at least one second magnet 42, and the at least one first magnetic conductive block 43 can be arranged parallel to each other. In at least one embodiment, a number of the at least two first magnets 41 can be two. A number of the at least one second magnet 42 can be one. A number of the at least one first magnetic conductive block 43 can be two. The two first magnetic conductive blocks 43 can be made of iron. One of the first magnetic conductive blocks 43 can be sandwiched between the two first magnets 41. Another one of the first magnetic conductive blocks 43 can be sandwiched between the second magnet 42 and the adjacent first magnet 41.
The second magnet members 50 can be coupled to a surface of the support portion 32 adjacent to the sliding member 10 and arranged apart (shown in
The second magnetic conductive block 53 can be magnetized by the third magnet 51 or the fourth magnets 52. Thus, the second magnetic conductive block 53 can couple the adjacent fourth magnet 52 or couple the third magnet 51 with the adjacent fourth magnet 52. The at least two the fourth magnets 52, the at least one third magnet 51, and the at least one second magnetic conductive block 53 can be arranged parallel to each other. In at least one embodiment, a number of the at least one third magnets 51 can be one. A number of the at least two fourth magnets 52 can be two. A number of the at least one second magnetic conductive block 53 can be two. The two second magnetic conductive blocks 53 can be made of iron. One of the second magnetic conductive blocks 53 can be sandwiched between the two fourth magnets 52. Another one of the second magnetic conductive blocks 53 can be sandwiched between the third magnet 51 and the adjacent fourth magnet 52.
The trigger member 60 can be coupled to the support portion 32 and positioned between the second magnet members 50. The second magnet members 50 can be symmetric relative to the trigger member 60. The trigger member 60 can include a trigger portion 61 positioned corresponding to the sliding member 10. The limiting portion 13 of the sliding member 10 can be configured to resist against the trigger portion 61 to turn on the switch 103. In at least one embodiment, the trigger member 60 can be coupled to the support member 30 by welding.
In assembly the electronic device 100, the first magnet members 40 can be coupled to the sliding member 10. The second magnet members 50 can the trigger member 60 can be coupled to the support member 30. The main body 11 of the sliding member 10 can be received in the receiving hole 102 of the housing 100. The extending portions 31 of the support member 30 can be coupled to the second fixing portions 23 of the fixing bracket 20.
When the switch 103 is not triggered, each first magnet member 40 and the corresponding second magnet member 50 can repel each other. The second magnet 42 and the fourth magnets 52 can opposite attract. The first magnets 41 and the third magnet 51 can opposite attract. Thus, a moving tendency between the first magnet members 40 can the second magnet members 50 can be produced. However, a frictional force between the sliding member 10 and the housing 101 can stop the moving tendency. Thus, the sliding member 10 can remain stable when the switch is not triggered.
When the switch to be triggered, the main body 11 of the sliding member 10 is pushed to move along the longitudinal direction of the receiving hole 102.
When the sliding member 10 is pushed in opposite direction, the first magnets 41 can face the fourth magnets 52 again. The first magnet members 40 and the second magnet members 50 can repel again. Thus, the sliding member 10 can move away from the support member 30 to stop resisting against the trigger portion 61.
In at least one embodiment, the fixing bracket 20 can be omitted and then the support member 30 can be directly coupled to the housing 101.
In at least one embodiment, when the switch 103 is not triggered, an attract force between the first magnet members 40 and the second magnet members 50 can be less than a repel force between the first magnet members 40 and the second magnet members 50. When the switch 103 is triggered, an attract force between the first magnet members 40 and the second magnet members 50 can be larger than a repel force between the first magnet members 40 and the second magnet members 50.
The embodiments shown and described above are only examples. Many details are often found in the art such as the other features of a switch. Therefore, many such details are neither shown nor described. Even though numerous characteristics and advantages of the present technology have been set forth in the foregoing description, together with details of the structure and function of the present disclosure, the disclosure is illustrative only, and changes may be made in the detail, including in matters of shape, size, and arrangement of the parts within the principles of the present disclosure, up to and including the full extent established by the broad general meaning of the terms used in the claims. It will therefore be appreciated that the embodiments described above may be modified within the scope of the claims.
Number | Date | Country | Kind |
---|---|---|---|
2013 1 0371131 | Aug 2013 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
3025372 | Benjetsky | Mar 1962 | A |
3325756 | Maxwell | Jun 1967 | A |
3407370 | Fast et al. | Oct 1968 | A |
3588766 | Baermann | Jun 1971 | A |
6243819 | Jung | Jun 2001 | B1 |
6366440 | Kung | Apr 2002 | B1 |
6380921 | Nakamura | Apr 2002 | B2 |
6653919 | Shih-Chung et al. | Nov 2003 | B2 |
6929291 | Chen | Aug 2005 | B2 |
7548419 | Lai | Jun 2009 | B1 |
7583500 | Ligtenberg et al. | Sep 2009 | B2 |
7775567 | Ligtenberg et al. | Aug 2010 | B2 |
7825757 | Tang et al. | Nov 2010 | B2 |
8242867 | Greenway | Aug 2012 | B2 |
8704622 | Koepsell | Apr 2014 | B2 |
8705229 | Ashcraft et al. | Apr 2014 | B2 |
8729987 | Chen et al. | May 2014 | B2 |
8801054 | Ligtenberg et al. | Aug 2014 | B2 |
20080061565 | Lee et al. | Mar 2008 | A1 |
20080278269 | Ramirez et al. | Nov 2008 | A1 |
20090278639 | Chao | Nov 2009 | A1 |
Number | Date | Country | |
---|---|---|---|
20150054608 A1 | Feb 2015 | US |