The present invention relates to a switch for allowing a removable card to be accessed by a mobile wireless communication device or a computer in order to utilize its capabilities. It also alternatively allows the connection between the mobile wireless communication device and the computer. More particularly, the present invention relates to a switch for connecting to three USB devices and permitting two way communication between two of the three USB devices at a time.
Mobile wireless communication devices, such as cell phones are well known in the art Typically, a cell phone has a removable card (called “SIM card”) which consists of a computer with RAM, ROM or EEPROM or Flash memory, I/O pads, and security monitoring circuit all mounted on a removable card. The recent high capacity SIM cards use a USB interface. Most phones, currently, only have a single USB connection that is designed to connect to a PC directly or through a docking station. This connection is used for the PC to access the contents of the phone, and for the phone to be connected to the contents and facilities of the computer.
In order for the mobile device to connect to the removable card or the computer, it needs more than one connection. Thus, it is desirable for the mobile device to be able to connect to the removable card or to the computer. In addition, it is desired for the computer to be able to gain access to the removable card. Hence, a switching capability to connect any two of the mobile device, the removable card, and the computer is highly desirable.
In the present invention, a switching device can selectively connect a removable card having a first port to a mobile wireless communicating device having a second port or to a computer having a third port. The switching device comprises a first full duplex switch having an input and a first output and a second output, and a select port for switching the connection of the input to the first output and the connection of the input to the second output. The switching device further comprises a second full duplex switch having an input and a first output and a second output, and a select port for switching the connection of the input to the first output and the connection of the input to the second output. The switching device further comprises a third full duplex switch having an input and a first output and a second output, and a select port for switching the connection of the input to the first output and the connection of the input to the second output. The input of the first switch is connected to the first port. The input of the second switch is connected to the second port. The input of the duplex switch is connected to the third port. The first output of the first switch is connected to the second output of the second switch. The second output of the first switch is connected to the first output of the third switch. Finally, the first output of the second switch is connected to the second output of the third switch.
Referring to
Referring to
The one example of a removable card 10 is connected to the device 100 through a well known USB bus 114 to the switching device 160, as shown in
The one example of a removable card 10 is shown in greater detail in
Referring to
The host controller 12 also comprises a RSA/AES/DES engine 60, which is a secure co-processor to the ARM SC-100 processor 52. The engine 60 is connected to the high speed bus 50 through an arbitration circuit 62. Since both the engine 60 and the processor 52 can request memory or other resources of the high speed bus 50 at the same time, the arbitration circuit 62 arbitrates simultaneous requests for access to the bus 50. The engine 60 also has access to a dedicated high speed cache RAM, such as an SRAM 64. Finally, a bridge circuit 68 is also connected to the high speed bus 50. The bridge circuit 68 is also connected to a slower bus 70, to which a timer 72 is connected, a clock generator 74 is connected, a power management circuit 76 is connected, a security monitoring circuit 78 is connected, a UART 80 is connected, and a SPI circuit 82 (Serial Peripheral Interface—a well known bus) is connected. The UART 80 and the SPI 82 are also connected to a bus 90, which is connected to the NFC 24. The controller 12 is also connected to a bus 91 which is a ISO7816 serial interface bus. It is a byte oriented Universal Asynchronous Receiver/Transmitter (UART) interface commonly found in prior art cell phones between the phone and the SIM card. This type of interface (using UART) is being replaced by the USB interface. Thus, the presence of the bus 91 is for backward compatibility only.
Operation of the Mobile Wireless Communication Device
There are many modes of operation of the mobile wireless communication device 100. Initially, it should be noted that the mobile network operator (MNO), the operator of the cellular network 110, distributes each of the removable cards 10, and also has a server 200 connected to the Internet 150. Each of the removable cards 10 distributed by the MNO is assigned a unique public IP address by the MNO which is stored in the non-volatile memory portion of the removable card 10. The unique public IP address directs the device 100 to the MNO server 200. As disclosed in U.S. patent application Ser. No. 11/637,420, published on Jun. 28, 2007 under publication 2007-0147115, non-volatile memory is present in the NAND memory 20 as well as NOR memory being embedded in the controller 14. In either event, the MNO assigns and pre-stores a unique public IP address in the non-volatile memory portion of the removable card 10. The non-volatile memory may be divided into two portions, with the partition between the first portion and the second portion being alterable. The partitioning of the first portion/second portion can be done by the MNO provider of the removable card 10. The first portion can be accessed by the processor which controls the transceiver 104 and browser and media player 112, and the other hardware circuits that control the communication of the device 100. The second portion can be accessed by the processor 52, in the removable card 10, which is accessible by the user. In addition, the processor 52 controls the degree of access (which includes the type of information) that a user may have to the first portion. In any event, for reasons to be discussed, the unique public IP address assigned by the MNO is stored in the first portion, and the processor 52 prohibits access thereto. However, other types of information, such as sensitive user information, such as user name, credit card, etc. may also be stored in the first portion and the processor 52 may grant the user limited access to those type of information.
After the removable card 10 is distributed to users, and the user has inserted the card 10 into the device 100, the user can then use the device 100 to operate on the cellular network 110, as it was done in the prior art. Similar to the prior art, the card 10 may also have information related to the usage of the device 100, such as telephone number, access code, number of minutes, calling plan etc on the cellular network 110 stored in the first portion (user restricted) of the memory portion of the card 10. Clearly the storage of this type of information in the user restricted is appropriate, so that the user cannot have unlimited access. In this manner, the removable card 10 functions no differently than the SIM card of the prior art when used with the cellular network 110.
When the user attempts to use the device 100 to access the Internet 150, there are at least two possible modes (first mode or second mode) to access the Internet 150. The programming code stored in the non-volatile memory 14 can cause the processor 52 to access the Internet 150 in either the first mode or the second mode of operation.
