Information
-
Patent Grant
-
6201202
-
Patent Number
6,201,202
-
Date Filed
Wednesday, August 18, 199925 years ago
-
Date Issued
Tuesday, March 13, 200123 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
- Ostrolenk, Faber, Gerb & Soffen, LLP
-
CPC
-
US Classifications
Field of Search
US
- 200 1 B
- 200 5 R
- 200 5 A
- 200 512
- 200 513
- 200 516
- 200 517
- 200 341
- 400 472
- 400 490
- 400 491
- 400 4912
- 400 495
- 400 4951
- 400 496
-
International Classifications
-
Abstract
A switch device turns ON and OFF the contact pattrns of a switch substrate by pressing an operating button and turning the turning plate section of an operating rubber member serving as a switch operating rubber member. The turning plate section is turnably supported on a substrate section by a hinge section, and the periphery of the turning plate section other than the hinge section is coupled with the substrate section by a thin film section. The operating button presses the turning plate section at a position near the hinge section. An electrically conductive rubber, which comes into contact with the contact pattern under pressure, is bonded to the turning plate section at a position distanced from the position at which the operating button presses the turning plate. As a result, the operating stroke distance of the switch can be decreased, and also the thickness of a switch mechanical unit can be reduced in the stroke direction.
Description
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to the structure of a switch operating rubber member for pressing a switch section composed of an electrically conductive section and a pattern on a substrate.
2. Description of the Related Art
FIGS. 9
,
10
A and
10
B show cross-sectional views of the structure of a push type switch as an example of conventional push type switches. The push type switch mainly comprises main bodies
51
and
61
, operation buttons
52
and
62
which are movable in an up and down direction, diaphragm
53
and
63
, and printed circuit boards
55
and
65
having electrical contacts
55
a
and
65
a
. In this push switch, when the operation buttons
52
and
62
are pressed, the electrically conductive rubbers
54
and
64
come into contact with the electrical contacts
55
a
and
65
a
, whereby an ON signal is output.
However, in the push type switch shown in
FIG. 9
, the stroke of the operation button
52
is determined by the contact pattern disposed below it such that the switch cannot be operated by pressing the button through a stroke having a length other than a predetermined amount. Further, it is difficult to dispose the switch in a thin space because the diaphragm
53
, the electrically conductive rubber
54
and the printed circuit board
55
are disposed below the operation button in an overlapped state.
Further, in the push type switch shown in
FIGS. 10A and 10B
, when the operation button
62
is pressed as shown in
FIG. 10B
, which shows the turned-ON state of the switch, there is a possibility that the diaphragm
63
is unevenly flexed and the operation button
62
is inclined. When the operation button
62
is inclined, there is a possibility for the occurrence of a disadvantage in which the operation button
62
is caught by the inner wall of the main body
61
so that the operation button
62
cannot be returned to its original position even if the pressing force is released therefrom. Conventionally, it is an ordinary practice to make the operation button guide section of the main body
61
thicker toward the outside as well as to increase the length of the operation button
62
to prevent the operation button
62
from becoming caught under the main body, which makes the miniaturization of such equipment difficult.
SUMMARY OF THE INVENTION
An object of the present invention, which was made to solve the aforesaid disadvantage, is to provide a switch operating rubber member or a switch device by which a switch operating stroke can be decreased or increased, the thickness of a switch mechanical unit can be reduced and the drawback in which the operation button cannot be returned to its original position can be prevented.
A switch operating rubber member of the present invention is deformed upon being pressed to operate a switch by causing electrical contacts to contact each other to thereby enable electrical conduction therebetween. The switch operating rubber member comprises an approximately flat-sheet-shaped substrate section; a turning section which turns with respect to the substrate section by being pressed when the switch is pressed; a first coupling section which elastically deforms with respect to the substrate section when the turning section is turned for coupling the substrate section with the turning section along the turning axis thereof; a second coupling section which elastically deforms with respect to the substrate section in association with the turning motion of the turning section for coupling the substrate section with the turning section at the displacing portion thereof which is distanced from the turning axis, wherein when the turning section is pressed, the turning section is turned because the first coupling section acts as the turning axis of the turning section by being elastically deformed, and the second coupling section is flexed to a greater extent than the first coupling section to thereby permit the turning motion of the turning section.
