Switch-mode power supplies (SMPSs) are important power management components in modern electronic devices. They provide, among other things, on-line power processing efficiency optimization, enabling longer battery life and decreased power losses. The reduced power losses allow for lower operating temperatures, smaller cooling solutions, reduced bill-of-material and/or decreased SMPS volume.
However, in order to implement reliable and universal on-line power processing efficiency optimizations, accurate, constrained, noise tolerant and smooth controller mode transitions may be required. The practical implementation of such a controller is usually achieved using expensive, power hungry and/or application-specific mixed-signal circuits and algorithms.
Additional difficulties with existing systems may be appreciated in view of the instant disclosure.
One or more example embodiments will now be described, by way of example only, with reference to the attached figures, wherein:
These figures depict exemplary embodiments for illustrative purposes, and variations, alternative configurations; alternative components and modifications may be made to these exemplary figures.
Aspects of the present application relate to switch-mode power supplies and control of universal switch-mode power supplies. Further aspects relate to the type of switch-mode power supplies that utilize the known USB Type-C power delivery (USB-PD) protocol. Still further aspects relate to the type of high-efficiency switch-mode power supplies that utilize autonomous synchronous rectification.
In accordance with an aspect of the present application there is provided a method of estimating an input voltage for a switch-mode power supply. The method includes populating a lookup table correlating a plurality of magnetizing inductance discharge times with a plurality of input voltages for the switch-mode power supply, measuring a magnetizing inductance discharge time and locating, in the lookup table, an input voltage that is correlated to the magnetizing inductance discharge time, the correlated input voltage providing an estimate of the input voltage.
In accordance with an aspect of the present application there is provided a method of power efficiency optimization. The method includes generating a plurality of theoretical power processing efficiency curves for a plurality of combinations of input voltage, output voltage and minimum flyback cell switching device off-time, determining an average of a plurality of weighted power processing efficiency for the plurality of combinations of input voltage, output voltage and minimum flyback cell switching device off-time, for each unique pair of a plurality of unique pairs of input voltage and output voltage, selecting a particular flyback cell switching device off-time having a greatest average weighted efficiency, populating a two-dimensional lookup table with each particular flyback cell switching device off-time associated with a corresponding unique pair and during on-line operation with a given input voltage and a given output voltage, utilizing the two-dimensional lookup table to obtain a useful flyback cell switching device off-time.
The switch-mode power supply controller 106 may be implemented with multi-mode operation capabilities for achieving on-line efficiency optimization over a wide range of input voltages, output voltages and output load currents. The switch-mode power supply controller 106 may, for example, be suited for USB-PD compliant flyback-based, switch-mode power supplies that may or may not utilize autonomous secondary-side synchronous rectification.
Although not illustrated, a person of ordinary skill in the art of switch-mode power supplies will easily understand that each flyback cell 201 includes a switching device and a primary side winding for a flyback transformer 202. A distinct primary side winding is illustrated as associated with each flyback cell 201, but not labeled separately. The multi-mode controller 204 produces k control signals: c1; c2; . . . and ck. Each one of the k control signals is associated with a corresponding flyback cell switching device.
The flyback transformer 202 has a secondary side winding that is arranged in series with the synchronous rectification module 203. The series combination of the secondary side winding of the flyback transformer 202 and the synchronous rectification module 203 provides the output of the flyback-based, switch-mode power supply 104 across an output capacitor 214. A plurality, n, of reference voltages Vref output from the USB Type-C PD controller 108 are received at a feedback compensator network 210 along with the output Vout of the flyback-based, switch-mode power supply 104.
The feedback compensator network 210 generates an internal error signal that is representative of a difference between the output voltage Vout of the flyback-based, switch-mode power supply 104 and one reference voltage among the plurality of reference voltages output from the USB Type-C PD controller 108. The feedback compensator network 210 processes the difference through an internal proportional-integral (PI) or proportional-integral-differential (PID) compensator. The output from the feedback compensator network 210 is mirrored from the secondary side 100S to the primary side 100P through at an isolator 208. The isolator 208 provides a control signal voltage, Vcpri, to the multi-mode controller 204.
