Switch operating rubber member and switch device

Information

  • Patent Grant
  • 6201202
  • Patent Number
    6,201,202
  • Date Filed
    Wednesday, August 18, 1999
    24 years ago
  • Date Issued
    Tuesday, March 13, 2001
    23 years ago
Abstract
A switch device turns ON and OFF the contact pattrns of a switch substrate by pressing an operating button and turning the turning plate section of an operating rubber member serving as a switch operating rubber member. The turning plate section is turnably supported on a substrate section by a hinge section, and the periphery of the turning plate section other than the hinge section is coupled with the substrate section by a thin film section. The operating button presses the turning plate section at a position near the hinge section. An electrically conductive rubber, which comes into contact with the contact pattern under pressure, is bonded to the turning plate section at a position distanced from the position at which the operating button presses the turning plate. As a result, the operating stroke distance of the switch can be decreased, and also the thickness of a switch mechanical unit can be reduced in the stroke direction.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention relates to the structure of a switch operating rubber member for pressing a switch section composed of an electrically conductive section and a pattern on a substrate.




2. Description of the Related Art





FIGS. 9

,


10


A and


10


B show cross-sectional views of the structure of a push type switch as an example of conventional push type switches. The push type switch mainly comprises main bodies


51


and


61


, operation buttons


52


and


62


which are movable in an up and down direction, diaphragm


53


and


63


, and printed circuit boards


55


and


65


having electrical contacts


55




a


and


65




a


. In this push switch, when the operation buttons


52


and


62


are pressed, the electrically conductive rubbers


54


and


64


come into contact with the electrical contacts


55




a


and


65




a


, whereby an ON signal is output.




However, in the push type switch shown in

FIG. 9

, the stroke of the operation button


52


is determined by the contact pattern disposed below it such that the switch cannot be operated by pressing the button through a stroke having a length other than a predetermined amount. Further, it is difficult to dispose the switch in a thin space because the diaphragm


53


, the electrically conductive rubber


54


and the printed circuit board


55


are disposed below the operation button in an overlapped state.




Further, in the push type switch shown in

FIGS. 10A and 10B

, when the operation button


62


is pressed as shown in

FIG. 10B

, which shows the turned-ON state of the switch, there is a possibility that the diaphragm


63


is unevenly flexed and the operation button


62


is inclined. When the operation button


62


is inclined, there is a possibility for the occurrence of a disadvantage in which the operation button


62


is caught by the inner wall of the main body


61


so that the operation button


62


cannot be returned to its original position even if the pressing force is released therefrom. Conventionally, it is an ordinary practice to make the operation button guide section of the main body


61


thicker toward the outside as well as to increase the length of the operation button


62


to prevent the operation button


62


from becoming caught under the main body, which makes the miniaturization of such equipment difficult.




SUMMARY OF THE INVENTION




An object of the present invention, which was made to solve the aforesaid disadvantage, is to provide a switch operating rubber member or a switch device by which a switch operating stroke can be decreased or increased, the thickness of a switch mechanical unit can be reduced and the drawback in which the operation button cannot be returned to its original position can be prevented.




A switch operating rubber member of the present invention is deformed upon being pressed to operate a switch by causing electrical contacts to contact each other to thereby enable electrical conduction therebetween. The switch operating rubber member comprises an approximately flat-sheet-shaped substrate section; a turning section which turns with respect to the substrate section by being pressed when the switch is pressed; a first coupling section which elastically deforms with respect to the substrate section when the turning section is turned for coupling the substrate section with the turning section along the turning axis thereof; a second coupling section which elastically deforms with respect to the substrate section in association with the turning motion of the turning section for coupling the substrate section with the turning section at the displacing portion thereof which is distanced from the turning axis, wherein when the turning section is pressed, the turning section is turned because the first coupling section acts as the turning axis of the turning section by being elastically deformed, and the second coupling section is flexed to a greater extent than the first coupling section to thereby permit the turning motion of the turning section.




