This application is related by subject matter to U.S. patent application Ser. No. 14/280,539 to John Melanson et al. filed May 16, 2014 and entitled “Charge Pump-Based Drive Circuitry for Bipolar Junction Transistor (BJT)-based Power Supply” and is related by subject matter to U.S. patent application Ser. No. 14/280,474 to Ramin Zanbaghi et al. filed May 16, 2014 and entitled “Single Pin Control of Bipolar Junction Transistor (BJT)-based Power Stage,” and is related by subject matter to U.S. patent application Ser. No. 14/341,984 to Melanson et al. filed Jul. 28, 2014, and entitled “Compensating for a Reverse Recovery Time Period of the Bipolar Junction Transistor (BJT) in Switch-Mode Operation of a Light-Emitting Diode (LED)-based Bulb,” and is related by subject matter to U.S. patent application Ser. No. 13/715,914 to Siddharth Maru filed Dec. 14, 2012 and entitled “Multi-Mode Flyback Control For a Switching Power Converter,” and is related to U.S. patent application Ser. No. 14/444,087 to Siddharth Maru et al. filed Jul. 28, 2014, and entitled “Two Terminal Drive of Bipolar Junction Transistor (BJT) for Switch-Mode Operation of a Light Emitting Diode (LED)-Based Bulb,” and is related by subject matter to U.S. patent application Ser. No. 14/624,475 to Shatam Agarwal et al. and entitled “Resistance Measurement of a Resistor in a Bipolar Junction Transistor (BJT)-Based Power Stage,” each of which is incorporated by reference.
The instant disclosure relates to power supply circuitry. More specifically, this disclosure relates to power supply circuitry for lighting devices.
Alternative lighting devices to replace incandescent light bulbs differ from incandescent light bulbs in the manner that energy is converted to light. Incandescent light bulbs include a metal filament. When electricity is applied to the metal filament, the metal filament heats up and glows, radiating light into the surrounding area. The metal filament of conventional incandescent light bulbs generally has no specific power requirements. That is, any voltage and any current may be applied to the metal filament, because the metal filament is a passive device. Although the voltage and current need to be sufficient to heat the metal filament to a glowing state, any other characteristics of the delivered energy to the metal filament do not affect operation of the incandescent light bulb. Thus, conventional line voltages in most residences and commercial buildings are sufficient for operation of the incandescent bulb.
However, alternative lighting devices, such as compact fluorescent light (CFL) bulbs and light emitting diode (LED)-based bulbs, contain active elements that interact with the energy supply to the light bulb. These alternative devices are desirable for their reduced energy consumption, but the alternative devices have specific requirements for the energy delivered to the bulb. For example, compact fluorescent light (CFL) bulbs often have an electronic ballast designed to convert energy from a line voltage to a very high frequency for application to a gas contained in the CFL bulb, which excites the gas and causes the gas to glow. In another example, light emitting diode (LEDs)-based bulbs include a power stage designed to convert energy from a line voltage to a low voltage for application to a set of semiconductor devices, which excites electrons in the semiconductor devices and causes the semiconductor devices to glow. Thus, to operate either a CFL bulb or LED-based bulb, the line voltage must be converted to an appropriate input level for the lighting device of a CFL bulb or LED-based bulb. Conventionally, a power stage is placed between the lighting device and the line voltage to provide this conversion. Although a necessary component, this power stage increases the cost of the alternate lighting device relative to an incandescent bulb.
One conventional power stage configuration is the buck-boost power stage.
The conventional power stage configuration of
Shortcomings mentioned here are only representative and are included simply to highlight that a need exists for improved power stages, particularly for lighting devices and consumer-level devices. Embodiments described here address certain shortcomings but not necessarily each and every one described here or known in the art.
A bipolar junction transistor (BJT) may be used as a switch for controlling a power stage of a lighting device, such as a light-emitting diode (LED)-based light bulb. Bipolar junction transistors (BJTs) may be suitable for high voltage applications, such as for use in the power stage and for coupling to a line voltage. Further, bipolar junction transistors (BJTs) are lower cost devices than conventional high voltage field effect transistors (HV FETs). Thus, implementations of power stages having bipolar junction transistor (BJT) switches may be lower cost than power stage implementations having field effect transistor (FET) switches.
According to one embodiment, a method may include driving a base current from a base current source to a base of a bipolar junction transistor (BJT) to maintain conduction of the bipolar junction transistor (BJT) during a first time period; disconnecting the base current source from the bipolar junction transistor (BJT) for a second time period, wherein the second time period comprises a reverse recovery time period during which the bipolar junction transistor (BJT) remains conducting while the base current source is disconnected; and/or detecting an end of the reverse recovery time period by monitoring a voltage at the base of the bipolar junction transistor (BJT).
In some embodiments, the method may also include detecting de-energization of the energy storage device during the second time period; repeating the step of driving the base current after detecting the de-energization; measuring a turn-on delay of the bipolar junction transistor when repeating the step of driving the base current; and/or again repeating the step of driving the base current by coupling the base current source to the base of the bipolar junction transistor (BJT) a time prior to approximately a minimum voltage at the collector of the bipolar junction transistor (BJT), wherein the time prior is based, at least in part, on the measured turn-on delay.
In certain embodiments, the step of detecting the end of the reverse recovery time period may include detecting the base voltage is at least 2 Volts below a supply voltage; the step of driving the base current maintains conduction of the bipolar junction transistor (BJT) to charge an energy storage device coupled to a load; the step of detecting de-energization of the energy storage device may include detecting a zero current through the energy storage device; the step of detecting the zero current comprises detecting the zero current at the base of the bipolar junction transistor (BJT); the step of detecting de-energization may include coupling a resistor to the base of the bipolar junction transistor (BJT) to form a high pass filter (HPF) with a capacitor, wherein the capacitor is coupled to the base of the bipolar junction transistor (BJT) and an emitter of the bipolar junction transistor (BJT); the high pass filter (HPF) may include at least one pole, and in some embodiments all poles, at a frequency greater than an expected oscillation frequency of a voltage at a collector of the bipolar junction transistor (BJT) when the energy storage device is de-energized; the step of detecting de-energization may include detecting a ringing voltage at a collector of the bipolar junction transistor (BJT); the step of repeating the step of driving the base current may include coupling the base current source to the base of the bipolar junction transistor (BJT) prior to approximately a minimum voltage at the collector of the bipolar junction transistor (BJT) during the detected ringing; and/or the step of coupling the base current source prior to approximately a minimum voltage may include coupling the base current source a fixed delay offset duration prior to approximately the minimum voltage.