When a flyback cell switching device is operated (e.g., closed), the associated primary winding may be characterized by a magnetizing inductance value Lm.
The multi-mode controller 204 may be implemented as a hardware efficient system that executes a method for estimating the input voltage, Vin, based on knowledge of several parameters. The parameters include an output voltage, Vout, a magnetizing inductance charging time, ton, and a measurement of a magnetizing inductance discharging time, tdischarge. The relationship between these parameters for the flyback-based, switch-mode power supply 104, illustrated in
In Equations (1a), (1b) and (2), the value mr is representative of a slope of the waveform for the magnetizing inductance current, iLm, expressed in Amperes (A) per second (s), i.e., “A/s,” in the time period, ton, during which the magnetizing inductance current is rising (see
For USB-PD compliance, the output voltage is to be regulated at 5V for a certain period of time shortly after start-up and during periods when no load is connected. Output voltage regulation is illustrated, in graph form, in
As illustrated in
Subsequent to incrementing the count, the processor of the multi-mode controller 204 may determine (step 510) whether the count is less than toffmin. Upon determining (step 510) that the count is less than toffmin, the multi-mode controller 204 remains in the second mode of operation (mode 508). Upon determining (step 510) that the count is greater than or equal to toffmin, the processor of the multi-mode controller 204 determines (step 512) whether a valley point has been reached in the flyback magnetizing voltage VLm. Upon determining (step 512) that a valley point has not been reached, the multi-mode controller 204 remains in the second mode of operation (mode 508).
Upon determining (step 512) whether a valley point has been reached, the multi-mode controller 204 re-initializes (step 514) the count to zero and determines (step 518) whether ton is less than tonmin. Upon determining (step 518) that ton is less than tonmin, the multi-mode controller 204 enters the third mode of operation (mode 516). Upon determining (step 518) that ton is greater than or equal to tonmin, the multi-mode controller 204 re-enters the first mode of operation (mode 502).
Often, Vout and ton are known and the discharge time, tdischarge, may be determined. In particular, the discharge time, tdischarge, may be determined by measurement using a zero-voltage detector 206 illustrated in
The determination represented by Equation (2) may involve: tracking the parameter ton by measuring time between start-up and a first instance of light-load operation after start-up, e.g., detecting a fixed minimum ton; measuring tdischarge by measuring time between the first instance of light-load operation and a point at which the flyback magnetizing inductance current, iLm, falls to zero. The latter point may be detected using the zero-voltage detector 206 or a similar device; and determining the input voltage using Equation (2) coupled with the knowledge that the output voltage shortly after start-up is regulated tightly around 5V, as specified by USB-PD, and the knowledge that the number of the flyback cells 201 is fixed. The determining step of this method may be implemented using a hardware efficient one-dimensional lookup table, which may be represented by a function, “F1.”
Eventually, the control signal voltage, Vcpri, ceases to increase and drops down to zero the beginning of a brownout condition. Experimentally, it may be found at what value of the input voltage this drop occurs.
With the plots of
Determining that the input voltage is decreasing may, for example, involve repetitively obtaining estimations of the input voltage using an estimated or measured output voltage value, Vout, the number, e.g., k, of the flyback cells 201 and the ratio between tdischarge and ton through the use of Equation (2), which is restated as follows:
A hardware efficient method of estimating the output voltage, Vout, employs an estimate of the input voltage estimate, Vin, determined using Equation (2), the number, e.g., k, of the flyback cells 201, the fixed magnetizing inductance charging time, ton, and the measured discharging time, tdischarge.
Estimating the input voltage may involve use of information about the output load current being low, as shown in
As such, a discrete output voltage estimate found using Equation (3), which follows, may be implemented using a hardware efficient two-dimensional (“2-D”) lookup table, which may be represented by a function, “F4.” Equation (3) may be shown to be hardware efficient and accurate for output voltage, Vout, estimation. Equation (3) may involve use of one 2-D lookup table, measurement of the magnetizing inductance discharge time, tdischarge, and estimation of the input voltage, Vin.
