The present disclosure relates to switch cards for electrical systems, and more specifically, to switch card apparatus and methods having wide voltage range, high current capability for use with, for example, safe and arm devices for missiles.
The handling of live missile boosters presents obvious dangers to personnel. Conventional safe and arm devices are mechanical relays that fully isolate the battery from the squib for purposes of firing train interruption. Applicable specifications (e.g. Mil-STD-1901A) typically require safe and arm devices to include the ability to eliminate a single fault scenario. Particular program requirements may impose more stringent safety specifications.
Although desirable results have been achieved using prior art safe and arm devices, there may be room for improvement. For example, each missile may have a variety of critical signals that must be isolated, each of which may have widely different voltage and current levels. A particular missile's load current variability may be very high with an extremely wide voltage range that requires a specific design solution. Thus, conventional safe and arm devices are typically designed for a particular missile, and lack the capacity to handle the range of voltages and current variabilities presented by multiple missile types.
The present invention is switch card switch card apparatus and methods for electrical systems. Embodiments of the present invention may provide a safe and reliable solution as an acceptable safe and arm device on multiple missile configurations, meeting or exceeding isolation requirements for safely isolating the battery and squibs and ensures personnel safety during the handling of live missile boosters. Furthermore, embodiments of the present invention may be capable of handling a wide voltage and current range, suitable for use in association with multiple missile and safety applications.
In one embodiment, an arming and firing circuit for applying a control voltage to a load includes a first portion having a first switch adapted to be coupled to a first voltage, a second portion operatively coupled to the first portion and including a second switch, and a third portion operatively coupled to the second portion and adapted to be coupled to the load, the third portion also including a third switch. The first portion is adapted to receive a first input signal and to activate the first switch in response to a first value of the first input signal to couple the first voltage to the second portion. Similarly, the second portion is adapted to receive a second input signal and to activate the second switch in response to a second value of the second input signal and in response to the first voltage from the first portion to couple a second voltage to the third portion. Finally, the third portion is adapted to receive a third input signal and to activate the third switch in response to a third value of the third input signal and in response to the second voltage from the second portion to couple the control voltage to the load.
Preferred and alternate embodiments of the present invention are described in detail below with reference to the following drawings.
The present invention relates to switch card apparatus and methods for electrical systems. Many specific details of certain embodiments of the invention are set forth in the following description and in
In general, embodiments and apparatus and methods in accordance with the present invention provide a safe and reliable solution as an acceptable safe and arm device on multiple missile configurations, meeting the requirements for safely isolating the battery and the squibs, and ensuring personal safety during the handling of live missile boosters. Because embodiments of the present invention are adapted to handle a wide voltage and current range, multiple missile and safety applications may be safely accommodated.
The test system 110 includes an assembly test equipment module 112 coupled to a booster emulator module 114 which is, in turn, coupled to the Booster Avionics Module 104 of the missile assembly 100. The telemetry system 116 receives signals from the control module 104 and transmits the signals to the assembly test equipment module 112.
In one embodiment, the SCXI 124 is a 4U chassis that houses signal conditioning boards which will manipulate the analog voltages into the appropriate ranges required to feed the A to D cards. The SCXI contains a programmable switch matrix card used in conjunction with the analog measurement system to measure assembly test equipment simulated load box parameters. Each component of the PXI chassis is part of the analog measurement chain required to accurately and safely test/launch the components of
A second section 318 (Section 2) provides the filtering for an input battery voltage 320 and dc voltages (Cl-C3, C9-C11, C15-C20, and C28-C29) and a voltage regulation (VR1). A third section 322 (Section 3) includes signal conditioning 324 and high side switch circuitry 326 for the first input signal CONTROL_IN1. The third section 322 works as a safe and arm for the firing circuitry of fourth and fifth sections 328, 330 (Sections 4 and 5). As shown in
Specifically, in the embodiment show in
The deactivation works as follows: a deactivation signal (e.g. 0V) comes from the computer 312 into the resistor R24 and the optocoupler U2. The deactivation signal turns off the light emitting diode inside of the optocoupler U2 forcing the output of the optocoupler U2 to go high. This turns on transistor Q4, grounding off transistor Q3. With transistor Q3 off, the gate to source voltage across transistors Q1 and Q2 is zero, keeping both transistors Q1 and Q2 off, and opening the switch 326. This deactivation pattern is also similar in the fourth and fifth sections 328, 330 (Sections 4 and 5).
As mentioned above, the fourth section 328 (Section 4) works in a similar manner to the third section 322 (Section 3) and includes a signal conditioning 332 and a high side switch circuitry 334 for a second input signal CONTROL_IN2. When activated, the signal out of the Optocoupler U2 deactivates Q8, which turns on transistor Q7, and then transistors Q5, and Q6. In a presently preferred embodiment, transistor Q7 is an n-channel MOSFET which turns on the p-channel MOSFETs Q5 and Q6. Transistors Q5 and Q6 are connected in parallel to allow increased current capability. Transistors Q5 and Q6 also separate the third section power from the load (missile squib) 300. When the fourth section 328 (Section 4) is deactivated, transistor Q8 turns on, which shuts off transistors Q7, Q5, and Q6. The fourth section 328 also contains diodes (CR4) for reverse voltage protection and for the option of additional current summing of modules.
With continued reference to
A sixth section 342 (Section 6) includes load current and load voltage telemetry monitoring circuitry 344. The telemetry current out of a current sensor Ul, in one embodiment equal to a load current divided by 10, is sent as a voltage to telemetry. The resulting telemetry load voltage is a buffered output of the load voltage. Light emitting diodes (LEDs) D51-D58 are also utilized to indicate when the battery input and Sections 3, 4, and 5 are activated.
Embodiments of the present invention may provide significant advantages over prior art safe and arm devices. For example, embodiments of the present invention provide a safe and reliable solution as an acceptable safe and arm device on multiple missile configurations, meeting or exceeding isolation requirements for safely isolating the battery and squibs and ensures personnel safety during the handling of live missile boosters. Embodiments of the present invention also provide multiple fault tolerances. Furthermore, because embodiments of the present invention are capable of handling a wide voltage and current range, such embodiments are suitable for use in association with multiple missile and safety applications.
While preferred and alternate embodiments of the invention have been illustrated and described, as noted above, many changes such as adding equivalent blocks (
This invention was made with government support under U.S. Government Contract HQ0006-01-C-0001 awarded by the United States Army. The U.S. Government has certain rights in this invention.
Number | Name | Date | Kind |
---|---|---|---|
3964395 | Kaiser et al. | Jun 1976 | A |
4378738 | Proctor et al. | Apr 1983 | A |
4651646 | Foresman et al. | Mar 1987 | A |
4726291 | Lefranc | Feb 1988 | A |
4769734 | Heinemeyer et al. | Sep 1988 | A |
4848232 | Kurokawa et al. | Jul 1989 | A |
5363765 | Aikou et al. | Nov 1994 | A |
5476044 | Boucher | Dec 1995 | A |
5498912 | Templeman et al. | Mar 1996 | A |
5753927 | Schneider | May 1998 | A |
5796274 | Willis et al. | Aug 1998 | A |
6196130 | Crist et al. | Mar 2001 | B1 |
6267326 | Smith et al. | Jul 2001 | B1 |
6295932 | Kane, III | Oct 2001 | B1 |
6584907 | Boucher et al. | Jul 2003 | B2 |
6600239 | Winick et al. | Jul 2003 | B2 |
6729240 | Smith et al. | May 2004 | B1 |
Number | Date | Country | |
---|---|---|---|
20060098381 A1 | May 2006 | US |