Further, a switch device of the present invention comprises a swing support section composed of a rubber material; a swing section composed of a rubber material and swingably turnable with respect to the swing support section, the swing section including a portion to be pressed and also a contact portion. In the switch device, when the portion to be pressed is pressed, the swing section is swung and turned to thereby cause the contact portion to come into contact with electrical contacts, whereby the turned-ON state of the switch device can be obtained.
Other features and advantages of the present invention will become more apparent from the following description when taken in conjunction with the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1
is a perspective view showing the outward appearance of a camera containing a switch which incorporates a switch operating rubber member of a first embodiment of the present invention;
FIG. 2
is an exploded perspective view of the switch incorporated in the camera shown in
FIG. 1
;
FIG. 3
is a cross-sectional view taken along the line I—I in the lengthwise direction of the switch shown in FIG.
2
and shows the switch in a turned-OFF state;
FIG. 4
is a cross-sectional view taken along the line I—I in the lengthwise direction of the switch shown in FIG.
2
and shows the switch in a turned-ON state;
FIG. 5
shows a longitudinal cross-sectional view (corresponding to the I—I cross-sectional view) of a switch which is a modification of the switch shown in FIG.
2
and shows the switch in a turned-OFF state;
FIG. 6
shows a longitudinal cross-sectional view (corresponding to the I—I cross-sectional view) of the switch which is the modification shown in FIG.
5
and shows the switch in a turned-ON state;
FIG. 7
is a longitudinal cross-sectional view along the lengthwise direction of a switch which incorporates a switch operating rubber member of a second embodiment of the present invention and shows the switch in a turned-OFF state;
FIG. 8
is a longitudinal cross-sectional view along the lengthwise direction of a switch which incorporates a switch operating rubber member of a third embodiment of the present invention and shows the switch in a turned-OFF state;
FIG. 9
is a longitudinal cross-sectional view of a switch which incorporates a conventional switch operating rubber member and shows the switch in a turned-OFF state;
FIG. 10A
is a longitudinal cross-sectional view of a switch which incorporates another conventional switch operating rubber member and shows the switch in a turned-OFF state; and
FIG. 10B
is a longitudinal cross-sectional view of the switch which incorporates the conventional switch operating rubber member of FIG.
10
A and shows the switch in a turned-ON state.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
Embodiments of the present invention will be described below with reference to the accompanying drawings.
FIG. 1
is a perspective view of a camera in which a switch
4
, which includes a switch operating rubber member of a first embodiment of the present invention, is assembled,
FIG. 2
is an exploded perspective view of the switch
4
,
FIG. 3
is a cross-sectional view taken along the line I—I in the lengthwise direction of the switch
4
shown in FIG.
2
and shows the switch in a turned-OFF state, and
FIG. 4
is a cross-sectional view taken along the line I—I in the lengthwise direction of the switch shown in
FIG. 2
similarly to FIG.
3
and shows the switch in a turned-ON state.
As shown in
FIG. 1
, the camera includes a photographing lens barrel
2
disposed on the front surface of the main body
1
thereof and a release switch
3
, the switch
4
, which is used to set various modes and the like, disposed on the upper surface of the main body
1
.
As shown in
FIG. 2
, the switch
4
mainly comprises the rubber member pressing section
1
a
of the main body
1
including an operating button insertion hole
1
b
, an operating button
11
, an operating rubber member
12
serving as a switch operating rubber member, an electrically conductive rubber
13
bonded to the operating rubber member and a switch substrate
14
including switch contact patterns
14
a.