According to another embodiment, an apparatus may include a controller configured to couple to a base of a bipolar junction transistor (BJT), wherein the controller is configured to perform one or more of the steps comprising: driving a base current from a base current source to a base of a bipolar junction transistor (BJT) to maintain conduction of the bipolar junction transistor (BJT) during a first time period; disconnecting the base current source from the bipolar junction transistor (BJT) for a second time period, wherein the second time period comprises a reverse recovery time period during which the bipolar junction transistor (BJT) remains conducting while the base current source is disconnected; and/or detecting an end of the reverse recovery time period by monitoring a voltage at the base of the bipolar junction transistor (BJT).
In some embodiments, the step of detecting the end of the reverse recovery time period may include detecting the base voltage is at least 2 Volts below a supply voltage; the step of driving the base current may maintain conduction of the bipolar junction transistor (BJT) to charge an energy storage device coupled to a load; the step of detecting de-energization of the energy storage device may include detecting a zero current through the energy storage device; the step of detecting the zero current may include detecting the zero current at the base of the bipolar junction transistor (BJT); the step of detecting de-energization may include coupling a resistor to the base of the bipolar junction transistor (BJT) to form a high pass filter (HPF) with a capacitor; the capacitor may be coupled to the base of the bipolar junction transistor (BJT) and an emitter of the bipolar junction transistor (BJT); the high pass filter (HPF) may include at least one pole, and in some embodiments all poles, at a frequency greater than an expected oscillation frequency of a voltage at a collector of the bipolar junction transistor (BJT) when the energy storage device is de-energized; the step of detecting de-energization may include detecting a ringing voltage at a collector of the bipolar junction transistor (BJT); the step of repeating the step of driving the base current may include coupling the base current source to the base of the bipolar junction transistor (BJT) prior to approximately a minimum voltage at the collector of the bipolar junction transistor (BJT) during the detected ringing; and/or the step of coupling the base current source prior to approximately a minimum voltage may include coupling the base current source a fixed delay offset duration prior to approximately the minimum voltage.
In certain embodiments, the controller is further configured to perform one or more of the steps of: detecting de-energization of the energy storage device during the second time period; and repeating the step of driving the base current after detecting the de-energization; measuring a turn-on delay of the bipolar junction transistor when repeating the step of driving the base current; and/or again repeating the step of driving the base current by coupling the base current source to the base of the bipolar junction transistor (BJT) a time prior to approximately a minimum voltage at the collector of the bipolar junction transistor (BJT), wherein the time prior is based, at least in part, on the measured turn-on delay.
The foregoing has outlined rather broadly certain features and technical advantages of embodiments of the present invention in order that the detailed description that follows may be better understood. Additional features and advantages will be described hereinafter that form the subject of the claims of the invention. It should be appreciated by those having ordinary skill in the art that the conception and specific embodiment disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same or similar purposes. It should also be realized by those having ordinary skill in the art that such equivalent constructions do not depart from the spirit and scope of the invention as set forth in the appended claims. Additional features will be better understood from the following description when considered in connection with the accompanying figures. It is to be expressly understood, however, that each of the figures is provided for the purpose of illustration and description only and is not intended to limit the present invention.
For a more complete understanding of the disclosed system and methods, reference is now made to the following descriptions taken in conjunction with the accompanying drawings.
A bipolar junction transistor (BJT) may control delivery of power to a lighting device, such as light emitting diodes (LEDs). The bipolar junction transistor (BJT) may be coupled to a high voltage source, such as a line voltage, and may control delivery of power to the LEDs. The bipolar junction transistor (BJT) is a low cost device that may reduce the price of alternative light bulbs. In some embodiments, a controller for regulating energy transfer from an input voltage, such as a line voltage, to a load, such as the LEDs, may be coupled to the BJT through two terminals. For example, the controller may regulate energy transfer by coupling to a base of the BJT and an emitter of the BJT. The controller may obtain input from the base and/or emitter of the BJT and apply control signals to a base and/or emitter of the BJT.
The emitter node 224 of the BJT 220 may be coupled to an integrated circuit (IC) 230 through a switch 234, and a current detect circuit 236. The switch 234 may be coupled in a current path from the emitter node 224 to a ground 206. The current detect circuit 236 may be coupled between the switch 234 and the ground 206. The controller 232 may control power transfer from the input node 202 to the lighting load 214 by operating the switch 234 to couple and/or disconnect the emitter node 224 of the BJT 220 to the ground 206. The current detect circuit 236 may provide feedback to the controller 232 regarding current flowing through the BJT 220 while the switch 234 is turned on to couple the emitter node 224 to the ground 206. As shown in
The base node 226 of the BJT 220 may also be coupled to the IC 230, such as through a base drive circuit 228. The base drive circuit 228 may be configured to provide a relatively fixed bias voltage to the base node 226 of the BJT 220, such as during a time period when the switch 234 is switched on. The base drive circuit 228 may also be configured to dynamically adjust base current to the BJT 220 under control of the controller 232. The base drive circuit 228 may be controlled to maintain conduction of the BJT 220 for a first time period. The base drive circuit 228 may be disconnected from the BJT 220 to begin a second flyback time period with the turning off of the BJT 220.
The controller 232 may control delivery of power to the lighting load 214 in part through the switch 234 at the emitter node 224 of the BJT 220. When the controller 232 turns on the switch 234, current flows from the high voltage input node 202, through the inductor 212, the BJT 220, and the switch 234, to the ground 206. During this time period, the inductor 212 charges from electromagnetic fields generated by the current flow. When the controller 232 turns off the switch 234, current flows from the inductor 212, through the diode 216, and through the lighting load 214 after a reverse recovery time period of the BJT 220 completes and a sufficient voltage accumulates at collector node 222 to forward bias diode 216 of the power stage 210. The lighting load 214 is thus powered from the energy stored in the inductor 212, which was stored during the first time period when the controller 232 turned on the switch 234. The controller 232 may repeat the process of turning on and off the switch 234 to control delivery of energy to the lighting load 214. Although the controller 232 operates switch 234 to start a conducting time period for the BJT 220 and to start a turn-off transition of the BJT 220, the controller 232 may not directly control conduction of the BJT 220. Control of delivery of energy from a high voltage source may be possible in the circuit 200 without exposing the IC 230 or the controller 232 to the high voltage source.