Further, a switch device of the present invention comprises a swing support section composed of a rubber material; a swing section composed of a rubber material and swingably turnable with respect to the swing support section, the swing section including a portion to be pressed and also a contact portion. In the switch device, when the portion to be pressed is pressed, the swing section is swung and turned to thereby cause the contact portion to come into contact with electrical contacts, whereby the turned-ON state of the switch device can be obtained.




Other features and advantages of the present invention will become more apparent from the following description when taken in conjunction with the accompanying drawings.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a perspective view showing the outward appearance of a camera containing a switch which incorporates a switch operating rubber member of a first embodiment of the present invention;





FIG. 2

is an exploded perspective view of the switch incorporated in the camera shown in

FIG. 1

;





FIG. 3

is a cross-sectional view taken along the line I—I in the lengthwise direction of the switch shown in FIG.


2


and shows the switch in a turned-OFF state;





FIG. 4

is a cross-sectional view taken along the line I—I in the lengthwise direction of the switch shown in FIG.


2


and shows the switch in a turned-ON state;





FIG. 5

shows a longitudinal cross-sectional view (corresponding to the I—I cross-sectional view) of a switch which is a modification of the switch shown in FIG.


2


and shows the switch in a turned-OFF state;





FIG. 6

shows a longitudinal cross-sectional view (corresponding to the I—I cross-sectional view) of the switch which is the modification shown in FIG.


5


and shows the switch in a turned-ON state;





FIG. 7

is a longitudinal cross-sectional view along the lengthwise direction of a switch which incorporates a switch operating rubber member of a second embodiment of the present invention and shows the switch in a turned-OFF state;





FIG. 8

is a longitudinal cross-sectional view along the lengthwise direction of a switch which incorporates a switch operating rubber member of a third embodiment of the present invention and shows the switch in a turned-OFF state;





FIG. 9

is a longitudinal cross-sectional view of a switch which incorporates a conventional switch operating rubber member and shows the switch in a turned-OFF state;





FIG. 10A

is a longitudinal cross-sectional view of a switch which incorporates another conventional switch operating rubber member and shows the switch in a turned-OFF state; and





FIG. 10B

is a longitudinal cross-sectional view of the switch which incorporates the conventional switch operating rubber member of FIG.


10


A and shows the switch in a turned-ON state.











DESCRIPTION OF THE PREFERRED EMBODIMENTS




Embodiments of the present invention will be described below with reference to the accompanying drawings.





FIG. 1

is a perspective view of a camera in which a switch


4


, which includes a switch operating rubber member of a first embodiment of the present invention, is assembled,

FIG. 2

is an exploded perspective view of the switch


4


,

FIG. 3

is a cross-sectional view taken along the line I—I in the lengthwise direction of the switch


4


shown in FIG.


2


and shows the switch in a turned-OFF state, and

FIG. 4

is a cross-sectional view taken along the line I—I in the lengthwise direction of the switch shown in

FIG. 2

similarly to FIG.


3


and shows the switch in a turned-ON state.




As shown in

FIG. 1

, the camera includes a photographing lens barrel


2


disposed on the front surface of the main body


1


thereof and a release switch


3


, the switch


4


, which is used to set various modes and the like, disposed on the upper surface of the main body


1


.




As shown in

FIG. 2

, the switch


4


mainly comprises the rubber member pressing section


1




a


of the main body


1


including an operating button insertion hole


1




b


, an operating button


11


, an operating rubber member


12


serving as a switch operating rubber member, an electrically conductive rubber


13


bonded to the operating rubber member and a switch substrate


14


including switch contact patterns


14




a.






The operating rubber member


12


is formed of silicone rubber. As shown in

FIGS. 2

to


4


, the operating rubber member


12


comprises an approximately flat-sheet-shaped substrate section


12




a


, a turning plate section


12




b


serving as a turning section, an elastically deformable hinge section


12




c


serving as a first linear coupling section and an elastically deformable thin film section


12




d


. The substrate section


12




a


is bonded and fixed to the rubber member pressing section


1




a


of the main body


1


. The hinge section


12




c


is interposed between the substrate section


12




a


and the turning plate section


12




b


and formed along the turning axis C


0


of the turning plate section


12




b


. The thin film section


12




d


is a second thin-film-shaped coupling section for coupling the substrate section


12




a


with the turning plate section


12




b.