The operating rubber member
12
is formed of silicone rubber. As shown in
FIGS. 2
to
4
, the operating rubber member
12
comprises an approximately flat-sheet-shaped substrate section
12
a
, a turning plate section
12
b
serving as a turning section, an elastically deformable hinge section
12
c
serving as a first linear coupling section and an elastically deformable thin film section
12
d
. The substrate section
12
a
is bonded and fixed to the rubber member pressing section
1
a
of the main body
1
. The hinge section
12
c
is interposed between the substrate section
12
a
and the turning plate section
12
b
and formed along the turning axis C
0
of the turning plate section
12
b
. The thin film section
12
d
is a second thin-film-shaped coupling section for coupling the substrate section
12
a
with the turning plate section
12
b.
The thin film section
12
d
is formed of a conical surface (more precisely, a portion of a conical surface and an inclined surface) connected around the periphery of the turning plate section
12
b
excluding the hinge section
12
c
. The length of the actuating line L of the conical surface or the width of the inclined surface increases according to the distance of a position along the periphery of the turning plate relative to the hinge section
12
c
. Further, the hinge section
12
c
is not necessarily continuous and may only connect the turning plate section to the substrate section
12
a
at the ends of the turning plate section
12
b.
The operating button
11
is slidably inserted into the operating button inserting hole
1
b
and abutted against a press point C
1
near the hinge section
12
c
(turning axis C
0
) of the turning plate section
12
b
of the operating rubber member
12
. Further, the electrically conductive rubber
13
is formed on the lower surface of the turning plate section
12
b
integrally therewith at a region opposite to the hinge section
12
c
with respect to the press point C
1
of the operating button.
Contact patterns
14
a
are disposed on the switch substrate below the electrically conductive rubber
13
, and the surface of the electrically conductive rubber
13
is inclined so as to be parallel with the contact patterns
14
a
when the turning plate section
12
b
is turned (pressed downward).
How the switch
4
arranged as described above is turned ON and OFF will now be described. When the operating button
11
is not being pressed, the turning plate section
12
b
of the operating rubber member
12
is urged upward by the elastic urging force of the hinge section
12
c
and is positioned as shown in FIG.
3
. The electrically conductive rubber
13
is spaced apart from the contact patterns
14
a
, and the switch
4
is in a turned-OFF state.
When the operating button
11
is pressed, the turning plate section
12
b
is turned by the operating button
11
about the turning axis C
0
as shown in
FIG. 4
so that the electrically conductive rubber
13
, which is located on a region opposite to the hinge, comes into contact with the contact patterns
14
a
, whereby the switch
4
is in a turned-ON state.
According to the switch
4
, to which the operating rubber member
12
of the first embodiment is applied, since the electrically conductive rubber can be moved by the increased pressure of the operating button
11
, the stroke distance of the operating button
11
can be reduced. Further, the thickness of the switch can be reduced in its pressing direction because no electrically conductive rubber is disposed below the operating button
11
.
Since the periphery of the operating button
11
is isolated from the periphery of the switch substrate
14
in the main body of the operating rubber member
12
, waterproof processing can be easily carried out. Further, since the operating button
11
is distanced from the electrically conductive rubber
13
and the contact patterns
14
a
, it is not always necessary to dispose the switch contact pattern section below the operating button
11
, whereby the degree of freedom of layout is increased in the main body
1
.
While the switch
4
uses the electrically conductive rubber
13
as an electrically conductive means, a metal piece may be disposed on the contact patterns
14
a
so that the contact patterns
14
a
may be conducted by pressing the metal piece with the turning plate section
12
b
. The hinge section
12
c
of the operating rubber member
12
is formed on a straight line. However, the hinge section
12
c
may be located at only one position at the center of the turning axis C
0
. (Otherwise) In another alternative, the hinge section
12
c
may be located at the two end positions along the turning axis C
0
of the turning plate section
12
b.
Next, a modification of the switch
4
shown in
FIG. 2
will be described. In the switch of the modification, the operating rubber member
12
is formed integrally with the operating button
11
.