The controller 232 may determine the first duration of time to hold the switch 234 on and the second duration of time to hold the switch 234 off based on feedback from the current detect circuit 236. For example, the controller 232 may turn off the switch 234 after the current detect circuit 236 detects current exceeding a first current threshold. A level of current detected by the current detect circuit 236 may provide the controller 232 with information regarding a charge level of the inductor 212. By selecting the first duration of the time and the second duration of time, the controller 232 may regulate an average current output to the LEDs 214.
Additional details for one configuration of the IC 230 are shown in
The reverse recovery time period described above may be dynamically adjusted. The adjustments may be based, in part, on a condition, such as voltage level, at a base 226 of the BJT 220. The adjustments may be performed by, for example, controlling the forward base current source 322 of
One example of operation of the circuit of
During the time period TDLY 512, a supply capacitor may be charged from current conducted through the BJT 220 during the reverse recovery time period. For example, a capacitor 410 may be coupled to an emitter node 224 of the BJT 220 through a diode 412 and Zener diode 414. The capacitor 414 may be used, for example, to provide a supply voltage to the controller 232. By adjusting a duration of the time period TDLY 512, the controller 232 may adjust a charge level on the capacitor 410 and thus a supply voltage provided to the controller 232. The controller 232 may maintain the capacitor 410 at a voltage between a high and a low threshold supply voltage to ensure proper operation of the controller 232. Time period TDLY 512 and time period TREV 514 may be modulated almost independently of each other, as long as the supplied base current IB drives the BJT 220 into saturation. If supply generation is not desired, then time period TDLY may be set to zero without changing the functioning of the rest of the circuit.
In some embodiments of the above circuits, the BJT 220 may have a base-emitter reverse breakdown voltage that must be avoided, such as a breakdown voltage of approximately 7 Volts. Thus, the controller 232 may be configured to ensure that when the base 226 is pulled down by the current source 422, the voltage at the base node 226 and the emitter node 224 may remain below this limit. When the switch 234 is off, the emitter may float to Vddh+Vd. If the supply voltage Vddh is close to the breakdown voltage, such as 7 Volts, the base pull down with current source 422 may cause breakdown of the BJT 220. Thus, the controller 232, instead of pulling the base node 226 to ground, may pull the base node 226 to a fixed voltage which ensures the reverse voltage across the base node 226 and the emitter node 224 is less than the breakdown voltage, such as 7 Volts.
Certain parameters of the various circuits presented above may be used by the controller 232 to determine operation of the circuits. That is, the controller 232 may be configured to toggle control signals VPLS,T1, VPLS,T2, and/or VPLS,T3 based on inputs provided from comparators 330 and 336 and/or a measured voltage level Vddh. For example, the controller 232 may be configured to operate various components of the circuits based on detecting a beginning of a reverse recovery period. In one embodiment, the beginning of the reverse recovery period may be determined by detecting a signal from the comparator 330 of
In addition to detecting the beginning of the reverse recovery period, the controller 232 may be able to detect an end of the reverse recovery period. In one embodiment while referring back to
One example method of detecting the end of the reverse time period while controlling the BJT 220 to operate a light bulb is shown in
Operation of components of the circuitry of
In one embodiment, inductor demagnetization detection may be performed by zero current detection (ZCD) at the base node 226 of the BJT 220.
Operation of the ZCD circuit 714 throughout the various times in a cycle of the BJT-based power stage circuit 700 are further described below. During the time period 532, the emitter switch 234 is on, the base drive current source 322 may be connected to the base node 226, and the ZCD detect circuit 714, reverse recovery (RR) detect switch 326, and the base pull down switch 424 may be off. In this configuration, the collector voltage VC may be approximately VSNS, the base voltage VB may be approximately VSNS+VBE, and current in the inductor 212 may begin increasing. The end of the time period 532 may be determined by the current detect circuit 236. After time 524, reverse-recovery (RR) switch 326 turns on with control signal VPLS,T2 high and VPLS,T1 low to detect the end of reverse recovery. If supply generation is being controlled in a loop, the BJT 220 may be kept on until adequate charge has been harvested into supply voltage VDDH during time period TDLY. Thereafter, the control signal VPLS,T2 may be turned on and the base of the BJT 220 may be pulled down. The BJT 220 may turn off after additional time TREV. Thus, the BJT 220 may remain on for a duration TDLY+TREV after the end of time period 532.
After the BJT 220 turns off at time 528, the control signals VPLS,T2 and VPLS,T3 may be turned off and the control signal VPLS,T4 turned on to sense the end of inductor 212 demagnetization. During a time period 834A, energy stored in the inductor 212 may be transferred into a load 240, such as LEDs 214. During that energy transfer, the ZCD detect circuit 714 may provide a resistive path from the base node 226 to ground 206 for protection of the BJT 220 by providing a low impedance path from base node 226 to ground 206 while the emitter node 224 is floating. After the current through the inductor 212 reaches approximately zero, the collector voltage VC may begin oscillating during time period 834B. Detecting the valleys of the collector voltage VC may improve efficiency of the circuit 700 by allowing the control signal VPLS,T1 to be timed coincident with a valley of the collector voltage VC.
In one embodiment, detection of the valleys is based on the use of a high-pass (HP) filter formed from the collector-to-base capacitance of the BJT 220 and the resistor 716. The detection mechanism may be based on the use of a high-pass (HP) filter formed by the collector-to-base parasitic capacitance CCB of the BJT 220 along with the resistor 716. The high-pass (HP) filter may perform the function of a differentiator creating zero crossings from the first roll off time of the collector 226, from the time when the collector voltage VC starts drooping during time period 834A, at the times of the valleys of the collector voltage VC, and/or at the times of the peaking of the oscillations in collector voltage VC. These zero crossings may be detected, for example, by using a comparator. Alternatively, the reference signal for the comparator and the ZCD input may be offset by a fixed voltage Vbias and valleys detected when the voltage at the ZCD circuit 714 crosses Vbias. After the valleys are detected, the time between two valleys may be used to compute an oscillation frequency at the collector node 222. In some embodiments, this time may be mathematically manipulated, such as dividing by four to determine an offset to arrive at an accurate demagnetization time. This determination can further be used as an offset to determine the time period 834A before the inductor 212 demagnetizes.
For the high-pass (HP) filter to function similar to a differentiator, the pole of the filter should be designed away from a maximum possible oscillation frequency of the collector voltage VC such that the phase shift remains approximately constant and equal to 90 degrees. The following equations show the high-pass filter transfer function, Hzcd(s), and approximate detected zero current amplitude, Vpeak,zcd:
where Rzcd is a resistance value for the resistor 716, CCB is a collector-to-base capacitance of the BJT 220. An appropriate resistance value for the resistor 716 may be selected based on the above equations considering the minimum and maximum range of the ringing frequencies, ωring, and a minimum detectable ringing amplitude, Vpeak,zcd.
