The present invention relates to a switch mechanism, and more specifically, to a switch mechanism for controlling various electronic devices of a vehicle.
A switch mechanism generally includes a rotatable actuator. The switch mechanism sends a first signal in response to rotation of the actuator. The actuator may be tilted to actuate a switch of the switch mechanism. The switch mechanism sends a second signal upon actuation of the switch.
The present invention relates to a switch mechanism. In a first aspect, the switch mechanism includes a support and a plurality of switches connected to the support. An encoder connected to the support has a shaft rotatable about an axis of the shaft relative to the support. The encoder sends signal in response to a sensed rotational position of the shaft about the axis relative to the support. An actuator is rotatable with the shaft about the axis of the shaft relative to the support and tiltable relative to the axis of the shaft to actuate any of the plurality of switches when the shaft is in any rotational position relative to the support. A connector assembly interconnects the actuator and the shaft. The connector assembly transmits rotational movement of the actuator to the shaft and permits tilting movement of the actuator relative to the axis.
In another aspect of the present invention, a switch mechanism includes an actuator and a switch having a central axis. An upper surface of the switch moves to actuate the switch. A lever is pivotal about a pivot axis. The lever has a lower surface engaging the upper surface of the switch at a first location on the central axis. The actuator engages an upper surface of the lever at a second location to pivot the lever toward the upper surface of the switch to actuate the switch. The pivot axis is spaced from the first location a first vertical distance extending parallel to the central axis of the switch. The second location is spaced from the first location a second vertical distance in a direction extending parallel to the central axis. The first distance is smaller than the second distance.
The foregoing and other features of the present invention will become apparent to those skilled in the art to which the present invention relates upon reading the following description with reference to the accompanying drawings, in which:
A switch mechanism 10 constructed in accordance with a first exemplary embodiment of the present invention is illustrated in
The switch mechanism 10 includes a manually engageable actuator 12 and a housing 14. The actuator 12 extends through an opening 16 in the housing 14. The actuator 12 is rotatable about an axis 18 relative to the housing 14 as indicated by the arrows 20 in
A support or printed circuit board (PCB) 24 (
The connector assembly 30 (
The actuator 12 has a lower surface 42 with a recess 44. A spring 46, such as a coil spring, extends into the recess 44. The spring 46 engages the actuator 12 and an upper surface 48 of the gear 32. The spring 46 urges the gears 32 and 38 axially toward each other so that the teeth 34 and 36 of the gears 32 and 38 engage each other. Accordingly, the spring 46 urges the actuator 12 into an initial position in alignment with the axis 18. The spring 46 also urges the gear 32 axially away from the actuator 12 so that the upper surface 46 of the gear 32 is spaced from the actuator when no axial force is applied to the actuator. The space between the actuator 12 and the gear 32 permits tilting movement of the actuator and gear 38 relative to shaft 28 and the gear 32. When the actuator 12 is tilted relative to the axis 18, the teeth 34 and 36 of the gears 32 and 38 on the side of the gears toward which the actuator tilts may disengage from each other to permit tilting movement of the actuator.
The support or PCB 24 includes a plurality of switches 50 that may be activated by tilting of the actuator 12 relative to the shaft 28. The PCB 24 includes four switches 50 (
Each of the switches 50 may be a dome switch having a central axis 52. The switches 50 may be actuated to control an electronic device or make a selection from a menu. The switches 50 send a signal to the electronic control unit (not shown) when actuated. Each switch 50 has an upper surface 54, as viewed in
A plurality of levers 60 (
The lever 60 has an upper portion 68 with an upper surface 70 engaging the lower surface 42 of the actuator 12. The upper surface 70 engages an edge portion 72 of the actuator 12 at an actuator engagement location 74 defined as the intersection of the edge portion and the upper surface 70. Upon tilting movement of the actuator 12 relative to the shaft 28 toward the switch 50, the actuator applies a downward force to the upper surface 70 of the lever 60 at the location 74 to pivot the lever to actuate the switch.
The lever 60 (
The pivot axis 78 (
The location 74 on the upper surface 70 of the lever 60 is spaced laterally in a direction extending perpendicular to the central axis 52 from the axis 78 a first lateral distance d1. The location 66 on the upper surface 54 of the switch 50 is spaced laterally from the axis 78 a second lateral distance d2 that is greater than the first lateral distance d1. Accordingly, the actuator engagement location 74 on the upper surface 70 is located laterally between the pivot axis 78 and the switch engagement location 66 on the upper surface 54 of the switch 50.
The relative spacing between the switch engagement location 66 and the pivot axis 78 results in a pivot radius of R1 for the switch engagement location 66. The relative spacing between the actuator engagement location 74 and the pivot axis 78 results in a pivot radius of R2 for the switch engagement location 74. The pivot radius R1 is larger than the pivot radius R2. The actuator 12 only needs to be tilted relative to the shaft 28 a small amount to actuate the switch 50. A relatively small amount of movement of the actuator engagement location 74 creates a relatively large movement of the switch engagement location 66.