FIGS. 5 and 6
are longitudinal cross-sectional views of the switch
4
′ of the modification when it is turned OFF and ON (cross-sectional view corresponding to the line I—I in FIG.
2
).
As shown in
FIGS. 5 and 6
, in the operating rubber member
12
′ of the switch
4
′, an operating button section
12
e
′ is integrally formed with a turning plate section
12
b
. An inserting hole
1
b
′, into which the operating button section
12
e
′ is loosely inserted, is formed in a main body
1
. Other portions of the switch
4
′ are similar to those of the switch
4
.
In the switch
4
′, when the operating button section
12
e
′ is pressed in a similar manner as with the switch
4
, the turning plate section
12
b
is turned about a turning axis C
0
as shown in
FIG. 6
to thereby cause an electrically conductive rubber
13
, which is located on a region opposite to the hinge section, to come into contact with contact patterns
14
a
, whereby the switch
4
′ is turned ON.
According to the switch
4
′ of the modification, an effect similar to that of the switch
4
can be achieved. In addition, since the operating button section
12
e
′ is formed integrally with the operating rubber member
12
′, the number of components can be reduced and also the switch
4
′ can be easily assembled.
Next, a switch
5
, which incorporates a switch operating rubber member of a second embodiment of the present invention, will be described.
FIG. 7
is a longitudinal cross-sectional view along the lengthwise direction of the switch
5
and shows the switch in a turned-OFF state.
As shown in
FIG. 7
, the switch
5
mainly comprises the rubber member pressing section
25
a
of a main body
25
including an operating button inserting hole
25
b
, an operating button
21
, an operating rubber member
22
serving as a switch operating rubber member, an electrically conductive rubber
23
formed integrally with the operating rubber member and a switch substrate
24
including switch contact patterns
24
a.
The operating rubber member
22
is formed of silicone rubber similarly to the operating rubber member
12
of the first embodiment. As shown in
FIG. 7
, the operating rubber member
22
comprises an approximately flat-sheet-shaped substrate section
22
a
, a turning plate section
22
b
serving as a turning section, an elastically deformable hinge section
22
c
serving as a first linear coupling section and an elastically deformable thin film section
22
d
. The substrate section
22
a
is bonded and fixed to the rubber member pressing section
25
a
of the main body
25
. The hinge section
22
c
is interposed between the substrate section
22
a
and the turning plate section
22
b
and formed along the turning axis C
0
of the turning plate section
22
b
. The thin film section
22
d
is a second thin-film-shaped coupling section for coupling the substrate section
22
a
with the turning plate section
22
b
. The respective components of the operating rubber member
22
are formed with shapes similar to those of the components of the aforesaid operating rubber member
12
.
The switch
5
is different from the switch
4
of the first embodiment in that the operating button
21
, which is slidably inserted into the operating button inserting hole
25
b
, is abutted against a press point C
2
located at a position far from the hinge section
22
c
(turning axis C
0
) of the turning plate section
22
b
of the operating rubber member. In this embodiment, the electrically conductive rubber
23
is formed on the lower surface of the turning plate section
22
b
integrally therewith at a position which is nearer to the hinge section
22
c
(turning axis C
0
) than the press point C
2
.
How the switch
5
of the second embodiment arranged as described above is turned ON and OFF will now be described. When the operating button
21
is not being pressed, the turning plate section
22
b
of the operating rubber member
22
is urged upward by the elastic urging force of the hinge section
22
c
and is positioned as shown in FIG.
7
. The electrically conductive rubber
23
is spaced apart from the contact patterns
24
a
, and the switch
5
is in a turned-OFF state.
When the operating button
21
is pressed, the turning plate section
22
b
is turned by the operating button
21
about the hinge section
22
c
(the turning axis C
0
) so that the electrically conductive rubber
23
located on the hinge section side comes into contact with the contact patterns
24
a
, and the switch
5
is in a turned-ON state.