Efficiency may be improved when the BJT 220 switches on near a valley by reducing switching losses in the circuit 700. Although the ZCD circuit 714 described above may provide a determination or approximation of valleys in the collector voltage VC, there may be delays in signal propagation and switching time losses that add inefficiencies, even when the collector voltage VC valley times are known. These delay components may be approximated or measured and compensated for in the generation of control signals VPLS,T1, VPLS,T2, VPLS,T3, and VPLS,T4 by the controller 232. For example, signal and switch operation delay may be taken into account to further improve efficiency and time switching of the BJT 220 nearer to the valley. There may be a delay between the control signal VPLS,T1 being sent to the switch 324 and the switch 324 actually turning on defined as turn-on delay Tod. Time delay Tod causes the switch 324 to turn on shortly after the valley is reached as shown in
Variable Tod determination and compensation may be performed with additional circuitry, such as shown in
One method for operating the circuit 1000 of
The circuits described above, including the circuits 200, 300, 400, 700, and 1000 of
If implemented in firmware and/or software, the functions described above, such as with respect to the flow charts of
In addition to storage on computer readable medium, instructions and/or data may be provided as signals on transmission media included in a communication apparatus. For example, a communication apparatus may include a transceiver having signals indicative of instructions and data. The instructions and data are configured to cause one or more processors to implement the functions outlined in the claims.
Although the present disclosure and certain representative advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the disclosure as defined by the appended claims. For example, although signals generated by a controller are described throughout as “high” or “low,” the signals may be inverted such that “low” signals turn on a switch and “high” signals turn off a switch. Moreover, the scope of the present application is not intended to be limited to the particular embodiments of the process, machine, manufacture, composition of matter, means, methods and steps described in the specification. As one of ordinary skill in the art will readily appreciate from the present disclosure, processes, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or later to be developed that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps.
Number | Name | Date | Kind |
---|---|---|---|
3660751 | Bullinga | May 1972 | A |
3790878 | Brokaw | Feb 1974 | A |
4322785 | Walker | Mar 1982 | A |
4339671 | Park et al. | Jul 1982 | A |
4342956 | Archer | Aug 1982 | A |
4399500 | Clarke et al. | Aug 1983 | A |
4410810 | Christen | Oct 1983 | A |
4493017 | Kammiller et al. | Jan 1985 | A |
4585986 | Dyer | Apr 1986 | A |
4629971 | Kirk | Dec 1986 | A |
4675547 | Eichenwald | Jun 1987 | A |
4677366 | Wilkinson et al. | Jun 1987 | A |
4683529 | Bucher, II | Jul 1987 | A |
4737658 | Kronmuller et al. | Apr 1988 | A |
4739462 | Farnsworth et al. | Apr 1988 | A |
4937728 | Leonardi | Jun 1990 | A |
4940929 | Williams | Jul 1990 | A |
4970635 | Shekhawat et al. | Nov 1990 | A |
4977366 | Powell | Dec 1990 | A |
5001620 | Smith | Mar 1991 | A |
5003454 | Bruning | Mar 1991 | A |
5055746 | Hu et al. | Oct 1991 | A |
5109185 | Ball | Apr 1992 | A |
5173643 | Sullivan et al. | Dec 1992 | A |
5264780 | Bruer et al. | Nov 1993 | A |
5278490 | Smedley | Jan 1994 | A |
5383109 | Maksimovic et al. | Jan 1995 | A |
5424665 | Sueri et al. | Jun 1995 | A |
5424932 | Inou et al. | Jun 1995 | A |
5430635 | Liu | Jul 1995 | A |
5479333 | McCambridge et al. | Dec 1995 | A |
5481178 | Wilcox et al. | Jan 1996 | A |
5486781 | Im | Jan 1996 | A |
5565761 | Hwang | Oct 1996 | A |
5638265 | Gabor | Jun 1997 | A |
5691890 | Hyde | Nov 1997 | A |
5747977 | Hwang | May 1998 | A |
5757635 | Seong | May 1998 | A |
5764039 | Choi et al. | Jun 1998 | A |
5783909 | Hochstein | Jul 1998 | A |
5798635 | Hwang et al. | Aug 1998 | A |
5808453 | Lee et al. | Sep 1998 | A |
5874725 | Yamaguchi | Feb 1999 | A |
5960207 | Brown | Sep 1999 | A |
5994885 | Wilcox et al. | Nov 1999 | A |
6043633 | Lev et al. | Mar 2000 | A |
6084450 | Smith et al. | Jul 2000 | A |
6091233 | Hwang et al. | Jul 2000 | A |
6160724 | Hemena et al. | Dec 2000 | A |
6229292 | Redl et al. | May 2001 | B1 |
6259614 | Ribarich et al. | Jul 2001 | B1 |
6300723 | Wang et al. | Oct 2001 | B1 |
6304066 | Wilcox et al. | Oct 2001 | B1 |
6304473 | Telefus et al. | Oct 2001 | B1 |
6343026 | Perry | Jan 2002 | B1 |
6356040 | Preis et al. | Mar 2002 | B1 |
6445600 | Ben-Yaakov | Sep 2002 | B2 |
6469484 | L'Hermite et al. | Oct 2002 | B2 |
6510995 | Muthu et al. | Jan 2003 | B2 |
6531854 | Hwang | Mar 2003 | B2 |
6580258 | Wilcox et al. | Jun 2003 | B2 |
6583550 | Iwasa et al. | Jun 2003 | B2 |
6628106 | Batarseh et al. | Sep 2003 | B1 |
6657417 | Hwang | Dec 2003 | B1 |
