Switch structure with overload protection

Information

  • Patent Grant
  • 6734779
  • Patent Number
    6,734,779
  • Date Filed
    Saturday, August 24, 2002
    22 years ago
  • Date Issued
    Tuesday, May 11, 2004
    20 years ago
Abstract
A switch includes a casing having a bottom to which first and second conductive blades are mounted. The second blade has a top edge forming a notch for receiving a see saw plat and allowing seesawing of the seesaw plate. A conductive strip made of a material that bends when subject to a temperature rise has an end fixed to the first blade and an opposite, free end forming a cantilever. The seesaw plate is movable between an engaged position where a first end of the seesaw plate engages the free end of the conductive strip thereby forming an electrical connection between the first and second blades and a disengaged position where the seesaw plate disengages from the conductive strip thereby electrically disconnecting the second blade from the first blade. A control button is movably received in a top opening of the casing and has a driver assembly mounted thereto. The control button is movable between a first position wherein the driver assembly drives the seesaw plate toward the engaged position and a second position where the driver assembly drives the seesaw plate toward the disengaged position. When an excessive current flows through the conductive strip, causing a temperature rise in the conductive strip, the conductive strip bends and separates the free end thereof from the seesaw plate thereby breaking the electrical connection between the first and second blades.
Description




FIELD OF THE INVENTION




The present invention relates generally to a switch, and in particular to a switch having an overload protection mechanism for operation safety.




BACKGROUND OF THE INVENTION




A switch is operable between an ON (connected) state and an OFF (disconnected) state for control of power supply or electrical signal transmission. For a power switch, overheating and burning caused by overload resulting from undesired shorting is one of the major concerns of operation safety. Some switches available in the market are provided with safety mechanism that automatically cuts off power supplied therethrough in order to eliminate the potential risk of overheating and burning. Such switches, however, have complicated structures, making costs high and manufacture difficult.




It is thus desirable to have a switch structure that is simple in structure but possesses operation safety feature.




SUMMARY OF THE INVENTION




An object of the present invention is to provide a switch having a simple structure while capable of operation safety.




Another object of the present invention is to provide a switch of low costs while having overload protection.




A further object of the present invention is to provide a switch which is easy to manufacture.




To achieve the above objects, in accordance with the present invention, there is provided a switch comprising a casing having a bottom to which first and second conductive blades are mounted. The second blade has a top edge forming a notch for receiving a seesaw plate and allowing seesawing of the seesaw plate. A conductive strip made of a material that bends when subject to a temperature rise has an end fixed to the first blade and an opposite, free end forming a cantilever. The seesaw plate is movable between an engaged position where a first end of the seesaw plate engages the free end of the conductive strip thereby forming an electrical connection between the first and second blades and a disengaged position where the seesaw plate disengages from the conductive strip thereby electrically disconnecting the second blade from the first blade. A control button is movably received in a top opening of the casing and has a driver assembly mounted thereto. The control button is movable between a first position wherein the driver assembly drives the seesaw plate toward the engaged position and a second position where the driver assembly drives the seesaw plate toward the disengaged position. When an excessive current flows through the conductive strip, causing a temperature rise in the conductive strip, the conductive strip bends and separates the free end thereof from the seesaw plate thereby breaking the electrical connection between the first and second blades.











BRIEF DESCRIPTION OF THE DRAWINGS




The present invention will be apparent to those skilled in the art by reading the following description of preferred embodiments thereof, with reference to the attached drawings, in which:





FIG. 1

is an exploded perspective view of a switch constructed in accordance with a first embodiment of the present invention;





FIG. 2

is a cross-sectional view of the switch in an OFF condition;





FIG. 3

is a cross-sectional view of the switch in an ON condition;





FIG. 4

is a cross-sectional view of the switch in a breaking condition;





FIG. 5

is an exploded view of a switch constructed in accordance with a second embodiment of the present invention;





FIG. 6

is a cross-sectional view of the switch in an OFF condition;





FIG. 7

is a cross-sectional view of the switch in an ON condition; and





FIG. 8

is a cross-sectional view of the switch in a breaking condition.