A method of detecting the beginning of a brownout condition may employ an estimate of the output voltage, Vout, obtained, say, via Equation (3), a detected magnetizing inductance discharge time, tdischarge, and a measurement of the flyback cell switching device on-time, ton.
Example steps in a method of detecting the beginning of a brownout condition are illustrated in
Since the output voltage estimation occurs during low-load operation, an effect of input voltage variations due to AC 100-120 Hz ripple is minimized. Notably, the accuracy of the output voltage estimate may be limited by the regulation accuracy of the feedback compensator network 210.
To maximize the average power processing efficiency, it may be seen as useful to select a minimum flyback cell switching device off-time, toffmin.
As an initial step (step 902), a processor executing a specific computer program generates a plurality of theoretical power processing efficiency curves. The plurality of curves includes individual curves, where each individual curve may be represented by a function “η” and be generated for one combination among a plurality of combinations. Each combination includes an input voltage, an output voltage and a minimum flyback cell switching device off-time, toffmin. As should be clear to a person of skill in the art of switch-mode power supplies, the flyback cell switching device off-time is typically constrained. Minimum flyback cell switching device off-time may, for instance, be constrained by maximum switching losses. Maximum flyback cell switching device off-time may, for instance, be constrained by peak magnetizing inductance current, ipeak (see
The same processor may then determine (step 904) average weighted power processing efficiency, ηavg, for each combination of the plurality of combinations. For example, the processor may determine a power processing efficiency value at a 20% load level, a 50% load level and a 100% load level. These three power processing efficiency values may then be weighted. To find the average, the three weighted values may be summed and then divided by three.
The processor may then consider, for a unique pair of Vin and Vout, which minimum flyback cell switching device off-time, toffmin, is associated with the highest average weighted efficiency, ηavg. The processor may then select (step 906) the minimum off-time, toffmin, that is associated with the highest average weighted efficiency. The processor may then insert (step 908) the selected for the unique pair into a lookup table, associated with the Vin and the Vout of the unique pair. The lookup table may be represented as a function, “F2,” as illustrated in Equation (4), which follows:
toffmin=F2(Vout,Vin). (4)
When useful in operation of the multi-mode controller 204, the processor of the multi-mode controller 204 may determine toffmin through reading the toffmin associated with a given Vin and Vout combination.
A maximum flyback cell switching device on-time, toffmax, may be determined such that a peak magnetizing inductance current, ipeakmax, remains below a saturation current of the flyback transformer 202. The maximum flyback cell switching device on-time may be based on an estimated input voltage, Vin, according to Equation (5), which follows:
Equation (5) may be simplified through the use of a lookup table represented by a function, “F3.”
Initially, an assumption is made that Vout is 5V and that Vin is maximized. Initial values for the maximum on-time, tonmax, and the minimum off-time, toffmin may be pre-selected based on that assumption.
The processor of the multi-mode controller 204 determines (step 1002) whether the output voltage, Vout, is less than a reference voltage, Vref. Upon determining (step 1002) that the output voltage, Vout, is not greater than a reference voltage, Vref, the processor increments (step 1012) the flyback cell switching device on-time, ton. The processor repeats the determining (step 1002) and the incrementing (step 1012) until the processor determines (step 1002) that the output voltage, Vout, is greater than the reference voltage, Vref, the processor estimates (step 1004) Vin, toffmax and toffmin. In some embodiments, responsive to determining that the maximum on-time tonmax is greater than or equal to the flyback cell switching device on-time ton, the flyback cell switching device on-time ton is assigned to the maximum on-time toffmax.
The processor may use (step 1004) Equation (2) to estimate Vin based on tdischarge.
The processor may use (step 1004) Equation (4), with Vout set to 5V, to estimate toffmin based on the estimated Vin.
The processor may use (step 1004) Equation (5) to estimate toffmax based on the estimated Vin.