According to the switch
5
which incorporates the operating rubber member
22
of the second embodiment, since the turning plate section
22
b
is pressed by the operating button
21
at a position far from the hinge section
22
c
, the operating stroke distance of the switch is increased and operating force is reduced, whereby the switch can be easily operated. Further, there can be obtained an effect in which the thickness of a switch mechanical unit can be reduced with respect to the stroke of the switch.
Next, a switch
6
which incorporates a switch operating rubber member of a third embodiment of the present invention will be described.
FIG. 8
is a longitudinal cross-sectional view of the switch
6
taken along the lengthwise direction thereof and shows that the switch
6
is turned OFF.
As shown in
FIG. 8
, the switch
6
mainly comprises the rubber member pressing section
35
a
of a main body
35
including an operating button inserting hole
35
b
, an operating rubber member
32
serving as a switch operating rubber member, an electrically conductive rubber
33
formed integrally with the operating rubber member
32
and a switch substrate
34
including switch contact patterns
34
a.
The operating rubber member
32
is formed of a silicone rubber similarly to the operating rubber member
12
of the first embodiment. As shown in
FIG. 8
, the operating rubber member
32
comprises an approximately flat-sheet-shaped substrate section
32
a
, a turning plate section
32
b
, an elastically deformable hinge section
32
c
serving as a first linear coupling section, an elastically deformable thin film section
32
d
and an operating section
32
e
. The substrate section
32
a
is bonded and fixed to the rubber member pressing section
35
a
of the main body
35
. The hinge section
32
c
is interposed between the substrate section
32
a
and the turning plate section
32
b
and formed along the turning axis C
0
of the turning plate section
32
b
. The thin film section
32
d
is a second thin-film shaped coupling section for coupling the substrate section
32
a
with the turning plate section
32
b
. The operating section
32
e
is inserted into the operating button inserting hole
35
b
of the main body
35
and pressed when it is operated to thereby turn the turning plate section
32
b.
How the switch
6
of the third embodiment arranged as described above is turned ON and OFF will now be described. When the operating section
32
e
is not being pressed, the turning plate section
32
b
of the operating rubber member
32
is urged upward by the elastic urging force of the hinge section
32
c
and the thin film section
32
d
and is positioned as shown in FIG.
8
. The electrically conductive rubber
33
is spaced apart from the contact patterns
34
a
, and the switch
6
is a turned-OFF state.
When the operating section
32
e
is pressed, the turning plate section
32
b
of the operating rubber member
32
is turned about the hinge section
32
c
(turning axis C
0
) to thereby cause the electrically conductive rubber
33
to come into contact with the switch contact patterns
34
a
, whereby the switch
6
is turned ON. At this time, the turning plate section
32
b
is turned about the linearly formed hinge section
32
c
(turning axis C
0
) and is not inclined in a direction other than the turning direction. Thus, the operating section
32
e
does not become caught in the inserting hole
35
b
of the main body.
According to the switch
6
which incorporates the operating rubber member
32
of the third embodiment, the drawback in which the operating section
32
e
is caught in the inserting hole
35
b
of the main body and cannot be returned to its original position can be prevented without increasing the size of the equipment.
According to the switches which incorporates the switch operating rubber members of the aforesaid respective embodiments, the operating stroke distance of the switches can be decreased or increased, and also the thickness of the switch mechanical unit can be reduced in the direction of the stroke, whereby the drawback in which the operating buttons do not return to their original position is not encountered.
Claims
- 1. A switch operating rubber member operatively provided in a housing which is deformed by being pressed when a switch is operated and causes electrical contacts to contact with each other to thereby allow electrical conduction therebetween, comprising:a housing section having an operating button hole formed therein; an approximately flat-sheet-shaped substrate section; a turning section which turns with respect to the substrate section upon being pressed when the switch is operated; an operating button which extends through the operating button hole, for pressing the turning section to operate the switch when the operating button is pressed; a first coupling section which elastically deforms with respect to the substrate section when said turning section is turned, for coupling the substrate section with said turning section along a turning axis thereof; and a second coupling section which elastically deforms with respect to the substrate section in association with the turning motion of said turning section, for coupling the substrate section with said turning section around the periphery of said turning section other than along said turning axis, wherein when said turning section is pressed, said turning section is turned because said first coupling section elastically deforms along said turning axis of said turning section, and said second coupling section flexes to a greater extent than said first coupling section to thereby permit the turning motion of said turning section.