6661182 | Sridharan | Dec 2003 | B2 |
6696803 | Tao et al. | Feb 2004 | B2 |
6724174 | Esteves et al. | Apr 2004 | B1 |
6758199 | Masters et al. | Jul 2004 | B2 |
6768655 | Yang et al. | Jul 2004 | B1 |
6781351 | Mednik et al. | Aug 2004 | B2 |
6839247 | Yang et al. | Jan 2005 | B1 |
6882552 | Telefus et al. | Apr 2005 | B2 |
6894471 | Corva et al. | May 2005 | B2 |
6933706 | Shih | Aug 2005 | B2 |
6940733 | Schie et al. | Sep 2005 | B2 |
6944034 | Shteynberg et al. | Sep 2005 | B1 |
6956750 | Eason et al. | Oct 2005 | B1 |
6975523 | Kim et al. | Dec 2005 | B2 |
6980446 | Simada et al. | Dec 2005 | B2 |
7042161 | Konopka | May 2006 | B1 |
7072191 | Nakao et al. | Jul 2006 | B2 |
7099163 | Ying | Aug 2006 | B1 |
7161816 | Shteynberg et al. | Jan 2007 | B2 |
7221130 | Ribeiro et al. | May 2007 | B2 |
7224206 | Pappalardo et al. | May 2007 | B2 |
7233135 | Noma et al. | Jun 2007 | B2 |
7266001 | Notohamiprodjo et al. | Sep 2007 | B1 |
7292013 | Chen et al. | Nov 2007 | B1 |
7295452 | Liu | Nov 2007 | B1 |
7411379 | Chu et al. | Aug 2008 | B2 |
7414371 | Choi et al. | Aug 2008 | B1 |
7439810 | Manicone et al. | Oct 2008 | B2 |
7449841 | Ball | Nov 2008 | B2 |
7554473 | Melanson | Jun 2009 | B2 |
7567091 | Farnworth et al. | Jul 2009 | B2 |
7606532 | Wuidart | Oct 2009 | B2 |
7667986 | Artusi et al. | Feb 2010 | B2 |
7684223 | Wei | Mar 2010 | B2 |
7719246 | Melanson | May 2010 | B2 |
7719248 | Melanson | May 2010 | B1 |
7746043 | Melanson | Jun 2010 | B2 |
7804480 | Jeon et al. | Sep 2010 | B2 |
7834553 | Hunt et al. | Nov 2010 | B2 |
7859488 | Kimura | Dec 2010 | B2 |
7872883 | Elbanhawy | Jan 2011 | B1 |
7894216 | Melanson | Feb 2011 | B2 |
8008898 | Melanson et al. | Aug 2011 | B2 |
8169806 | Sims et al. | May 2012 | B2 |
8193717 | Leiderman | Jun 2012 | B2 |
8222772 | Vinciarelli | Jul 2012 | B1 |
8242764 | Shimizu et al. | Aug 2012 | B2 |
8248145 | Melanson | Aug 2012 | B2 |
8369109 | Niedermeier et al. | Feb 2013 | B2 |
8441220 | Imura | May 2013 | B2 |
8536799 | Grisamore et al. | Sep 2013 | B1 |
8610364 | Melanson et al. | Dec 2013 | B2 |
20020082056 | Mandai et al. | Jun 2002 | A1 |
20030090252 | Hazucha | May 2003 | A1 |
20030111969 | Konishi et al. | Jun 2003 | A1 |
20030160576 | Suzuki | Aug 2003 | A1 |
20030174520 | Bimbaud | Sep 2003 | A1 |
20030214821 | Giannopoulos et al. | Nov 2003 | A1 |
20030223255 | Ben-Yaakov et al. | Dec 2003 | A1 |
20040046683 | Mitamura et al. | Mar 2004 | A1 |
20040196672 | Amei | Oct 2004 | A1 |
20050057237 | Clavel | Mar 2005 | A1 |
20050207190 | Gritter | Sep 2005 | A1 |
20050231183 | Li et al. | Oct 2005 | A1 |
20050270813 | Zhang et al. | Dec 2005 | A1 |
20050275354 | Hausman et al. | Dec 2005 | A1 |
20060013026 | Frank et al. | Jan 2006 | A1 |
20060022648 | Ben-Yaakov et al. | Feb 2006 | A1 |
20060214603 | Oh et al. | Sep 2006 | A1 |
20070103949 | Tsuruya | May 2007 | A1 |
20070182347 | Shteynberg et al. | Aug 2007 | A1 |
20080018261 | Kastner | Jan 2008 | A1 |
20080043504 | Ye et al. | Feb 2008 | A1 |
20080062584 | Freitag et al. | Mar 2008 | A1 |
20080062586 | Apfel | Mar 2008 | A1 |
20080117656 | Clarkin | May 2008 | A1 |
20080130336 | Taguchi | Jun 2008 | A1 |
20080175029 | Jung et al. | Jul 2008 | A1 |
20080259655 | Wei et al. | Oct 2008 | A1 |
20080278132 | Kesterson et al. | Nov 2008 | A1 |
20080310194 | Huang et al. | Dec 2008 | A1 |
20090040796 | Lalithambika | Feb 2009 | A1 |
20090059632 | Li et al. | Mar 2009 | A1 |
20090067204 | Ye et al. | Mar 2009 | A1 |
20090108677 | Walter et al. | Apr 2009 | A1 |
20090184665 | Ferro | Jul 2009 | A1 |
20090295300 | King | Dec 2009 | A1 |
20100128501 | Huang et al. | May 2010 | A1 |
20100202165 | Zheng et al. | Aug 2010 | A1 |
20100238689 | Fei et al. | Sep 2010 | A1 |
20100244793 | Caldwell | Sep 2010 | A1 |
20110110132 | Rausch et al. | May 2011 | A1 |
20110199793 | Kuang et al. | Aug 2011 | A1 |
20110276938 | Perry et al. | Nov 2011 | A1 |
20110291583 | Shen | Dec 2011 | A1 |
20110298442 | Waltisperger et al. | Dec 2011 | A1 |
20110309760 | Beland et al. | Dec 2011 | A1 |
20120062131 | Choi et al. | Mar 2012 | A1 |
20120146540 | Khayat et al. | Jun 2012 | A1 |
20120182003 | Flaibani et al. | Jul 2012 | A1 |
20120187997 | Liao et al. | Jul 2012 | A1 |
20120212147 | Kuo | Aug 2012 | A1 |
20120248998 | Yoshinaga | Oct 2012 | A1 |
20120286686 | Watanabe | Nov 2012 | A1 |
20120286843 | Kurokawa | Nov 2012 | A1 |
20120320640 | Baurle et al. | Dec 2012 | A1 |
20130088902 | Dunipace | Apr 2013 | A1 |
20130107595 | Gautier et al. | May 2013 | A1 |
20130181635 | Ling | Jul 2013 | A1 |
20140218978 | Heuken et al. | Aug 2014 | A1 |
Number | Date | Country |
---|---|---|
0536535 | Apr 1993 | EP |
0636889 | Feb 1995 | EP |
1213823 | Jun 2002 | EP |
1289107 | Mar 2003 | EP |
1962263 | Aug 2008 | EP |
2232949 | Sep 2010 | EP |
2257124 | Dec 2010 | EP |
2008053181 | Mar 2008 | JP |
0184697 | Nov 2001 | WO |
2004051834 | Jun 2004 | WO |
2006013557 | Feb 2006 | WO |
2006022107 | Mar 2006 | WO |
2007016373 | Feb 2007 | WO |
2008004008 | Jan 2008 | WO |
2008152838 | Dec 2008 | WO |