DETAILED DESCRIPTION OF THE INVENTION




With reference to the drawings and in particular to

FIGS. 1-3

, a switch constructed in accordance with the present invention comprises a casing


1


forming an interior space (not labeled) and having opposite side walls (not labeled) defining a top opening


11


in communication with the interior space. Aligned holes


111


arc defined in the sidewalls. A rotation button


2


is partially received in the opening


11


and has opposite pivot pins


21


rotatably received in the holes


111


of the casing


1


whereby the button


2


is rotatable between first and second positions respectively associated with ON and OFF conditions of the switch as shown in

FIGS. 3 and 2

.




A driver assembly


22


is formed on an underside of the button


2


and extends into the interior space of the casing


1


. The driver assembly


22


comprises a cylinder


221


extending from the underside of the button


2


inside which a cap


23


is partially and movably received. A biasing element


231


, such as a helical spring, is mounted between the cylinder


221


and the cap


23


for biasing the cap


23


away from the cylinder


221


. The helical spring


231


is received and retained in both the cylinder


221


and the cap


23


.




Two slots


12


,


13


are defined in a bottom (not labeled) of the casing


1


. First and second conductive blades


14


,


15


are fit and fixed in the slots


12


,


13


and having tails (not labeled) extending beyond the bottom of the casing


1


for external connection. An opening


151


is defined in the second blade


15


. A conductive strip


4


made of a conductive material, such as an alloy or a bimetal, that bends when subject to heat and thus having a temperature rise is arranged inside the casing


1


and has an end attached to the first blade


14


and a second, free end extending through the opening


151


, forming a cantilever beam. The opening


151


is large enough to accommodate the bending and deformation of the conductive strip


4


without any physical engagement therebetween.




The second blade


15


defines a notch


152


in a top edge (not labeled) thereof. A seesaw plate


3


made of a conductive material is arranged inside the casing


1


and has a concave configuration and forms a bottom projection (not labeled) fit in the notch


152


of the second blade


15


whereby the seesaw plate


3


seesaws about the top edge of the second blade


15


. The bottom projection of the seesaw plate


3


is formed by pressing the plate


3


which forms a recess


31


on a top side thereof and the recessed portion of the plate


3


forms the projection. A hole


32


is defined at a first end of the seesaw plate


3


to which a first contact


33


is received and fixed. A second contact


42


is mounted to a hole


41


defined in the conductive strip


4


to correspond to the first contact


33


.




The cap


23


of the button


2


engages the top side of the seesaw plate


3


and is slidable along the seesaw plate


3


to seesaw the seesaw plate


3


. When the button


2


is rotated to the first position (the ON condition, FIG.


3


), the cap


23


is moved to the first end of the seesaw plate


3


close to the first contact


33


whereby the seesaw plate


3


is moved to an engaged position where the first contact


33


is brought into engagement with the second contact


42


of the conductive strip


4


. Thus, an electrical connection between the first and second blades


14


,


15


, through the conductive strip


4


, the second and first contacts


42


,


33


and the seesaw plate


3


, is formed.




When the button


2


is rotated to the second position (the OFF condition, FIG.


2


), the cap


23


is moved to a second end of the seesaw plate


3


away from the first contact


33


whereby the seesaw plate


3


is moved to a disengaged position by rotation about the notch


152


of the second blade


15


to separate the first contact


33


from the second contact


42


. Thus, the electrical connection between the first and second blades


14


,


15


is broken.




In sliding along the seesaw plate


3


between the first and second ends thereof, the cap


23


is forced toward the button


2


when the cap


23


passes the edge of the second blade


15


by deforming the biasing element


231


. If desired, the cap


23


may be partially received in the recess


31


defined in the top side of the seesaw plate


3


to be guided thereby.