- 2. A switch operating rubber member according to claim 1, further comprising an electrically conductive element disposed on said turning section and having an inclined surface such that when said turning section is pressed, said electrically conductive element contacts said electrical contacts to thereby enable electrical conductivity between said electrical contacts.
- 3. A switch operating rubber member according to claim 1, wherein said second coupling section is formed of a thin film having an approximately conical shape or an inclined surface.
- 4. A switch operating rubber member according to claim 3, wherein a start height of the approximately conical surface of said second coupling section, as measured from the substrate section to said turning section, increases according to a distance of a position being measured along the periphery of the turning section relative to said first coupling section.
- 5. A switch operating rubber member according to claim 3, wherein the thickness of the thin film of said second coupling section having the approximately conical surface or the inclined surface is thinner than the thickness of said first coupling section.
- 6. A switch device comprising:a housing section having a hole formed therein; a swing support section composed of a rubber material; a swing section composed of a rubber material and which is swingably turnable with respect to said swing support section, said swing section including a portion at which said swing section is pressed to activate a turning motion thereof, and further including an electrically conductive contact portion; and a press member extending through the hole for being pressed to thereby press the swing section.
- 7. A switch device according to claim 6, further comprising an electrical substrate including a pair of printed contacts spaced apart from each other, wherein the contact portion comes into contact with the pair of printed contacts spaced apart from each other to thereby establish electrical conduction between the pair of printed contacts.
- 8. A switch device according to claim 7, wherein a contact surface of the contact portion of the switch device is parallel with the printed contacts of the electrical substrate while said swing section is being pressed such that the contact surface of the contact portion comes into contact with the surfaces of the printed contacts.
- 9. A switch device according to claim 7, wherein the contact surface of the contact portion of the switch device is spaced apart from and is not parallel to the surfaces of the printed contacts of the electrical while said swing section is not being pressed.
- 10. A switch device according to claim 6, wherein the contact portion is composed of an electrically conductive rubber material.
- 11. A switch device according to claim 6, wherein the contact portion includes an inclined surface.
- 12. A switch device according to claim 6, wherein said swing section is formed integrally with said swing support section.
- 13. A switch device according to claim 12, wherein said swing section and said swing support section are composed of a thin film.
- 14. A switch device according to claim 6, wherein the portion at which said swing section is pressed and the contact portion are each formed on said swing section at positions having mutually different distances from said swing support section.
- 15. A switch device according to claim 14, wherein the portion at which said swing section is pressed is located at a position which is nearer to said swing support section than the contact portion.
- 16. A switch device according to claim 14, wherein the contact portion is located at a position which is farther from said swing support section than the portion at which said swing section is pressed.
- 17. A switch device according to claim 6, wherein the portion at which said swing section is pressed and the contact portion are disposed on different surfaces of said swing section.
- 18. A switch device comprising:a housing section having a hole formed therein; a base section composed of a rubber material; a lever section composed of a rubber member and having an electrical contact; a hinge section composed of a rubber material for swingably supporting said lever section on said base section; and a press member extending through the hole, for pressing the lever section when the press member is pressed.
- 19. A switch device according to claim 18, wherein the press member is formed integrally with said lever section, wherein said lever section is swung by being pressed by said press section.
- 20. A switch device according to claim 18, wherein said base section, said lever section and said hinge section are composed of silicone rubber.
- 21. A switch device according to claim 18, wherein said press member for pressing said lever section presses said lever section at a position along said lever section different from a position at which the electrical contact is disposed.
Priority Claims (1)
Number |
Date |
Country |
Kind |
10-234524 |
Aug 1998 |
JP |
|
US Referenced Citations (7)