2010011971 | Jan 2010 | WO |
2010065598 | Jun 2010 | WO |
2011008635 | Jan 2011 | WO |
Entry |
---|
International Search Report and Written Opinion mailed Sep. 18, 2014, during examination of PCT/US2014/038490. |
International Search Report and Written Opinion mailed Sep. 16, 2014, during examination of PCT/US2014/038507. |
Severns, A New Improved and Simplified Proportional Base Drive Circuit, Proceedings of PowerCon 6, May 1979. |
Ivanovic, Zelimir, “A low consumption proportional base drive circuit design for switching transistors”, Proceedings of the Fifth International PCI '82 Conference: Sep. 28-30, 1982, Geneva, Switzerland. |
Bell, David, “Designing optimal base drive for high voltage switching transistors”, Proceeding of PowerCon7, 1980. |
Marcelo Godoy Simões, “Power Bipolar Transistors”, Chapter 5, Academic Press 2001, pp. 63-74. |
Varga, L.D. and Losic, N.A., “Design of a high-performance floating power BJT driver with proportional base drive,” Industry Applications Society Annual Meeting, 1989., Conference Record of the Oct. 1-5, 1989, IEEE, vol. I, pp. I186, 1189. |
Skanadore, W.R., “Toward an understanding and optimal utilization of third-generation bipolar switching transistors”, 1982 IEEE. |
IC datasheet STR-S6707 through STR-S6709 by Sanken, copyright 1994, Allegro MicroSystems, Inc. |
Avant et al., “Analysis of magnetic proportional drive circuits for bipolar junction transistors” PESC 1985, pp. 375-381. |
Maksimovic, et al, Impact of Digital Control in Power Electronics, International Symposium on Power Semiconductor Devices and ICS, 2004, pp. 2-22, Boulder, Colorado, USA. |
Fairchild Semiconductor, Ballast Control IC, FAN 7711, Rev. 1.0.3, 2007, pp. 1-23, San Jose, California, USA. |
Yao, Gang et al, Soft Switching Circuit for Interleaved Boost Converters, IEEE Transactions on Power Electronics, vol. 22, No. 1, Jan. 2007, pp. 1-8, Hangzhou China. |
STMicroelectronics, Transition Mode PFC Controller, Datasheet L6562, Rev. 8, Nov. 2005, pp. 1-16, Geneva, Switzerland. |
Zhang, Wanfeng et al, A New Duty Cycle Control Strategy for Power Factor Correction and FPGA Implementation, IEEE Transactions on Power Electronics, vol. 21, No. 6, Nov. 2006, pp. 1-10, Kingston, Ontario, Canada. |
STMicroelectronics, Power Factor Connector L6561, Rev 16, Jun. 2004, pp. 1-13, Geneva, Switzerland. |
Texas Instruments, Avoiding Audible Noise at Light Loads When Using Leading Edge Triggered PFC Converters, Application Report SLUA309A, Mar. 2004—Revised Sep. 2004, pp. 1-4, Dallas, Texas, USA. |
Texas Instruments, Startup Current Transient of the Leading Edge Triggered PFC Controllers, Application Report SLUA321, Jul. 2004, pp. 1-4, Dallas, Texas, USA. |
Texas Instruments, Current Sense Transformer Evaluation UCC3817, Application Report SLUA308, Feb. 2004, pp. 1-3, Dallas, Texas, USA. |
Texas Instruments, BiCMOS Power Factor Preregulator Evaluation Board UCC3817, User's Guide, SLUU077C, Sep. 2000—Revised Nov. 2002, pp. 1-10, Dallas, Texas, USA. |
Texas Instruments, Interleaving Continuous Conduction Mode PFC Controller, UCC28070, SLUS794C, Nov. 2007—Revised Jun. 2009, pp. 1-45, Dallas, Texas, USA. |
Texas Instruments, 350-W Two-Phase Interleaved PFC Pre-regulator Design Review, Application Report SLUA369B, Feb. 2005—Revised Mar. 2007, pp. 1-22, Dallas, Texas, USA. |
Texas Instruments, Average Current Mode Controlled Power Factor Correction Converter using TMS320LF2407A, Application Report SPRA902A, Jul. 2005, pp. 1-15, Dallas, Texas, USA. |
Texas Instruments, Transition Mode PFC Controller, UCC28050, UCC28051, UCC38050, UCC38051, Application Note SLUS515D, Sep. 2002—Revised Jul. 2005, pp. 1-28, Dallas, Texas, USA. |
Unitrode, High Power-Factor Preregulator, UC1852, UC2852, UC3852, Feb. 5, 2007, pp. 1-8, Merrimack, Maine, USA. |
Unitrode, Optimizing Performance in UC3854 Power Factor Correction Applications, Design Note ON 39E, 1999, pp. 1-6, Merrimack, Maine, USA. |
ON Semiconductor Four Key Steps to Design a Continuous Conduction Mode PFC Stage Using the NCP1653, Application Note AND8184/D, Nov. 2004, pp. 1-8, Phoenix, AZ, USA. |
Unitrode, BiCMOS Power Factor Preregulator, Texas Instruments, UCC2817, UCC2818, UCC3817, UCC3818, SLUS3951, Feb. 2000—Revised Feb. 2006, pp. 1-25, Dallas, Texas, USA. |
Unitrode, UC3854AIB and UC3855A!B Provide Power Limiting with Sinusoidal Input Current for PFC Front Ends, SLUA196A, Design Note DN-66, Jun. 1995—Revised Nov. 2001, pp. 1-6, Merrimack, Maine, USA. |
Unitrode, Programmable Output Power Factor Preregulator, UCC2819, UCC3819, SLUS482B, Apr. 2001—Revised Dec. 2004, pp. 1-16, Merrimack, Maine, USA. |
Texas Instruments, UCC281019, 8-Pin Continuous Conduction Mode (CCM) PFC Controller, SLU828B, Revised Apr. 2009, pp. 1-48, Dallas, Texas, USA. |
http://toolbarpdf.com/docs/functions-and-features-of=inverters.html, Jan. 20, 2011, pp. 1-8. |
Zhou, Jinghai, et al, Novel Sampling Algorithm for DSP Controlled 2kW PFC Converter, IEEE Transactions on Power Electronics, vol. 16, No. 2, Mar. 2001, pp. 1-6, Hangzhou, China. |
