This invention relates to switch housing remote controls inside of ceiling fans, and in particular to systems, devices, and methods for providing switch housing remote controls for ceiling fans, wherein the remote receiver in the ceiling fan housing uses existing capacitors installed in the ceiling fan and shares those capacitors with existing mechanical pull chains for the ceiling fan, which eliminates the need for separate capacitors in the remote receiver.
Ceiling fans on the market now utilize a capacitor for the ceiling fan speeds and a capacitor for lights. Remote controls currently use a second set of capacitors built into the remote receiver housing inside of the ceiling fan to control the fan speeds and lights.
U.S. Pat. No. 5,738,496 to Mehta, which is incorporated by reference in its' entirety, shows a traditional assembly of having a second set of capacitors in the remote receiver, and where the fan's capacitors are redundant and do not work with the remote control. The remote bypasses the fan's capacitors and uses its own.
As such, the extra set of capacitors adds additional expense to the manufacture of the ceiling fans and requires additional space in the switch housing, which also requires more costs for materials to have a larger switch housing, as well as extra weight, and extra power costs.
Thus, the need exists for solutions to the above problems with the prior art.
A primary objective of the present invention is to provide systems, devices, and methods for providing switch housing remote controls for ceiling fans, wherein the remote receiver in the ceiling fan housing uses existing capacitors installed in the ceiling fan and shares those capacitors with existing mechanical pull chains for the ceiling fan, which eliminates the need for separate capacitors in the remote receiver.
A secondary objective of the present invention is to provide systems, devices, and methods for providing switch housing remote controls for ceiling fans, wherein the remote receiver in the ceiling fan housing uses existing capacitors installed in the ceiling fan and shares those capacitors with existing mechanical pull chains for the ceiling fan, which saves space that would have been needed for extra capacitors, and uses a smaller switch housing, which uses less power.
A third objective of the present invention is to provide systems, devices, and methods for providing switch housing remote controls for ceiling fans, wherein the remote receiver in the ceiling fan housing uses existing capacitors installed in the ceiling fan and shares those capacitors with existing mechanical pull chains for the ceiling fan, which is less costly for not requiring extra capacitors.
A switch housing remote control system for ceiling fans, can include a ceiling fan motor with ceiling fan blades, a first capacitor adjacent to the ceiling fan motor for controlling operating speeds for the ceiling fan motor, a first mechanical switch for turning power on and off to the first capacitor for controlling operating speeds for the ceiling fan motor, a remote control transmitter for operating the ceiling fan motor, and a switch housing receiver in the ceiling fan for receiving wireless signal transmissions from the remote control transmitter for turning power on and off to the first capacitor for controlling operating speeds for the ceiling fan motor.
The mechanical switch can include a pull chain.
The system can further include at least one light attached to the ceiling fan motor, a second capacitor adjacent to the ceiling fan motor for activating the at least one light, a second mechanical switch for turning power on and off to the second capacitor for activating the at least one light, wherein the remote control transmitter further remotely activates the at least one light by turning power on an off to the second capacitor.
The first mechanical switch and the second mechanical switch can includes pull chains.
The second capacitor can further controls dimming levels of the at least one light.
The switch housing receiver can be mounted in a switch housing on which the first mechanical switch is attached, which is located below the ceiling fan blades.
The switch housing receiver can be mounted in a switch housing on which both the first mechanical switch and the second mechanical switch is attached, which is located below the ceiling fan blades.
The switch housing receiver can have dimensions of approximately 2 inches by approximately 1.5 inches by approximately 1 inch.
Further objects and advantages of this invention will be apparent from the following detailed description of the presently preferred embodiments which are illustrated schematically in the accompanying drawings.
The drawing figures depict one or more implementations in accord with the present concepts, by way of example only, not by way of limitations. In the figures, like reference numerals refer to the same or similar elements.
Before explaining the disclosed embodiments of the present invention in detail it is to be understood that the invention is not limited in its applications to the details of the particular arrangements shown since the invention is capable of other embodiments. Also, the terminology used herein is for the purpose of description and not of limitation.
In the Summary above and in the Detailed Description of Preferred Embodiments and in the accompanying drawings, reference is made to particular features (including method steps) of the invention. It is to be understood that the disclosure of the invention in this specification does not include all possible combinations of such particular features. For example, where a particular feature is disclosed in the context of a particular aspect or embodiment of the invention, that feature can also be used, to the extent possible, in combination with and/or in the context of other particular aspects and embodiments of the invention, and in the invention generally.
In this section, some embodiments of the invention will be described more fully with reference to the accompanying drawings, in which preferred embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will convey the scope of the invention to those skilled in the art. Like numbers refer to like elements throughout, and prime notation is used to indicate similar elements in alternative embodiments.