In the first mode, the Internet 150 can be accessed by the removable card 10 through the USB bus 114 through the device 100 through the cellular network 110. In that event the device 100 is connected to the Internet 150 through the access servers connected to the cellular network 110, near the tower 120. When initiated, the access servers (similar to an Internet Service Provider (ISP)) may assign a dynamic public IP address to the device 100 during the session connecting the device 100 to the Internet 150. Such dynamic assignment of public IP addresses when the device 100 is connected to the Internet 150 is well known in the art and is in accordance with the DHCP protocol. Alternatively, as discussed previously, the public IP address may be pre-assigned and stored in the removable card 10. The browser and media player 112 of the device 100 is then used to browse or surf the Internet 150. Contents from the Internet 150 can then be downloaded and saved in the removable card 10, in either the user restricted memory portion or the user accessible portion of the card 10.
For secure communication with the Internet, the user restricted portion of the memory portion of the card 10 may store a secret key. The RSA/AES/DES engine 60 of the host controller 12 can use that secret key to encrypt and/or decrypt communication to and from the Internet 150. The secret key can be provided by the MNO when it initially distributes the removable card 10 or it can be downloaded from the MNO server 200 which is connected to the Internet 150, when the device is connected to the Internet 150.
The information retrieved from the Internet 150, via the wireless network 110, may be saved in the user restricted portion of the removable card 10 which is associated with an assigned private IP address. The private IP address can be first assigned by the MNO and stored in the removable card 10 before distribution. Alternatively, the private address may be assigned by the access server connected to the cellular network 120. Finally, the private address may simply be the public IP address dynamically assigned by the access severs and then translated by the NAT circuit 106 into a private IP address. After the information from the Internet 150 is stored in the removable card 10, it can be retrieved by the browser and media player 112, again through the USB bus 114, and displayed on the display 108 of the device 100, using the private IP address. This is similar to the operation of an intranet. Thus, the removable card 10 serves to function as a local (private) server in providing the data stored in its memory to the browser and media player 112, all via the USB bus 114.
The use of a “private” IP address when the browser 112 is accessing in a local mode is advantageous because it is more economical than having two public IP address assigned to the device 100: one IP address for the phone portion of the device 100 when surfing or browsing the Internet 150 and another public IP address for the removable card 10, when viewing the contents thereof. Since the content stored in the removable card 10 is for the user using the device 100, there is no need for the removable card 10 to have a public IP address. Furthermore, the time when the user is viewing the contents stored in the removable card 10, the device 100 may not be connected to the Internet 150.
In a second mode, the device 100 can access the Internet 150 other than through the cellular network 110. One way is through a network portal device 170 such as a terminal connected to a PC. In that event, the device 100 or the removable card 10 is connected through the USB bus 114 through the switching device 160 of the present invention to the PC 170. Another way is through a wireless link, such as Wi-Fi which connects wirelessly to a receiving device (not shown) that is connected to the Internet 150. In either way, the device 100 has a switching device 160. Referring to
Finally, because the removable card 10 stores a public IP address assigned by the MNO, in the user restricted portion of the memory, that public IP address directs the device 100 to the MNO server 200. During the time period when the device 100 is connected to the Internet 150 through the PC portal 170, and when the user is not browsing or surfing the Internet 150, (as in e.g. when the device 100 is connected to the PC gateway 170 through the switching device 160 for charging the battery for the device 100) the device 100 can go the MNO server 200 using the public IP address stored in the removable card 10. The MNO server 200 can then cause content, such as movies, or programming code (updates for the device 100) to be downloaded and stored in the user restricted portion of the removable card 10 of the device 100. The benefit of this mode is that a large amount of content can be downloaded when the device 100 is not connected to the cellular network 110, and when the user is not actively surfing or browsing the Internet 150. The downloaded movies or other material can be subsequently activated by an authorization code and/or payment code. Since the movies or other content were downloaded from the MNO server 200, the user can be sure of the trustworthiness of the content (i.e. free from virus etc.). In addition, since the owner of the content knows that the content is downloaded in a secure manner and stored in a user restricted portion, they can he assured that illicit copies will not be made. In this manner, this becomes a trustworthy procedure for all parties. Finally, by also permitting programming code to be distributed in this manner, an efficient and convenient mode is provided to assure the update of the devices 100.
Furthermore, each removable card 10 may also be assigned a unique IP address by the MNO operator. This offers another feature. When the device 100 with the removable card 10 connected thereto is connected to the Internet 150, and with the removable card 10 having a unique IP address, the MNO server 200 which is also connected to the Internet 150 can download information for all removable cards 10 or just certain removable cards 10 or even only a specific removable card 10. The information downloaded to one or more removable cards 10 may be stored in the user restricted memory portion of the card 10. Examples of information that can be stored in the user restricted portion may include: administrative information such as change in calling plan, increase in minutes etc. Further, the “information” may be data or it may be programming code (including Java applets) for execution by the host controller 12. Thus, for example, the “information” downloaded from the MNO server 200 may be a program causing the host controller 12 to execute the code causing the device 100 to access the cellular network 110 to access the Internet 150 periodically or to access specified location on the Internet 150 (such as the IP address of the MNO server 200) or in some specified manner to retrieve updates, downloads, etc.
Referring to
Referring to
Although the present invention discloses a switching device 160 connecting a mobile wireless device 100 to a computer 170 to a removable card 10, for a two way connection between any of the aforementioned three elements, each of the three elements may also be any device having an interface port that is connectable to the switch 170. Thus, the removable card 10 may be any device with a USB port connecting to a PC 170 or a wireless communicating device 100. Further, the wireless communicating device 100 may be any removable card reader connecting to a PC 170 and to a removable card 10.