The processor may then implement (step 1006) a switching cycle.
The processor may then determine (step 1008) whether the skip-pulse mode of operation (mode 516) is enabled. Determining (step 1008) whether the skip-pulse mode of operation (mode 516) is enabled may, for example, involve determining that the flyback cell switching device on-time, ton, has reached a flyback cell switching device on-time, tonskip, that is already associated with the skip-pulse mode of operation (mode 516).
Upon determining that the skip-pulse mode of operation (mode 516) is enabled, the processor estimates (step 1010), say, through the use of Equation (3), a new output voltage and uses the new output voltage, say, through the use of Equation (4), to find a new toffmin. The processor then returns to implement (step 1006) another switching cycle. Similarly, upon determining that the skip-pulse mode of operation (mode 516) is not enabled, the processor returns to implement (step 1006) another switching cycle.
In a first aspect, there is provided hardware efficient and accurate input voltage estimation method, requiring only one 1-D lookup table and measurement of the magnetizing inductance discharge time. See Equation (2).
In a second aspect, there is provided hardware efficient and accurate output voltage estimation method, requiring only one 2-D lookup table, measurement of the magnetizing inductance discharge time and estimation of the input voltage (via the first aspect). See Equation (3).
In a further aspect, there is provided a method for on-line current-limit implementation via enforcement of a maximum on-time compromising of 1) input voltage estimation (via the first aspect), 2) lookup of an input voltage dependent maximum on-time from a 1-D lookup table (see Equation (5) and 3) comparison and, when applicable, limitation of issued primary-side switch on-time below the lookup table read maximum on-time value.
In a further aspect, there is provided a method for on-line power efficiency optimization via selection of the minimum primary side off-time/secondary side on-time comprising: 1) generation of power processing efficiency curves for all combinations of input voltage, output voltage and minimum primary side off-time/secondary side on-time for controller operation described in
In a further aspect, there is provided a method for robust brownout/UVLO estimation via output voltage estimation (via the second aspect), magnetizing inductance discharge time measurement and primary-side switch on-time knowledge. The method comprises of 1) detecting period when the input voltage is decreasing, that is time when the primary-side switch on-time is increasing/saturated and the discharge time is relatively constant, 2) estimating the input voltage using measured/estimated parameters listed previously and the first aspect, and 3) driving an UVLO/brownout signal high when the input voltage estimate is lower than a predefined voltage value.
The example embodiments, due to use of lookup tables, may be understood to provide hardware efficiency. The hardware efficiency can be considered with respect to at least some or all of: 1) the fact that 1D and 2D lookup tables can be compactly implemented on an ASIC or an FPGA (silicon area and/or lookup table memory space are negligible); 2) lookup tables are inherently low-power, in that lookup tables eliminate multiplication, addition, etc., which are known to be power-hungry, and lookup tables have low-propagation times, in that lookup tables can work with very fast operating frequency; 3) the lookup table size is minimized by the proposed utilization of known load and output voltage values during startup and after voltage changes, see the first mode of operation 502 (
In some example embodiments, reference to a table herein can comprise suitable logical constructs such as a map, mapping, single parameter or multiple parameter computer variable, or any discrete value lookup method based on input variable(s).
In example embodiments, as appropriate, each illustrated block or module may represent software, hardware, or a combination of hardware and software. Further, some of the blocks or modules may be combined in other example embodiments, and more or less blocks or modules may be present in other example embodiments. Furthermore, some of the blocks or modules may be separated into a number of sub-blocks or sub-modules in other embodiments.
While some of the present embodiments are described in terms of methods, a person of ordinary skill in the art will understand that present embodiments are also directed to various apparatus such as a server apparatus including components for performing at least some of the aspects and features of the described methods, be it by way of hardware components, software or any combination of the two, or in any other manner. Moreover, an article of manufacture for use with the apparatus, such as a pre-recorded storage device or other similar non-transitory computer readable medium including program instructions recorded thereon, or a computer data signal carrying computer readable program instructions may direct an apparatus to facilitate the practice of the described methods. It is understood that such apparatus, articles of manufacture and computer data signals also come within the scope of the present example embodiments.