Mammano, Bob, Current Sensing Solutions for Power Supply Designers, Texas Instruments, 2001, pp. 1-36, Dallas, Texas, USA. |
Fairchild Semiconductor, Ballast Control IC FAN7532, Rev. 1.0.3, Jun. 2006, pp. 1-16, San Jose, California, USA. |
Fairchild Semiconductor, Simple Ballast Controller, FAN7544, Rev. 1.0.0, Sep. 21, 2004, pp. 1-14, San Jose, California, USA. |
Texas Instruments, High Performance Power Factor Preregulator, UC2855A/B and UC3855A/B, SLUS328B, Jun. 1998, Revised Oct. 2005, pp. 1-14, Dallas, TX, USA. |
Balogh, Laszlo, et al, Power-Factor Correction with Interleaved Boost Converters in Continuous-Inductr-Current Mode, 1993, IEEE, pp. 168-174, Switzerland. |
Cheng, Hung L., et al, A Novel Single-Stage High-Power-Factor Electronic Ballast with Symmetrical Topology, Power Electronics and Motion Control Conference, 2006. IPEMC 2006. CES/IEEE 5th International, Aug. 14-16, 2006, vol. 50, No. 4, Aug. 2003, pp. 759-766, Nat. Ilan Univ., Taiwan. |
Fairchild Semiconductor. Theory and Application of the ML4821 Average Current Mode PFC Controllerr, Fairchild Semiconductor Application Note 42030. Rev. 1.0, Oct. 25, 2000, pp. 1-19, San Jose, California, USA. |
Garcia, O., et al, High Efficiency PFC Converter to Meet EN610000302 and A14, Industrial Electronics, 2002. ISIE 2002. Proceedings of the 2002 IEEE International Symposium, vol. 3, pp. 975-980, Div. de Ingenieria Electronica, Univ. Politecnica de Madrid, Spain. |
Infineon Technologies AG, Standalone Power Factor Correction (PFC) Controller in Continuous Conduction Mode (CCM), Infineon Power Management and Supply, CCM-PFC, ICE2PCS01, ICE2PCS01 G, Version 2.1, Feb. 6, 2007, p. 1-22, Munchen, Germany. |
Lu, et al, Bridgeless PFC Implementation Using One Cycle Control Technique, International Rectifier, 2005, pp. 1-6, Blacksburg, VA, USA. |
Brown, et al, PFC Converter Design with IR1150 One Cycle Control IC, International Rectifier, Application Note AN-1 077, pp. 1-18, El Segundo CA, USA. |
International Rectifer, PFC One Cycle Control PFC IC, International Rectifier, Data Sheet No. PD60230 rev. C, IR1150(S)(PbF), IR11501(S)(PbF), Feb. 5, 2007, pp. 1-16, El Segundo, CA, USA. |
International Rectifier, IRAC1150=300W Demo Board, User's Guide, Rev 3.0, International Rectifier Computing and Communications SBU-AC-DC Application Group, pp. 1-18, Aug. 2, 2005, El Segundo, CO USA. |
Lai, Z., et al, A Family of Power-Factor-Correction Controller, Applied Power Electronics Conference and Exposition, 1997. APEC '97 Conference Proceedings 1997., Twelfth Annual, vol. 1, pp. 66-73, Feb. 23-27, 1997, Irvine, CA. |
Lee, P, et al, Steady-State Analysis of an Interleaved Boost Converter with Coupled Inductors, IEEE Transactions on Industrial Electronics, vol. 47, No. 4, Aug. 2000, pp. 787-795, Hung Horn, Kowloon, Hong Kong. |
Linear Technology, Single Switch PWM Controller with Auxiliary Boost Converter, Linear Technology Corporation, Data Sheet LT 1950, pp. 1-20, Milpitas, CA, USA. |
Linear Technology, Power Factor Controller, Linear Technology Corporation, Data Sheet LT1248, pp. 1-12, Milpitas, CA, USA. |
Supertex, Inc., HV9931 Unity Power Factor LED Lamp Driver, Supertex, Inc., Application Note AN-H52, 2007, pp. 1-20, Sunnyvale, CA, USA. |
Ben-Yaakov, et al, The Dynamics of a PWM Boost Converter with Resistive Input, IEEE Transactions on Industrial Electronics, vol. 46., No. 3, Jun. 1999, pp. 1-8, Negev, Beer-Sheva, Israel. |
Erickson, Robert W., et al, Fundamentals of Power Electronics, Second Edition, Chapter 6, 2001, pp. 131-184, Boulder CO, USA. |
STMicroelectronics, CFL/TL Ballast Driver Preheat and Dimming L6574, Sep. 2003, pp. 1-10, Geneva, Switzerland. |
Fairchild Semiconductor, 500W Power-Factor-Corrected (PFC) Converter Design with FAN4810, Application Note 6004, Rev. 1.0.1, Oct. 31, 2003, pp. 1-14, San Jose, CA, USA. |
Fairfield Semiconductor, Power Factor Correction (PFC) Basics, Application Note 42047, Rev. 0.9.0, Aug. 19, 2004, pp. 1-11, San Jose, CA, USA. |
Fairchild Semiconductor, Design of Power Factor Correction Circuit Using FAN7527B, Application Note AN4121, Rev. 1.0.1, May 30, 2002, pp. 1-12, San Jose, CA, USA. |
Fairchild Semiconductor, Low Start-Up Current PFC/PWM Controller Combos FAN4800, Rev. 1.0.6, Nov. 2006, pp. 1-20, San Jose, CA, USA. |
Prodic, Aleksander, Compensator Design and Stability Assessment for Fast Voltage Loops of Power Factor Correction Rectifiers, IEEE Transactions on Power Electronics, vol. 22, Issue 5, Sep. 2007, pp. 1719-1730, Toronto, Canada. |
Fairchild Semiconductor, ZVS Average Current PFC Controller FAN 4822, Rev. 1.0.1, Aug. 10, 2001, pp. 1-10, San Jose, CA, USA. |
Prodic, et al, Dead-Zone Digital Controller for Improved Dynamic Response of Power Factor Preregulators, Applied Power Electronics Conference and Exposition, 2003, vol. 1, pp. 382-388, Boulder CA, USA. |
Philips Semiconductors, 90W Resonant SMPS with TEA 1610 Swing Chip, Application Note AN99011, Sep. 14, 1999, pp. 1-28, The Netherlands. |
Fairchild Semiconductor, Power Factor Correction Controller FAN7527B, Aug. 16, 2003, pp. 1-12, San Jose, CA, USA. |
