The present invention generally relates to switches, and more particularly relates to a switch system that includes a high temperature switch operating plunger.
Electrical switches are used in myriad systems and environments, and typically operate to open and close an electrical circuit by moving one or more contacts between contact positions. Although electrical switches vary in configuration, one particular type of switch that is relatively popular is a snap action switch. A snap action switch is configured, in response to application and removal of an actuation force, to move, with snap-action, between contact positions.
Snap action switches are fairly robust, reliable, and relatively inexpensive. However, these types of switches are typically not manufactured to be activated by extremely hot actuators. Thus, snap action switches may be prohibited from use in systems which may actuate the using to relatively high temperature methods. This can result in designers using relatively expensive switches in such systems, which can increase overall system costs.
Hence, there is a need for a snap action switch that can be used in systems which may actuate the switch using relatively high temperature methods. The present invention addresses at least this need.
In one embodiment, a switch system includes a snap action switch, an operating plunger, and an actuator. The snap action switch is configured to move, with snap-action, from a first switch position to a second switch position. The operating plunger is disposed adjacent to the snap action switch and is coupled to selectively receive an actuating force. The operating plunger is configured, upon receipt of the actuating force, to retain the snap action switch in the first switch position. The operating plunger is further configured, upon removal of the actuating force, to allow the switch to move from the first switch position to the second switch position. The actuator contacts the operating plunger and is configured to selectively supply the actuating force to, and remove the actuating force from, the operating plunger. The operating plunger comprises a dielectric material having low thermal conductivity.
In another embodiment, a switch system includes a housing, a snap action switch, an operating plunger, and an actuator. The snap action switch is disposed within the housing and is configured to move, with snap-action, between a first switch position to a second switch position. The operating plunger extends through an opening in the housing and contacts the snap action switch. The operating plunger is coupled to selectively receive an actuating force and is configured, upon receipt of the actuating force, to move the snap action switch to and retain the snap action switch in the first switch position. The operating plunger further is configured, upon removal of the actuating force, to allow the switch to move from the first switch position to the second switch position. The actuator contacts the operating plunger and is configured to selectively supply the actuating force to, and remove the actuating force from, the operating plunger. The operating plunger comprises a dielectric material having low thermal conductivity.
In yet another embodiment, a switch system includes a snap action switch, an operating plunger, and a heated actuator. The snap action switch is configured to move, with snap-action, between an open switch position to a closed switch position. The operating plunger extends through an opening in the housing and contacts the snap action switch. The operating plunger is coupled to selectively receive an actuating force and is configured, upon receipt of the actuating force, to move the snap action switch to and retain the snap action switch in the open switch position. The operating plunger is further configured, upon removal of the actuating force, to allow the switch to move from the open switch position to the closed switch position. The heated actuator contacts the operating plunger and is configured to selectively supply the actuating force to, and remove the actuating force from, the operating plunger. The operating plunger comprises a dielectric material having low thermal conductivity.
Furthermore, other desirable features and characteristics of the switch system will become apparent from the subsequent detailed description and the appended claims, taken in conjunction with the accompanying drawings and the preceding background.
The present invention will hereinafter be described in conjunction with the following drawing figures, wherein like numerals denote like elements, and wherein:
The following detailed description is merely exemplary in nature and is not intended to limit the invention or the application and uses of the invention. As used herein, the word “exemplary” means “serving as an example, instance, or illustration.” Thus, any embodiment described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other embodiments. All of the embodiments described herein are exemplary embodiments provided to enable persons skilled in the art to make or use the invention and not to limit the scope of the invention which is defined by the claims. Furthermore, there is no intention to be bound by any expressed or implied theory presented in the preceding technical field, background, brief summary, or the following detailed description.
Referring to
The depicted snap action switch 102 includes a leaf spring 202 and a preload spring 204. The leaf spring 202 is electrically conductive and includes a first end 206 and a second end 208. The first end 206 of the leaf spring 202 is coupled to a plunger interface 212, and the second end 208 of the leaf spring 202 has a contact interface 214 coupled thereto. The plunger interface 212 is mounted within the housing 108 and interfaces with the operating plunger 104. Though not depicted in
The contact interface 214 is electrically coupled to one or more normally-closed contacts 216 or to one or more normally-open contacts 218. The one or more normally-closed contacts 216 are electrically coupled to a first terminal 222. The one or more normally-open contacts 218 are spaced apart from the one or more normally-closed contacts 216 and are electrically coupled to a second terminal 224. The first and second terminals 222, 224 allow the normally-closed contacts 216 and the normally-open contacts 218, respectively, to be connected to external devices, circuits, or systems.