The thin film section


12




d


is formed of a conical surface (more precisely, a portion of a conical surface and an inclined surface) connected around the periphery of the turning plate section


12




b


excluding the hinge section


12




c


. The length of the actuating line L of the conical surface or the width of the inclined surface increases according to the distance of a position along the periphery of the turning plate relative to the hinge section


12




c


. Further, the hinge section


12




c


is not necessarily continuous and may only connect the turning plate section to the substrate section


12




a


at the ends of the turning plate section


12




b.






The operating button


11


is slidably inserted into the operating button inserting hole


1




b


and abutted against a press point C


1


near the hinge section


12




c


(turning axis C


0


) of the turning plate section


12




b


of the operating rubber member


12


. Further, the electrically conductive rubber


13


is formed on the lower surface of the turning plate section


12




b


integrally therewith at a region opposite to the hinge section


12




c


with respect to the press point C


1


of the operating button.




Contact patterns


14




a


are disposed on the switch substrate below the electrically conductive rubber


13


, and the surface of the electrically conductive rubber


13


is inclined so as to be parallel with the contact patterns


14




a


when the turning plate section


12




b


is turned (pressed downward).




How the switch


4


arranged as described above is turned ON and OFF will now be described. When the operating button


11


is not being pressed, the turning plate section


12




b


of the operating rubber member


12


is urged upward by the elastic urging force of the hinge section


12




c


and is positioned as shown in FIG.


3


. The electrically conductive rubber


13


is spaced apart from the contact patterns


14




a


, and the switch


4


is in a turned-OFF state.




When the operating button


11


is pressed, the turning plate section


12




b


is turned by the operating button


11


about the turning axis C


0


as shown in

FIG. 4

so that the electrically conductive rubber


13


, which is located on a region opposite to the hinge, comes into contact with the contact patterns


14




a


, whereby the switch


4


is in a turned-ON state.




According to the switch


4


, to which the operating rubber member


12


of the first embodiment is applied, since the electrically conductive rubber can be moved by the increased pressure of the operating button


11


, the stroke distance of the operating button


11


can be reduced. Further, the thickness of the switch can be reduced in its pressing direction because no electrically conductive rubber is disposed below the operating button


11


.




Since the periphery of the operating button


11


is isolated from the periphery of the switch substrate


14


in the main body of the operating rubber member


12


, waterproof processing can be easily carried out. Further, since the operating button


11


is distanced from the electrically conductive rubber


13


and the contact patterns


14




a


, it is not always necessary to dispose the switch contact pattern section below the operating button


11


, whereby the degree of freedom of layout is increased in the main body


1


.




While the switch


4


uses the electrically conductive rubber


13


as an electrically conductive means, a metal piece may be disposed on the contact patterns


14




a


so that the contact patterns


14




a


may be conducted by pressing the metal piece with the turning plate section


12




b


. The hinge section


12




c


of the operating rubber member


12


is formed on a straight line. However, the hinge section


12




c


may be located at only one position at the center of the turning axis C


0


. (Otherwise) In another alternative, the hinge section


12




c


may be located at the two end positions along the turning axis C


0


of the turning plate section


12




b.






Next, a modification of the switch


4


shown in

FIG. 2

will be described. In the switch of the modification, the operating rubber member


12


is formed integrally with the operating button


11


.

FIGS. 5 and 6

are longitudinal cross-sectional views of the switch


4


′ of the modification when it is turned OFF and ON (cross-sectional view corresponding to the line I—I in FIG.


2


).