A switch mechanism 110 constructed in accordance with a second exemplary embodiment of the present invention is illustrated in
The actuator 12 of the switch mechanism 110 is connected to the input shaft 28 of the encoder 26 by a resiliently flexible connector assembly 130. The connector assembly 130 transmits rotational movement of the actuator 12 about the axis 18 to the shaft 28 of the encoder 26 and permits tilting movement of the actuator relative to the axis 18 and the shaft 28. The connector assembly 130 is a one-piece hollow resiliently flexible elastic member having a first or lower cylindrical end portion 132 connected to the shaft 28 of the encoder 26. The lower end portion 132 may be connected to the shaft 28 in any desired manner, such as with a press fit.
A second or upper frustoconical end portion 134 of the connector assembly 130 is connected with the actuator 12. A lower end of the upper end portion 134 has a first outer diameter and an upper end of the upper end portion 134 has a second outer diameter larger than the first diameter. The upper end portion 134 is connected to the actuator 12. The upper end portion 134 may include ribs 136 extending from the actuator 12 to the lower end portion 132.
A portion of the upper end portion 134 that faces the switch 50 toward which the actuator 12 is tilted collapses upon tilting movement of the actuator toward the switch. A portion of the upper end portion 134 opposite the portion that collapses stretches to permit the actuator 12 to tilt relative to the shaft 28 of the encoder 22. Upon tilting movement of the actuator 12 relative to the shaft 28, the lever 60 pivots relative to the supports 84 to actuate the switch 50 in a manner similar to that described in connection with the embodiment of the
A switch mechanism 210 constructed in accordance with a third exemplary embodiment of the present invention is illustrated in
The actuator 12 of the switch mechanism 210 is connected to the input shaft 28 of the encoder 26 by a resiliently flexible connector assembly 230. The connector assembly 230 transmits rotational movement of the actuator 12 about the axis 18 to the shaft 28 of the encoder 26 and permits tilting movement of the actuator relative to the axis 18 and the shaft 28. The connector assembly 230 has a one-piece spring 232 having a first or lower end portion 234 connected to the shaft 28 of the encoder 26. The lower end portion 234 may be connected to the shaft 28 in any desired manner, such as with a press fit.
A second or upper end portion 236 of the spring 232 is connected with the actuator 12. The upper end portion 236 may be press fit onto a shaft 238 extending from the lower surface 42 of the actuator 12. However, the upper end portion 236 may be connected to the actuator 12 in any desired manner.
A portion of the spring 232 facing the switch 50 toward which the actuator 12 is tilted collapses upon tilting movement of the actuator toward the switch. The portion of the spring 232 facing away from the switch stretches to permit the actuator 12 to tilt relative to the shaft 28 of the encoder 22. Upon tilting movement of the actuator 12 relative to the shaft 28, the lever 60 pivots relative to the supports 84 to actuate the switch 50 in a manner similar to that described in connection with the embodiment of the
From the above description of the invention, those skilled in the art will perceive improvements, changes and modifications. Such improvements, changes and modifications within the skill of the art are intended to be covered by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
4034574 | Kuder | Jul 1977 | A |
4136270 | Wernet et al. | Jan 1979 | A |
4362916 | Anderson | Dec 1982 | A |
4789377 | Hoskins | Dec 1988 | A |
4803316 | Hayashi et al. | Feb 1989 | A |
5513999 | Fry et al. | May 1996 | A |
5569090 | Hoskins et al. | Oct 1996 | A |
5622254 | Lee | Apr 1997 | A |
5627448 | Okada et al. | May 1997 | A |
5631453 | Maeda | May 1997 | A |
5714732 | Lee | Feb 1998 | A |
5834714 | Berger et al. | Nov 1998 | A |
5952628 | Sato et al. | Sep 1999 | A |
6102725 | Panagiotou | Aug 2000 | A |
6265680 | Robertson | Jul 2001 | B1 |
6352477 | Soma et al. | Mar 2002 | B1 |
6621017 | Shibutani et al. | Sep 2003 | B2 |
6787716 | Menche | Sep 2004 | B1 |
6812415 | Priesemuth | Nov 2004 | B1 |
6953900 | Sottong | Oct 2005 | B2 |
7087848 | Yamasaki et al. | Aug 2006 | B1 |
7091430 | Haizima et al. | Aug 2006 | B1 |
7232965 | Gibbons et al. | Jun 2007 | B2 |
20050162389 | Obermeyer et al. | Jul 2005 | A1 |
20050284737 | Shitanaka et al. | Dec 2005 | A1 |
20090072816 | Schrubbe et al. | Mar 2009 | A1 |
Number | Date | Country | |
---|---|---|---|
20100187083 A1 | Jul 2010 | US |