The rotation of the button


2


between OFF and ON conditions causes the seesaw plate


3


to seesaw between the disengaged and engaged positions. When the seesaw plate


3


is moved to the disengaged position, to ensure correctly positioning of the seesaw plate


3


and to prevent undesired engagement between the seesaw plate


3


and the first blade


14


(noting that the seesaw plate


3


is always in engagement with the second blade


15


), a partition


16


is formed inside the casing


1


and extending above the conductive strip


4


and the first blade


14


. Thus, when the seesaw plate


3


is moved to the disengaged position, the second end of the seesaw plate


3


is stopped by the partition


16


thereby ensuring the correct positioning of the seesaw plate


3


at the disengaged position.




Similarly, when the seesaw plate


3


is moved to the engaged position, the casing


1


forms a first stop


17


located between the first end of the seesaw plate


3


and the conductive strip


4


. When the first contact


33


engages the second contact


42


, the first stop


17


engages the seesaw plate


3


and thus fixing the seesaw plate


3


at the engaged position. Overturning of the seesaw plate


3


is prevented. An additional second stop


18


may be formed inside the casing


1


spaced from and substantially opposite to the partition


16


for engaging the second end of the seesaw plate


3


and thus further fixing the seesaw plate


3


at the engaged position.




Also referring to

FIG. 4

, when an overload happens, an excessive current flows through the conductive strip


4


, causing a significant temperature rise. The conducive strip


4


thus bends in a direction away from the seesaw plate


3


to separate the first and second contacts


33


,


42


thereby breaking the electrical connection between the first and second blades


14


,


15


and cutting off the current. The stop


17


that is located between the seesaw plate


3


and the conductive strip


4


also functions to prevent the conductive strip


4


from bending toward the seesaw plate


3


. Thus, the conductive strip


4


is only allowed to bend, due to temperature rise, in a direction away from the seesaw plate


3


in order to properly disengage the contacts


33


,


42


.




Preferably, one or more stops are formed inside the casing for preventing over-bending of the conductive strip


4


when the conductive strip


4


is subject to a temperature rise. This is to ensure that the conductive strip


4


does not contact the second blade


15


even when it is subject to a significant temperature rise.




To return to the normal operation from the breaking condition, the button


2


is moved to the OFF condition. The conductive strip


4


restores its original position when the temperature thereof lowers down. The button


2


may then be moved to the ON condition to engage the first contact


33


with the second contact


42


for resuming electrical connection between the first and second blades


14


,


15


.





FIGS. 5-7

show a switch constructed in accordance with a second embodiment of the present invention, comprising a casing


1


forming an interior space (not labeled) and having opposite side walls (not labeled) defining a top opening


11


and a side opening


112


both in communication with the interior space. A cover


19


is fit into the top opening


11


and is fixed to the casing


1


. A hole


190


is defined in an inside surface (not labeled) of the cover


19


. A Z-shaped bar


191


has a major central section and two minor end sections extending from opposite ends of the central section in opposite directions. An end section of the bar


191


is fit into the hole


190


whereby the bar


191


is attached to the inner surface of the cover


19


.




A push button


2


′ is movably received in the interior space of the casing


1


through the side opening


112


. A guide block


25


having a polygonal configuration is formed on a top side of the pushbutton


2


′ defining a multi-section channel


24


surrounding the block


25


. The channel


24


forms a closed loop path or route having stop points A and B. The second end section of the bar


191


is movably received in the channel


24


and is guided to move along the route. The pushbutton


2


′ is linearly movable with respect to the casing


1


between an outer position (

FIG. 6

) and an inner position FIG.