As shown in

FIGS. 5 and 6

, in the operating rubber member


12


′ of the switch


4


′, an operating button section


12




e


′ is integrally formed with a turning plate section


12




b


. An inserting hole


1




b


′, into which the operating button section


12




e


′ is loosely inserted, is formed in a main body


1


. Other portions of the switch


4


′ are similar to those of the switch


4


.




In the switch


4


′, when the operating button section


12




e


′ is pressed in a similar manner as with the switch


4


, the turning plate section


12




b


is turned about a turning axis C


0


as shown in

FIG. 6

to thereby cause an electrically conductive rubber


13


, which is located on a region opposite to the hinge section, to come into contact with contact patterns


14




a


, whereby the switch


4


′ is turned ON.




According to the switch


4


′ of the modification, an effect similar to that of the switch


4


can be achieved. In addition, since the operating button section


12




e


′ is formed integrally with the operating rubber member


12


′, the number of components can be reduced and also the switch


4


′ can be easily assembled.




Next, a switch


5


, which incorporates a switch operating rubber member of a second embodiment of the present invention, will be described.

FIG. 7

is a longitudinal cross-sectional view along the lengthwise direction of the switch


5


and shows the switch in a turned-OFF state.




As shown in

FIG. 7

, the switch


5


mainly comprises the rubber member pressing section


25




a


of a main body


25


including an operating button inserting hole


25




b


, an operating button


21


, an operating rubber member


22


serving as a switch operating rubber member, an electrically conductive rubber


23


formed integrally with the operating rubber member and a switch substrate


24


including switch contact patterns


24




a.






The operating rubber member


22


is formed of silicone rubber similarly to the operating rubber member


12


of the first embodiment. As shown in

FIG. 7

, the operating rubber member


22


comprises an approximately flat-sheet-shaped substrate section


22




a


, a turning plate section


22




b


serving as a turning section, an elastically deformable hinge section


22




c


serving as a first linear coupling section and an elastically deformable thin film section


22




d


. The substrate section


22




a


is bonded and fixed to the rubber member pressing section


25




a


of the main body


25


. The hinge section


22




c


is interposed between the substrate section


22




a


and the turning plate section


22




b


and formed along the turning axis C


0


of the turning plate section


22




b


. The thin film section


22




d


is a second thin-film-shaped coupling section for coupling the substrate section


22




a


with the turning plate section


22




b


. The respective components of the operating rubber member


22


are formed with shapes similar to those of the components of the aforesaid operating rubber member


12


.




The switch


5


is different from the switch


4


of the first embodiment in that the operating button


21


, which is slidably inserted into the operating button inserting hole


25




b


, is abutted against a press point C


2


located at a position far from the hinge section


22




c


(turning axis C


0


) of the turning plate section


22




b


of the operating rubber member. In this embodiment, the electrically conductive rubber


23


is formed on the lower surface of the turning plate section


22




b


integrally therewith at a position which is nearer to the hinge section


22




c


(turning axis C


0


) than the press point C


2


.




How the switch


5


of the second embodiment arranged as described above is turned ON and OFF will now be described. When the operating button


21


is not being pressed, the turning plate section


22




b


of the operating rubber member


22


is urged upward by the elastic urging force of the hinge section


22




c


and is positioned as shown in FIG.


7


. The electrically conductive rubber


23


is spaced apart from the contact patterns


24




a


, and the switch


5


is in a turned-OFF state.




When the operating button


21


is pressed, the turning plate section


22




b


is turned by the operating button


21


about the hinge section


22




c


(the turning axis C


0


) so that the electrically conductive rubber


23


located on the hinge section side comes into contact with the contact patterns


24




a


, and the switch


5


is in a turned-ON state.




According to the switch


5


which incorporates the operating rubber member


22


of the second embodiment, since the turning plate section


22




b


is pressed by the operating button


21


at a position far from the hinge section


22




c


, the operating stroke distance of the switch is increased and operating force is reduced, whereby the switch can be easily operated. Further, there can be obtained an effect in which the thickness of a switch mechanical unit can be reduced with respect to the stroke of the switch.




Next, a switch


6


which incorporates a switch operating rubber member of a third embodiment of the present invention will be described.