While some of the above examples have been described as occurring in a particular order, it will be appreciated to persons skilled in the art that some of the steps or processes may be performed in a different order provided that the result of the changed order of any given step will not prevent or impair the occurrence of subsequent steps. Furthermore, some of the steps described above may be removed or combined in other embodiments, and some of the steps described above may be separated into a number of sub-steps in other embodiments. Even further, some or all of the steps of the conversations may be repeated, as necessary. Elements described as methods or steps similarly apply to systems or subcomponents, and vice-versa.
In example embodiments, as applicable, the switch-mode power supply controller 106 can be implemented as or executed by, for example, one or more of the following systems: a Programmable Logic Controller (PLC); an Application-Specific Integrated Circuit (ASIC); a Field-Programmable Gate Array (FPGA); hardware; and/or software. The switch-mode power supply controller 106 can include a processor (not shown), which processor is configured to execute instructions stored in a computer readable medium such as a memory (not shown).
The term “computer readable medium,” as used herein, includes any medium which can store instructions, program steps, or the like, for use by or execution by a computer or other computing device. The term “computer readable medium,” as used herein, includes, but is not limited to: magnetic media, such as a diskette; a disk drive; a magnetic drum; a magneto-optical disk; a magnetic tape; a magnetic core memory, or the like; electronic storage, such as a random access memory (RAM) of any type including static RAM, dynamic RAM, synchronous dynamic RAM (SDRAM), a read-only memory (ROM), a programmable-read-only memory of any type including PROM, EPROM, EEPROM, FLASH, EAROM, a so-called “solid state disk,” other electronic storage of any type including a charge-coupled device (CCD), or magnetic bubble memory, a portable electronic data-carrying card of any type including COMPACT FLASH, SECURE DIGITAL (SD-CARD), MEMORY STICK, and the like; and optical media such as a Compact Disc (CD), Digital Versatile Disc (DVD) or BLU-RAY Disc.
Variations may be made to some example embodiments, which may include combinations and sub-combinations of any of the above. The various embodiments presented above are merely examples and are in no way meant to limit the scope of this disclosure. Variations of the example embodiments described herein will be apparent to persons of ordinary skill in the art, such variations being within the intended scope of the present disclosure. In particular, features from one or more of the above-described embodiments may be selected to create alternative embodiments comprised of a sub-combination of features which may not be explicitly described above. In addition, features from one or more of the above-described embodiments may be selected and combined to create alternative embodiments comprised of a combination of features which may not be explicitly described above. Features suitable for such combinations and sub-combinations would be readily apparent to persons skilled in the art upon review of the present disclosure as a whole. The subject matter described herein intends to cover and embrace all suitable changes in technology. Certain adaptations and modifications of the described embodiments can be made. Therefore, the above-discussed embodiments are considered to be illustrative and not restrictive.