7


. By repeatedly pushing the pushbutton


2


′, the end section of the bar


191


is moved along the channel


24


between the stop points A and B. When the pushbutton


2


′ is pushed once and moved to the inner position, the end section of the bar


191


is moved to the stop point B and trapped there for retaining the pushbutton


2


′ at the inner position. When the pushbutton


2


′ is pushed again and is thus moved to the outer position, the end section of the bar


191


is moved to the stop point A. The outer and inner positions of the pushbutton


2


′ respectively associated with OFF and ON conditions of the switch as shown in

FIGS. 6 and 7

. The pushbutton


2


′ is spring-biased for helping movement between the stop points A and B.




A driver assembly


22


is formed on an underside of the pushbutton


2


′ and extends into the interior space of the casing


1


. The driver assembly


22


comprises a cylinder


221


extending from the underside of the pushbutton


2


′ inside which a cap


23


is movably received. A biasing element


231


, such as a helical spring, is mounted between the cylinder


221


and the cap


23


for biasing the cap


23


away from the cylinder


221


. The helical spring


231


is received and retained in both the cylinder


221


and the cap


23


.




Two slots


12


,


13


are defined in a bottom (not labeled) of the casing


1


. First and second conductive plates


14


,


15


are fit and fixed in the slots


12


,


13


and having tails (not labeled) extending beyond the bottom of the casing


1


for external connection. An opening


151


is defined in the second blade


15


. A conductive strip


4


made of a conductive material, such as an alloy and a bimetal, that bends when subject to heat and thus having a temperature rise has an end attached to the first blade


14


and a second, free end extending through the opening


151


forming a cantilever beam. The opening


151


is large enough to accommodate the deformation of the conductive strip


4


without any physical engagement therebetween.




The second blade


15


defines a notch


152


at a top edge (not labeled) thereof. A seesaw plate


3


made of a conductive material has a concave configuration and forms a bottom projection (not labeled) fit in the notch


152


of the second blade


15


whereby the seesaw plate


3


seesaws about the top edge of the second blade


15


. The bottom projection of the seesaw plate


3


is formed by pressing the plate


3


which forms a recess


31


on a top side thereof and the recessed portion of the plate


3


forms the projection. A hole


32


is defined at a first end of the seesaw plate


3


to which a first contact


33


is received and fixed. A second contact


42


is mounted to a hole


41


defined in the conductive strip


4


to correspond to the first contact


33


.




The cap


23


of the button


2


engages the top side of the seesaw plate


3


and is slidable along the seesaw plate


3


to seesaw the seesaw plate


3


. When the pushbutton


2


′ is moved to the inner position (the ON condition, FIG.


7


), the cap


23


is moved to the first end of the seesaw plate


3


close to the first contact


33


whereby the seesaw plate


3


is driven to an engaged position where the first contact


33


is brought into engagement with the second contact


42


of the conductive strip


4


. Thus, an electrical connection between the first and second blades


14


,


15


, through the conductive strip


4


, the second and first contacts


42


,


33


and the seesaw plate


3


, is formed.




When the pushbutton


2


′ is moved to the outer position (the OFF condition, FIG.


6


). The cap


23


is moved to a second end of the seesaw plate


3


away from the first contact


33


whereby the seesaw plate


3


is driven to a disengaged position by rotation about the notch


152


of the second blade


15


to separate the first contact


33


from the second contact


42


. Thus, the electrical connection between the first and second blades


14


,


15


is broken.




In sliding along the seesaw plate


3


between the first and second ends thereof, the cap


23


is forced toward the button


2


when the cap


23


passes the edge of the second blade


15


by deforming the biasing element


231


. If desired, the cap


23


may be partially received in the recess


31


defined in the top side of the seesaw plate


3


to be guided thereby.




The movement of the pushbutton


2


′ between the outer and inner positions (the OFF and ON conditions) causes the seesaw plate


3


to seesaw between the disengaged and engaged positions. When the seesaw plate


3


is moved to the disengaged position, to ensure correctly positioning of the seesaw plate


3


and to prevent undesired engagement between the seesaw plate


3


and the first blade


14


(noting that the seesaw plate


3


is always in engagement with the second blade


15


), a partition


16


is formed inside the casing


1


and extending above the conductive strip


4


and the first blade


14


. Thus, when the seesaw plate


3


is moved to the disengaged position, the second end of the seesaw plate


3


is stopped by the partition


16


thereby ensuring the correct positioning of the seesaw plate


3


at the disengaged position.