FIG. 8

is a longitudinal cross-sectional view of the switch


6


taken along the lengthwise direction thereof and shows that the switch


6


is turned OFF.




As shown in

FIG. 8

, the switch


6


mainly comprises the rubber member pressing section


35




a


of a main body


35


including an operating button inserting hole


35




b


, an operating rubber member


32


serving as a switch operating rubber member, an electrically conductive rubber


33


formed integrally with the operating rubber member


32


and a switch substrate


34


including switch contact patterns


34




a.






The operating rubber member


32


is formed of a silicone rubber similarly to the operating rubber member


12


of the first embodiment. As shown in

FIG. 8

, the operating rubber member


32


comprises an approximately flat-sheet-shaped substrate section


32




a


, a turning plate section


32




b


, an elastically deformable hinge section


32




c


serving as a first linear coupling section, an elastically deformable thin film section


32




d


and an operating section


32




e


. The substrate section


32




a


is bonded and fixed to the rubber member pressing section


35




a


of the main body


35


. The hinge section


32




c


is interposed between the substrate section


32




a


and the turning plate section


32




b


and formed along the turning axis C


0


of the turning plate section


32




b


. The thin film section


32




d


is a second thin-film shaped coupling section for coupling the substrate section


32




a


with the turning plate section


32




b


. The operating section


32




e


is inserted into the operating button inserting hole


35




b


of the main body


35


and pressed when it is operated to thereby turn the turning plate section


32




b.






How the switch


6


of the third embodiment arranged as described above is turned ON and OFF will now be described. When the operating section


32




e


is not being pressed, the turning plate section


32




b


of the operating rubber member


32


is urged upward by the elastic urging force of the hinge section


32




c


and the thin film section


32




d


and is positioned as shown in FIG.


8


. The electrically conductive rubber


33


is spaced apart from the contact patterns


34




a


, and the switch


6


is a turned-OFF state.




When the operating section


32




e


is pressed, the turning plate section


32




b


of the operating rubber member


32


is turned about the hinge section


32




c


(turning axis C


0


) to thereby cause the electrically conductive rubber


33


to come into contact with the switch contact patterns


34




a


, whereby the switch


6


is turned ON. At this time, the turning plate section


32




b


is turned about the linearly formed hinge section


32




c


(turning axis C


0


) and is not inclined in a direction other than the turning direction. Thus, the operating section


32




e


does not become caught in the inserting hole


35




b


of the main body.




According to the switch


6


which incorporates the operating rubber member


32


of the third embodiment, the drawback in which the operating section


32




e


is caught in the inserting hole


35




b


of the main body and cannot be returned to its original position can be prevented without increasing the size of the equipment.




According to the switches which incorporates the switch operating rubber members of the aforesaid respective embodiments, the operating stroke distance of the switches can be decreased or increased, and also the thickness of the switch mechanical unit can be reduced in the direction of the stroke, whereby the drawback in which the operating buttons do not return to their original position is not encountered.