This application is a continuation of U.S. patent application Ser. No. 16/020,496, filed Jun. 27, 2018, which is a continuation of International Application No. PCT/CA2017/051207, filed Oct. 11, 2017, which claims priority to U.S. provisional Patent Application No. 62/406,589, filed Oct. 11, 2016, all of which are hereby incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
5173846 | Smith | Dec 1992 | A |
5206800 | Smith | Apr 1993 | A |
5434767 | Batarseh et al. | Jul 1995 | A |
5636106 | Batarseh et al. | Jun 1997 | A |
6421256 | Giannopoulos et al. | Jul 2002 | B1 |
7791909 | Koo et al. | Sep 2010 | B2 |
7876085 | Hung et al. | Jan 2011 | B2 |
8259471 | Li et al. | Sep 2012 | B2 |
8339817 | Halberstadt | Dec 2012 | B2 |
8659915 | Tsui | Feb 2014 | B2 |
8755203 | Li et al. | Jun 2014 | B2 |
9602006 | Fahlenkamp | Mar 2017 | B2 |
9991791 | Herfurth et al. | Jun 2018 | B2 |
10224828 | Sigamani et al. | Mar 2019 | B1 |
10367422 | Malinin et al. | Jul 2019 | B1 |
10461627 | Radic | Oct 2019 | B2 |
20060061343 | Lipcsei et al. | Mar 2006 | A1 |
20080112193 | Yan et al. | May 2008 | A1 |
20090231894 | Moon et al. | Sep 2009 | A1 |
20090296429 | Cook et al. | Dec 2009 | A1 |
20100026208 | Shteynberg et al. | Feb 2010 | A1 |
20100315838 | Mao et al. | Dec 2010 | A1 |
20110031949 | Zhang et al. | Feb 2011 | A1 |
20110182089 | Berghegger | Jul 2011 | A1 |
20120002449 | Park et al. | Jan 2012 | A1 |
20120039098 | Berghegger | Feb 2012 | A1 |
20130121049 | Shi et al. | May 2013 | A1 |
20130154495 | He | Jun 2013 | A1 |
20130245854 | Rinne et al. | Sep 2013 | A1 |
20130329468 | Yang | Dec 2013 | A1 |
20140003098 | Park | Jan 2014 | A1 |
20140112030 | Fahlenkamp | Apr 2014 | A1 |
20140268913 | Zheng et al. | Sep 2014 | A1 |
20150103566 | Keogh et al. | Apr 2015 | A1 |
20150155786 | Shen et al. | Jun 2015 | A1 |
20150229200 | Schwartz | Aug 2015 | A1 |
20150236597 | Hinz | Aug 2015 | A1 |
20150249389 | Cummings | Sep 2015 | A1 |
20170047846 | Teo | Feb 2017 | A1 |
20170054374 | Fang et al. | Feb 2017 | A1 |
20170085183 | Notsch | Mar 2017 | A1 |
20170187292 | Schaemann | Jun 2017 | A1 |
20180062529 | Song | Mar 2018 | A1 |
20180083538 | Kong et al. | Mar 2018 | A1 |
20180166993 | Hsu et al. | Jun 2018 | A1 |
20180269793 | Ahsanuzzaman et al. | Sep 2018 | A1 |
20190006935 | Wang | Jan 2019 | A1 |
20190058450 | Jun et al. | Feb 2019 | A1 |
20190252966 | Radic | Aug 2019 | A1 |
Number | Date | Country |
---|---|---|
1736018 | Feb 2006 | CN |
101277061 | Oct 2008 | CN |
20130054212 | May 2013 | KR |
20130105537 | Sep 2013 | KR |
2017074305 | May 2017 | WO |
Entry |
---|
Office Action dated Aug. 31, 2020 for Chinese Patent application No. 201780062234.0. |
International Search Report and Written Opinion dated Jan. 15, 2018 for PCT Patent Application No. PCT/CA2017/051207. |
International Search Report dated May 21, 2019 for PCT Patent Application No. PCT/IB2019/051092. |
Notice of Allowance dated Jun. 19, 2019 for U.S. Appl. No. 16/269,931. |
Notice of Allowance dated May 31, 2019 for U.S. Appl. No. 16/020,496. |
Office Action dated Mar. 6, 2019 for U.S. Appl. No. 16/020,496. |
Notice of Allowance dated Aug. 20, 2020 for U.S. Appl. No. 16/665,188. |
Office Action dated Apr. 13, 2020 for U.S. Appl. No. 16/665,188. |
Notice of Allowance dated Jan. 12, 2021 for U.S. Appl. No. 16/719,335. |
Number | Date | Country | |
---|---|---|---|
20200036292 A1 | Jan 2020 | US |
Number | Date | Country | |
---|---|---|---|
62406589 | Oct 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16020496 | Jun 2018 | US |
Child | 16595026 | US | |
Parent | PCT/CA2017/051207 | Oct 2017 | US |
Child | 16020496 | US |