The novel invention removes the extra capacitor(s) generally used inside of the remote control receiver that is normally used by the remote transmitter which utilizes an extra set of capacitors, with one of the extra capacitors for the ceiling fan speeds and another one of the extra capacitors for the lights.
The exiting capacitor(s) can be a set having one capacitor for controlling the ceiling fan speed from the pull chain and another capacitor for controlling the ceiling fan light(s) when using the pull chain.
A list of the components in
Component (2) is the main control unit which translates incoming signals from the transmitters and directs outgoing commands to the PCB (printed circuit board).
Component (5) is a memory chip that maintains the signal pairing to transmitters and last settings of the fan and the light.
Component (6) refers to the Thermistor 100K/25+−1%, which checks the temperature of the PCB (printed circuit board) and prevents overheating.
Component (7) refers to the oscillator 8.0 Mhz which controls signal frequency.
Component (17) refers to the antenna which receives the RF (radio frequency) signal from the remote.
Component (3) refers to IC (5V) which is for stabilizing the DC (direct current) voltage supply to the supply circuit.
Component (4) refers to the IC power supply which converts AC (alternating current) line voltage to DC (direct current).
Component (8) refers to coil 0.2 which stabilizes the input voltage.
Component (9) refers the choke ¼ S type which works with the component (10) capacitor to combine n type filter circuit.
Component (10) refers to a capacitor 2.2 u/250V, 20% (5000 hours) with works with component (9) the choke to combine Π type filter circuit.
Component (11) refers to the metal oxide varistor CNR-10D271K which filters the input noise to protect the control circuit.
Component (12) refers to capacitor 220 U/50V (5000 hours) 12V DC power storage and voltage regulation.
Component (13) (listed twice) refers to the capacitor 220 u/16V105 20% (2000 hours) 5V DC power storage and voltage regulation.
Component (11) refers to the metal oxide varistor CNR-10D271K which filters the input noise to protect the control circuit.
Component 14 refers to the triac control which controls ceiling fan speeds.
Component 15 refers to the triac control which controls lighting dimming and on/off features.
Component 18 refers to the wire assembly with 6 way wire connector that connects the ceiling fan wiring to the remote control circuit and household wiring.
Component (6) refers to a thermistor 100K/25+−1%, which checks the temperature of the PCB (printed circuit board) and prevents over heating.
Unlike the prior art shown in
The remote receiver 62 can be located below the fan blades 55 and be close to the light kit 70. The remote receiver 62 can be sized substantially smaller than the prior art remote receiver 12 shown in
A remote transmitter 80 can control turning on and off the fan blades remotely, as well as speed of the rotating fans, as well as remotely turning the lights 70 on and off, as well as providing dimming controls for the lights 70.
The fan 50 with remote receiver and remote transmitter 80 and other components similar to those described in U.S. Pat. No. 5,738,496 to Mehta, which is incorporated by reference in its' entirety.
By using the existing capacitor(s) in the motor housing, this eliminates the need for separate capacitors in the switch housing for the remote receiver.
By using the existing capacitor(s) in the motor housing, this saves space that would have been needed for extra capacitors, and uses a smaller switch housing, which uses less power.
By using existing capacitors installed in the ceiling fan and shares those capacitors with existing mechanical pull chains for the ceiling fan, the result is less costly for not requiring extra capacitors.
The circuit parts in
The term “approximately” is similar to the term “about” and can be +/−10% of the amount referenced. Additionally, preferred amounts and ranges can include the amounts and ranges referenced without the prefix of being approximately. While the invention has been described, disclosed, illustrated and shown in various terms of certain embodiments or modifications which it has presumed in practice, the scope of the invention is not intended to be, nor should it be deemed to be, limited thereby and such other modifications or embodiments as may be suggested by the teachings herein are particularly reserved especially as they fall within the breadth and scope of the claims here appended.
This application claims the benefit of priority to U.S. Provisional Patent Application Ser. No. 62/578,830 filed Oct. 30, 2017, which is incorporated by reference in its' entirety.
Number | Name | Date | Kind |
---|---|---|---|
5559406 | Chang | Sep 1996 | A |
5738496 | Mehta | Apr 1998 | A |
D523138 | Burns | Jun 2006 | S |
D524473 | Burns | Jul 2006 | S |
8519649 | Taniguchi | Aug 2013 | B2 |
9453517 | Burns et al. | Sep 2016 | B1 |
20080143272 | Byrne | Jun 2008 | A1 |
20080266867 | Byrne | Oct 2008 | A1 |
20110285337 | Taniguchi | Nov 2011 | A1 |
20130049656 | Yasui | Feb 2013 | A1 |
20130106329 | Kato | May 2013 | A1 |
20160047391 | McPherson | Feb 2016 | A1 |
Number | Date | Country | |
---|---|---|---|
62578830 | Oct 2017 | US |