Claims
  • 1. A switch operating rubber member operatively provided in a housing which is deformed by being pressed when a switch is operated and causes electrical contacts to contact with each other to thereby allow electrical conduction therebetween, comprising:a housing section having an operating button hole formed therein; an approximately flat-sheet-shaped substrate section; a turning section which turns with respect to the substrate section upon being pressed when the switch is operated; an operating button which extends through the operating button hole, for pressing the turning section to operate the switch when the operating button is pressed; a first coupling section which elastically deforms with respect to the substrate section when said turning section is turned, for coupling the substrate section with said turning section along a turning axis thereof; and a second coupling section which elastically deforms with respect to the substrate section in association with the turning motion of said turning section, for coupling the substrate section with said turning section around the periphery of said turning section other than along said turning axis, wherein when said turning section is pressed, said turning section is turned because said first coupling section elastically deforms along said turning axis of said turning section, and said second coupling section flexes to a greater extent than said first coupling section to thereby permit the turning motion of said turning section.
  • 2. A switch operating rubber member according to claim 1, further comprising an electrically conductive element disposed on said turning section and having an inclined surface such that when said turning section is pressed, said electrically conductive element contacts said electrical contacts to thereby enable electrical conductivity between said electrical contacts.
  • 3. A switch operating rubber member according to claim 1, wherein said second coupling section is formed of a thin film having an approximately conical shape or an inclined surface.
  • 4. A switch operating rubber member according to claim 3, wherein a start height of the approximately conical surface of said second coupling section, as measured from the substrate section to said turning section, increases according to a distance of a position being measured along the periphery of the turning section relative to said first coupling section.
  • 5. A switch operating rubber member according to claim 3, wherein the thickness of the thin film of said second coupling section having the approximately conical surface or the inclined surface is thinner than the thickness of said first coupling section.
  • 6. A switch device comprising:a housing section having a hole formed therein; a swing support section composed of a rubber material; a swing section composed of a rubber material and which is swingably turnable with respect to said swing support section, said swing section including a portion at which said swing section is pressed to activate a turning motion thereof, and further including an electrically conductive contact portion; and a press member extending through the hole for being pressed to thereby press the swing section.
  • 7. A switch device according to claim 6, further comprising an electrical substrate including a pair of printed contacts spaced apart from each other, wherein the contact portion comes into contact with the pair of printed contacts spaced apart from each other to thereby establish electrical conduction between the pair of printed contacts.
  • 8. A switch device according to claim 7, wherein a contact surface of the contact portion of the switch device is parallel with the printed contacts of the electrical substrate while said swing section is being pressed such that the contact surface of the contact portion comes into contact with the surfaces of the printed contacts.
  • 9. A switch device according to claim 7, wherein the contact surface of the contact portion of the switch device is spaced apart from and is not parallel to the surfaces of the printed contacts of the electrical while said swing section is not being pressed.
  • 10. A switch device according to claim 6, wherein the contact portion is composed of an electrically conductive rubber material.
  • 11. A switch device according to claim 6, wherein the contact portion includes an inclined surface.
  • 12. A switch device according to claim 6, wherein said swing section is formed integrally with said swing support section.
  • 13. A switch device according to claim 12, wherein said swing section and said swing support section are composed of a thin film.
  • 14. A switch device according to claim 6, wherein the portion at which said swing section is pressed and the contact portion are each formed on said swing section at positions having mutually different distances from said swing support section.
  • 15. A switch device according to claim 14, wherein the portion at which said swing section is pressed is located at a position which is nearer to said swing support section than the contact portion.
  • 16. A switch device according to claim 14, wherein the contact portion is located at a position which is farther from said swing support section than the portion at which said swing section is pressed.
  • 17. A switch device according to claim 6, wherein the portion at which said swing section is pressed and the contact portion are disposed on different surfaces of said swing section.
  • 18. A switch device comprising:a housing section having a hole formed therein; a base section composed of a rubber material; a lever section composed of a rubber member and having an electrical contact; a hinge section composed of a rubber material for swingably supporting said lever section on said base section; and a press member extending through the hole, for pressing the lever section when the press member is pressed.
  • 19. A switch device according to claim 18, wherein the press member is formed integrally with said lever section, wherein said lever section is swung by being pressed by said press section.
  • 20. A switch device according to claim 18, wherein said base section, said lever section and said hinge section are composed of silicone rubber.
  • 21. A switch device according to claim 18, wherein said press member for pressing said lever section presses said lever section at a position along said lever section different from a position at which the electrical contact is disposed.
Priority Claims (1)
Number Date Country Kind
10-234524 Aug 1998 JP
US Referenced Citations (7)
Number Name Date Kind
3982081 Demler, Jr. Sep 1976
4190748 Langford Feb 1980
4492829 Rodrique Jan 1985
4687200 Shirai Aug 1987
4766271 Mitsuhashi et al. Aug 1988
5278374 Takagi et al. Jan 1994
5874697 Selker et al. Feb 1999