The present invention relates to a circuit supporting multiple types of PCIe interface, and more particularly, to a circuit for expanding PCIe compatibility via power supply slot and PCB trace.
Peripheral component interconnect express (PCIe) technology for high-speed and high-efficiency transmission is becoming more and more important in industrial field. In recent years, the progress of AI and machine learning result in more data and computing requirements, so PCIe technology with higher transmission rate and channel bandwidth is necessary. For example, PCIe can increase the bandwidth by increasing the number of channels, such as interface of x1, x2, x4, x8, x16, and x32. With 16 channels, namely PCIe x16 interface, it has a 4 GB/s bandwidth for simplex operation. In addition, PCIe can be operated in full-duplex mode, that is, the transmitting and receiving ends can perform transmission/reception in both directions. Therefore, in the full-duplex specification, the transmission bandwidth of PCIe x16 interface can reach 8 GB/s.
In order to meet diverse configuration trends of industrial PCs and requirements for serial connection with high-speed devices, how to flexibly allocate different PCIe interfaces for computers or servers in a limited space becomes an important topic to the manufacturers. Conventional computer or server manufacturers need to deploy slots for a variety of I/O buses on the motherboard, but generally there is not enough space for installing all slots for the I/O buses, so the number of slots for the I/O buses is strictly limited. In order to meet various needs of users, it is necessary to develop a motherboard with several combinations of I/O buses. For example, in the existing hardware layout, there is no PCIe x32 interface, and the conventional motherboard is limited to a fixed hardware configuration, so the graphics processing unit (GPU), namely a PCIe card, does not have a corresponding PCIe interface. Thus, in order to maximize the performance of the GPU, the hardware designer must replace the motherboard with the corresponding PCIe interface to match to the GPU, but this method requires purchase or production of different motherboards, which increases cost to achieve high-performance.
As a result, the conventional PCIe interface configuration on the motherboard lacks flexibility, which is obviously not practical and economical.
It is therefore an objective to provide a switch board for expanding PCIe compatibility to solve the above problem.
The present invention discloses a switch board for expanding peripheral component interconnect express, PCIe, compatibility. The switch board comprises at least two PCIe slots with a first number of channels, and a PCIe card with a second number of channels, which is connected with the two PCIe slots via a channel conversion module, whereby the PCIe card simultaneously receives a bus signal transmitted from a processor of the switch board from the two PCIe slots.
The present invention discloses a switch board for expanding peripheral component interconnect express, PCIe, compatibility. The switch board comprises at least a power supply slot, for providing power to an expanding wild card, and a PCIe card with a first number of channels, which is placed in the power supply slot and connected to a processor of the switch board by two signal lines with a second number of channel, for receiving a bus signal from the processor by the two signal lines.
The present invention discloses a switch board for expanding peripheral component interconnect express, PCIe, compatibility. The switch board comprises a PCIe slot with a first number of channels, and a PCIe card with a second number of channels, which is placed in the PCIe slot, and connected to a processor of the switch board by a signal line with the first number of channels, for receiving a bus signal from the processor by the signal line and the PCIe slot.
These and other objectives of the present invention will no doubt become obvious to those of ordinary skill in the art after reading the following detailed description of the preferred embodiment that is illustrated in the various figures and drawings.
In an embodiment, universal interface cards or PCIe x16 interface cards are placed in the power supply slots P1-P4, and connected to the PCIe connectors C1-C16 with the internal cables, such that the PCIe x16 interface card can receives the bus signal with PCIe x16 interface from the processor. In other words, the switch board of the present invention can support multiple PCIe interface configurations (such as PCIe x16 interface and PCIe x32 interface).
In conclusion, the present invention addresses to PCB architecture capable of flexibly configuring PCIe interfaces, without purchasing and replacing different motherboards, to solve the problem of limited number of PCIe slots on the conventional motherboard, or not proving two types of PCIe interface on the conventional motherboard. In detail, the switch board of the present invention supports different hardware configurations (i.e. multiple PCIe interface configurations) to optimize performance and saving cost by the internal cable, the power supply slot, and PCIe interface conversion card.
Those skilled in the art will readily observe that numerous modifications and alterations of the device and method may be made while retaining the teachings of the invention. Accordingly, the above disclosure should be construed as limited only by the metes and bounds of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
107118979 | Jun 2018 | TW | national |