Claims
- 1. A switch assembly comprising:
a switch housing; an elongate actuator shaft projecting inwardly into said switch housing, said actuator shaft being axially displaceable between a pre-determined number of switch positions; a magnet mounted to said actuator shaft, said magnet being positioned within said housing at separate predetermined locations that correspond on a one-to-one basis with said predetermined switch positions; and at least one magnetic reed switch, said at least one magnetic reed switch being mounted within the interior of said switch housing at a location that causes said magnet to actuate said at least one magnetic reed switch when said actuator shaft is in at least one of said predetermined switch positions.
- 2. The switch assembly of claim 1, having three predetermined switch positions and first and second magnetic reed switches, said first and second magnetic reed switches being mounted at locations within said housing relative to said elongate actuator shaft and said magnet to place said magnet at locations that cause said first and second reed switches to be in a first open-closed circuit operational state when said switch is in the first of said three predetermined switch positions, to be in a second open-closed circuit operational state when said switch is in the second of said three predetermined switch positions, and to be in a third open-closed operational state when said switch is in the third of said three predetermined switch positions.
- 3. The switch assembly of claim 2, wherein the inward and outward displacement of said actuator shaft are limited to a predetermined distances, said magnet being located centrally between said inward and outward displacement limits of said actuator shaft when said switch assembly is in said first position, said actuator shaft being at its outward displacement limit when said switch assembly is in said second position, and said actuator shaft being at its inward displacement limit when said switch assembly is in said third position, and wherein said switch assembly further comprises a spring-loaded detent mechanism for maintaining said switch assembly in said first position in the absence of an inward or outward force sufficient to move said actuator shaft toward said second or third position, said spring-loaded detent mechanism returning said switch assembly to said first switch position location when said switch assembly is actuated to one of said second switch positions and the actuation force is removed.
- 4. The switch assembly of claim 3, wherein the spring-loaded detent mechanism comprises first and second contoured bearing surfaces and first and second spring-loaded plunger assemblies, said first and second contoured bearing surfaces being oppositely disposed from one another and extending inwardly into said actuator shaft at a location that establishes said first position of said switch assembly, said first and second spring-loaded plunger assemblies each including a spring, a cylindrical roller, and a plunger having first and second ends, said roller being mounted for rotation at the first end of said plunger, said first and second plungers being respectively received for sliding movement in first and second recesses that are formed in the interior of said switch housing and are located at a position adjacent said first and second contoured bearing surfaces when said switch assembly is in said first switch position, each said first and second recess having a wall at one end thereof with the second end being open and facing said actuator to position the roller associated with the plunger next to said actuator shaft, said spring of each said spring-loaded plunger assembly being located between said wall of said recess the plunger contained in said recess to urge the roller associated with said plunger against said actuator shaft.
- 5. The switch assembly of claim 4, wherein the contour of said contoured bearing surfaces and the force asserted by said spring-loaded plungers establish a force-displacement relationship in which the force required to move said elongate actuator shaft from first switch position toward one of said second and third switch positions varies as a function of displacement distance, with the force required for initial displacement being greater than the force required for continued displacement.
- 6. The switch assembly of claim 5, wherein the force-displacement relationship of said contoured bearing surfaces and said spring-loaded plungers are established so that more force is required to axially displace said elongate actuator shaft toward one of said second and third switch positions than is required to displace said elongate switch actuator shaft toward the other of said second and third switch positions.
- 7. The switch assembly of claim 2 further comprising a circuit board mounted within said switch housing in spaced apart juxtaposition with said actuator shaft, said first and second reed switches being mounted to said circuit board at said locations that cause said first and second reed switches to be in a first open-closed circuit operational state when said switch is in the first of said three predetermined switch positions, to be in a second open-closed circuit operational state when said switch is in the second of said three predetermined switch positions, and to be in a third open-closed operational state when said switch is in the third of said three predetermined switch positions.
- 8. The switch assembly of claim 7 wherein said first and second magnetic reed switches are connected in series with one another and wherein said circuit board includes first and second electrical terminals, said switch assembly further comprising first, second and third resistors, with said first resistor being electrically connected between said first electrical connector and one of said first and second series connected magnetic reed switches, said second electrical terminal being electrically connected to the second one of said first and second magnetic reed switches, said second resistor being electrically connected in parallel with said first magnetic reed switch and said third resistor being electrically connected in parallel with said second magnetic reed switch.
- 9. The switch assembly of claim 8 wherein said switch housing includes a receptacle for receiving an electrical connector and said first and second electrical terminals extend outwardly from said circuit board to form electrical contacts that mate with electrical contacts of said electrical connector.
CROSS-REFERENCE TO RELATED APPLICATION
[0001] This application claims the benefit of U.S. Provisional Application No. 60/385,169, filed on May 31, 2002.
Provisional Applications (1)
|
Number |
Date |
Country |
|
60385169 |
May 2002 |
US |