The preload spring 204, which is implemented as an electrically conductive curved spring, engages the leaf spring 202 and is coupled at one end to a fulcrum 226. The fulcrum 226 is electrically coupled to a common terminal 228, which may also be connected to external devices, circuits, or systems. The preload spring supplies a force to the leaf spring 202 that urges the second end 208 of the leaf spring 202 upward (from the perspective of
If, as will be described further below, a sufficient force is supplied to the plunger interface 212 that moves the first end of the leaf spring 202 downward (from the perspective of
Returning now to
The actuator 106 contacts the operating plunger 104 and is configured to selectively supply the actuating force to, and remove the actuating force from, the operating plunger 104. The actuator 106, which may be variously configured and implemented, is heated during normal operations of the switch system 100. Thus, during normal operations of the switch system 100 the actuator 106 may operate at temperatures in excess of 2000° F. It will be appreciated that the actuator 106 may itself generate heat or it may be heated by another device.
Regardless of how the actuator 106 is heated, because the actuator 106 is at a relatively high temperature during normal system operations, and because the plunger 104 contacts the snap action switch 102, the plunger 104 is configured to provide thermal protection for the snap action switch 102. More specifically, the plunger 104 is manufactured, at least partially, of a relatively high dielectric, low thermal conductivity material. The specific material used may vary, but is selected to withstand the relatively high temperatures of the actuator 106 and to maintain sufficiently high levels of electrical insulation to prevent potential damage to the snap action switch 102. Some non-limiting examples of suitable materials include various ceramics and various high-temperature grade thermoset phenolic materials. One suitable ceramic material, alumina, exhibits a thermal conductivity of 23 W/m-k per ASTM-C408, and a dielectric strength of 15 kV/mm per ASTM-D149. One suitable thermoset phenolic material, having the trade name RX640, exhibits a thermal conductivity of 0.55 W/m-k per ASTM standard C518, and a minimum dielectric strength of 11.8 kV/mm per ASTM standard D149.
In addition to being manufactured of a suitable material, the operating plunger 104 is additionally configured with a geometry that maintains proper contact and/or alignment with the actuator 106. More specifically, the plunger 104 includes an alignment feature that the actuator 106 mates with when the actuator 106 is supplying the actuating force to the operating plunger 104. It will be appreciated that the alignment feature may be variously configured and implemented, but in one particular embodiment, which is shown most clearly in
Returning once again to
In this document, relational terms such as first and second, and the like may be used solely to distinguish one entity or action from another entity or action without necessarily requiring or implying any actual such relationship or order between such entities or actions. Numerical ordinals such as “first,” “second,” “third,” etc. simply denote different singles of a plurality and do not imply any order or sequence unless specifically defined by the claim language. The sequence of the text in any of the claims does not imply that process steps must be performed in a temporal or logical order according to such sequence unless it is specifically defined by the language of the claim. The process steps may be interchanged in any order without departing from the scope of the invention as long as such an interchange does not contradict the claim language and is not logically nonsensical.
Furthermore, depending on the context, words such as “connect” or “coupled to” used in describing a relationship between different elements do not imply that a direct physical connection must be made between these elements. For example, two elements may be connected to each other physically, electronically, logically, or in any other manner, through one or more additional elements.
While at least one exemplary embodiment has been presented in the foregoing detailed description of the invention, it should be appreciated that a vast number of variations exist. It should also be appreciated that the exemplary embodiment or exemplary embodiments are only examples, and are not intended to limit the scope, applicability, or configuration of the invention in any way. Rather, the foregoing detailed description will provide those skilled in the art with a convenient road map for implementing an exemplary embodiment of the invention. It being understood that various changes may be made in the function and arrangement of elements described in an exemplary embodiment without departing from the scope of the invention as set forth in the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
2840657 | Roeser | Jun 1958 | A |
3691333 | Elliot | Sep 1972 | A |
3959615 | Zaffrann, Jr. | May 1976 | A |
5017747 | Nagahara et al. | May 1991 | A |
5621373 | McCormick | Apr 1997 | A |
5748066 | Holt | May 1998 | A |
5950811 | Kautz | Sep 1999 | A |
6078246 | Davis | Jun 2000 | A |
6133818 | Hsieh et al. | Oct 2000 | A |
6747541 | Holt et al. | Jun 2004 | B1 |
20100231347 | Knab et al. | Sep 2010 | A1 |
20120293294 | Baghdasarian | Nov 2012 | A1 |
20130032458 | Anderst | Feb 2013 | A1 |
Number | Date | Country | |
---|---|---|---|
20150114812 A1 | Apr 2015 | US |