Similarly, when the seesaw plate


3


is moved to the engaged position, the casing


1


forms a stop


17


located between the seesaw plate


3


and the conductive strip


4


. When the first contact


33


engages the second contact


42


, the stop


17


engages the seesaw plate


3


and thus fixing the seesaw plate


3


at the engaged position. Overturning of the seesaw plate


3


is prevented.




Also referring to

FIG. 8

, when an overload happens, an excessive current flows through the conductive strip


4


, causing a significant temperature rise. The conducive strip


4


thus bends in a direction away from the seesaw plate


3


to separate the first and second contacts


33


,


42


thereby breaking the electrical connection between the first and second blades


14


,


15


and cutting off the current. The stop


17


that is located between the seesaw plate


3


and the conductive strip


4


also functions to prevent the conductive strip


4


from bending toward the seesaw plate


3


. Thus, the conductive strip


4


is only allowed to bend, due to temperature rise, in a direction away from the seesaw plate


3


in order to properly disengage the contacts


33


,


42


.




To return to the normal operation from the breaking condition, the pushbutton


2


′ is moved to the outer position (the OFF condition). The conductive strip


4


restores its original position when the temperature thereof lowers down. The pushbutton


2


′ may then be moved to the inner position (the ON condition) to engage the first contact


33


with the second contact


42


for resuming electrical connection between the first and second blades


14


,


15






Although the present invention has been described with reference to the preferred embodiments thereof, it is apparent to those skilled in the art that a variety of modifications and changes may be made without departing from the scope of the is intended to be defined by the appended claims.