ON Semiconductor, Power Factor Controller for Compact and Robust, Continuous Conduction Mode Pre-Converters, NCP1654, Mar. 2007, Rev. PO, pp. 1-10, Denver, CO, USA. |
Fairchild Semicondctor, Simple Ballast Controller, KA7541, Rev. 1.0.3, Sep. 27, 2001, pp. 1-14, San Jose, CA, USA. |
Fairchild Semiconductor, Power Factor Controller, ML4812, Rev. 1.0.4, May 31, 2001, pp. 1-18, San Jose, CA, USA. |
Prodic, et al, Digital Controller for High-Frequency Rectifiers with Power Factor Correction Suitable for On-Chip Implementation, Power Conversion Conference—Nagoya, 2007. PCC '07, Apr. 2-5, 2007, pp. 1527-1531, Toronto, Canada. |
Freescale Semiconductor, Dimmable Light Ballast with Power Factor Correction, Designer Reference Manual, DRM067, Rev. 1, Dec. 2005, M681-1C08 Microcontrollers, pp. 1-72, Chandler, AZ, USA. |
Freescale Semiconductor, Design of Indirect Power Factor Correction Using 56F800/E, Freescale Semiconductor Application Note, AN1965, Rev. 1, Jul. 2005, pp. 1-20, Chandler, AZ, USA. |
Freescale Semiconductor, Implementing PFC Average Current Mode Control using the MC9S12E128, Application Note AN3052, Addendum to Reference Design Manual DRM064, Rev. 0, Nov. 2005, pp. 1-8, Chandler, AZ, USA. |
Hirota, et al, Analysis of Single Switch Delta-Sigma Modulated Pulse Space Modulation PFC Converter Effectively Using Switching Power Device, Power Electronics Specialists Conference, 2002. pesc 02. 2002 IEEE 33rd Annual, vol. 2, pp. 682-686, Hyogo Japan. |
Madigan, et al, Integrated High-Quality Rectifier-Regulators, Industrial Electronics, IEEE Transactions, vol. 46, Issue 4, pp. 749-758, Aug. 1999, Cary, NC, USA. |
Renesas, Renesas Technology Releases Industry's First Critical-Conduction-Mode Power Factor Correction Control IC Implementing Interleaved Operations, R2A20112, pp. 1-4, Dec. 18, 2006, Tokyo, Japan. |
Renesas, PFC Control IC R2A20111 Evaluation Board, Application Note R2A20111 EVB, all pages, Feb. 2007, Rev. 1.0, pp. 1-39, Tokyo, Japan. |
Miwa, et al, High Efficiency Power Factor Correction Using Interleaving Techniques, Applied Power Electronics Conference and Exposition, 1992. APEC '92. Conference Proceedings 1992., Seventh Annual, Feb. 23-27, 1992, pp. 557-568, MIT, Cambridge, MA, USA. |
Noon, Jim, High Performance Power Factor Preregulator UC3855A!B, Texas Instruments Application Report, SLUA146A, May 1996—Revised Apr. 2004, pp. 1-35, Dallas TX, USA. |
NXP Semiconductors, TEA1750, GreenChip III SMPS Control IC Product Data Sheet, Rev.01, Apr. 6, 2007, pp. 1-29, Eindhoven, The Netherlands. |
Turchi, Joel, Power Factor Correction Stages Operating in Critical Conduction Mode, ON Semiconductor, Application Note AND8123/D, Sep. 2003—Rev. 1 , pp. 1-20, Denver, CO, USA. |
ON Semiconductor, Greenline Compact Power Factor Controller: Innovative Circuit for Cost Effective Solutions, MC33260, Semiconductor Components Industries, Sep. 2005—Rev. 9, pp. 1-22, Denver, CO, USA. |
ON Semiconductor, Enhanced, High Voltage and Efficient Standby Mode, Power Factor Controller, NCP1605, Feb. 2007, Rev. 1, pp. 1-32, Denver, CO, USA. |
ON Semiconductor, Cost Effective Power Factor Controller, NCP1606, Mar. 2007, Rev. 3, pp. 1-22, Denver, CO, USA. |
Renesas, Power Factor Correction Controller IC, HA16174P/FP, Rev. 1.0, Jan. 6, 2006, pp. 1-38, Tokyo, Japan. |
Seidel, et al, A Practical Comparison Among High-Power-Factor Electronic Ballasts with Similar Ideas, IEEE Transactions on Industry Applications, vol. 41, No. 6, Nov./Dec. 2005, pp. 1574-1583, Santa Maria, Brazil. |
STMicroelectronics, Electronic Ballast with PFC using L6574 and L6561. Application Note AN993, May 2004, pp. 1-20, Geneva, Switzerland. |
STMicroelectronics, Advanced Transition-Mode PFC Controller L6563 and L6563A, Mar. 2007, pp. 1-40, Geneva, Switzerland. |
Su, et al, “Ultra Fast Fixed-Frequency Hysteretic Buck Converter with Maximum Charging Current Control and Adaptive Delay Compensation for DVS Applications”, IEEE Journal of Solid-Slate Circuits, vol. 43, No. 4, Apr. 2008, pp. 815-822, Hong Kong University of Science and Technology, Hong Kong, China. |
Wong, et al, “Steady State Analysis of Hysteretic Control Buck Converters”, 2008 13th International Power Electronics and Motion Control Conference (EPE-PEMC 2008), pp. 400-404, 2008, National Semiconductor Corporation, Power Management Design Center, Hong Kong, China. |
Zhao, et al, Steady-State and Dynamic Analysis of a Buck Converter Using a Hysteretic PWM Control, 2004 35th Annual IEEE Power Electronics Specialists Conference, pp. 3654-3658, Department of Electrical & Electronic Engineering, Oita University, 2004, Oita, Japan. |
International Search Report, PCT/US2012/069942, European Patent Office, Jul. 21, 2014, pp. 1-5. |
Written Opinion, PCT/US2012/069942, European Patent Office, Jul. 21, 2014, pp. 1-8. |
International Search Report, PCT/US2014/021921, European Patent Office, Jun. 23, 2014, pp. 1-3. |
Written Opinion, PCT/US2014/021921, European Patent Office, Jun. 23, 2014, pp. 1-5. |
Number | Date | Country | |
---|---|---|---|
20160255685 A1 | Sep 2016 | US |