Claims
  • 1. A switch comprising:a casing defining an interior space, the casing having a bottom and a top opening in communication with the interior space; first and second conductive blades arranged in the interior space and mounted to the bottom, the first and second blades having tails extending beyond the bottom for external connection, the second blade having a top edge forming a notch; a conductive strip made of a material that bends when subject to a temperature rise, the strip having an end fixed to the first blade and an opposite, free end forming a cantilever; a seesaw plate having a bottom side on which a projection is formed and an opposite top side, the projection being received in the notch of the second blade to allow seesawing of the seesaw plate about the top edge of the second blade between an engaged position where a first end of the seesaw plate engages the free end of the conductive strip thereby forming an electrical connection between the first and second blades and a disengaged position where the first end of the seesaw plate disengages from the conductive strip thereby electrically disconnecting the second blade from the first blade; and a control button movably received in the top opening of the casing and having a driver assembly mounted thereto, the control button being mounted to the casing with the driver assembly engaging the top side of the seesaw plate, the control button being movable between a first position wherein the driver assembly drives the seesaw plate toward the engaged position and a second position where the driver assembly drives the seesaw plate toward the disengaged position; wherein with the seesaw plate engaging the conductive strip and forming the electrical connection between the first and second blades, when an excessive current flows through the conductive strip, causing a temperature rise in the conductive strip, the conductive strip bends and separates the free end thereof from the first end of the seesaw plate thereby breaking the electrical connection between the first and second blades.
  • 2. The switch as claimed in claim 1, wherein the driver assembly comprises a cylinder formed on an underside of the control button and a movable cap partially received in the cylinder and a biasing element arranged between the cylinder and the cap for biasing the cap away from the cylinder and engaging the top side of the seesaw plate.
  • 3. The switch as claimed in claim 2, wherein a recess is defined in the top side of the seesaw plate for partially accommodating and guiding the cap.
  • 4. The switch as claimed in claim 2, wherein the biasing element comprises a spring.
  • 5. The switch as claimed in claim 1, wherein a first contact is mounted to the first end of the seesaw plate and a second contact is mounted to the free end of the conductive strip, the first contact being engageable with the second contact when the seesaw plate is moved to the engaged position.
  • 6. The switch as claimed in claim 1, wherein the casing comprises a partition which engages a second end of the seesaw plate when the seesaw plate is moved to the disengaged position for preventing engagement between the seesaw plate and the conductive strip.
  • 7. The switch as claimed in claim 1, wherein the casing forms a stop which engages the first end of the seesaw plate when the seesaw plate is moved to the engaged position thereby properly positioning the seesaw plate at the engaged position.
  • 8. The switch as claimed in claim 7, wherein casing forms an additional stop which engages a second end of the seesaw plate when the seesaw plate is moved to the engaged position for properly positioning the seesaw plate at the engaged position.
  • 9. The switch as claimed in claim 1, wherein the casing forms a block located between the conductive strip and the first end of the seesaw plate for preventing the free end of the conductive strip from bending toward the seesaw plate when the conductive strip is subject to a temperature rise.
  • 10. The switch as claimed in claim 1, wherein the control button forms pivot pins rotatably received in holes defined in side walls of the top opening of the casing for rotatably mounting the control button to the casing whereby the button is rotatable between first and second positions for moving the driver assembly along the top side of the seesaw plate.
  • 11. A switch comprising:a casing defining an interior space, the casing having a bottom, and top and side openings in communication with the interior space; a cover fit to the top opening; first and second conductive blades arranged in the interior space and mounted to the bottom, the first and second blades having tails extending beyond the bottom for external connection, the second blade having a top edge forming a notch; a conductive strip made of a material that bends when subject to a temperature rise, the strip having an end fixed to the first blade and an opposite, free end forming a cantilever; a seesaw plate having a bottom side on which a projection is formed and an opposite top side, the projection being received in the notch of the second blade to allow seesawing of the seesaw plate about the top edge of the second blade between an engaged position where a first end of the seesaw plate engages the free end of the conductive strip thereby forming an electrical connection between the first and second blades and a disengaged position where the first end of the seesaw plate disengaged from the conductive strip thereby electrically disconnecting the second blade from the first blade; a control button received through the side opening of the casing and having a driver assembly mounted thereto, the control button being movably mounted to the casing with the driver assembly engaging the top side of the seesaw plate, the control button being movable between a first position wherein the driver assembly drives the seesaw plate towards the engaged position and a second position where the driver assembly drives the seesaw plate toward the disengaged position; and a control bar mounted to the cover and extending into a channel defined in a top side of the control button, the movement of the control button with respect to the casing being guided by the bar that moves along the channel between two stop points respectively corresponding to the first and second position; wherein with the seesaw plate engaging the conductive strip and forming the electrical connection between the first and second blades, when an excessive current flows through the conductive strip, causing a temperature rise in the conductive strip, the conductive strip bends and separates the free end thereof from the first end of the seesaw plate thereby breaking the electrical connection between the first and second blades.
  • 12. The switch as claimed in claim 11, wherein the channel forms a closed loop path for the bar whereby when the control button is actuated once, the bar moving with respect to the control button from a first stop point to a second stop point and when the control button is actuated second time, the bar moving from the second stop point back to the first stop point.
  • 13. The switch as claimed in claim 12, wherein the control button is spring biased for returning from the second stop point back to the first stop point.
US Referenced Citations (13)
Number Name Date Kind
3435169 Bienwald et al. Mar 1969 A
3735077 Ohashi May 1973 A
4013857 Tanaka Mar 1977 A
4115673 Smith Sep 1978 A
4337450 Matthies Jun 1982 A
4345233 Matthies Aug 1982 A
4736081 Sorrells Apr 1988 A
4904833 Sato et al. Feb 1990 A
5453725 You et al. Sep 1995 A
5541569 Jang Jul 1996 A
6252490 Lin Jun 2001 B1
6275134 Chen Aug 2001 B1
6570480 Huang May 2003 B1