This application is a U.S. national stage application of the PCT international application No. PCT/JP2017/015410 filed on Apr. 17, 2017, which claims the benefit of foreign priority of Japanese patent application No. 2016-148145 filed on Jul. 28, 2016, the contents all of which are incorporated herein by reference.
The present disclosure relates to a switch unit used for an operation unit of various types of electronic devices.
In recent years, a switch unit in which a movable contact element is mounted on a wiring board has been used as an input device for various types of electronic devices.
A conventional switch unit includes a movable contact element mounted on a wiring board, for example, as shown in PTL 1. A first stationary contact element (a second stationary contact 1a) having a circular shape and a second stationary contact element (a first stationary contact 1b) having an annular shape surrounding the first stationary contact element are disposed on the wiring board. The movable contact element is made of an elastic metal having an upwardly convex dome shape having a circular shape when viewed from above. The movable contact element is mounted on an upper surface of the wiring board such that an outer peripheral portion of the movable contact contacts the second stationary contact element. A central portion of the movable contact element faces the first stationary contact element with a predetermined gap in between. The movable contact element deforms upon being pressed in a direction in which the central portion of the movable contact element approaches the wiring board, thereby contacting the first stationary contact element. This configuration allows the conventional switch unit to electrically connect the first stationary contact element with the second stationary contact element via the movable contact element. In other words, the conventional switch unit is turned from an off-state in which the first stationary contact element is electrically insulated from the second stationary contact element to an on-state in which the first stationary contact element is electrically connected with the second stationary contact element.
PTL 1: Japanese Patent Laid-Open Publication No. 2006-40808
A switch unit according to the present disclosure includes a wiring board including a first stationary contact element and a second stationary contact element, and a movable contact element including a movable contact portion and a pressure receiving portion, the movable contact portion facing the wiring board and the pressure receiving portion located opposite the movable contact portion. The movable contact element deforms by being pressed in a direction in which the pressure receiving portion approaches toward the wiring board from a state in which the movable contact element is spaced from at least the first stationary contact element, and causes the movable contact portion to make contact with the first stationary contact element, so that the movable contact element is switched to a state of being in contact with both the first stationary contact element and the second stationary contact element. This causes the movable contact element to electrically connect the first stationary contact element and the second stationary contact element with each other. The first stationary contact element is formed on the wiring board continuously from a region facing the movable contact portion of the movable contact element to a region that is outward of a projected region in which the movable contact element is projected onto a side of the wiring board.
The switch unit according to the present disclosure allows the positional arrangement of the movable contact element relative to the wiring board to change without changing the arrangement of the first stationary contact element formed on the wiring board.
Exemplary embodiments of the present disclosure will be detailed below with reference to
Problems of the conventional switch unit will be described briefly prior to describing the embodiments of the present disclosure.
In the conventional switch unit described above, the mount position of the movable contact element relative to the wiring board depends on the positional arrangement of the first stationary contact element. Therefore, when the mount position of the movable contact element changes, the positional arrangement of the first stationary contact element is required to change.
The present disclosure resolves such problems of conventional switch units, and provides a switch unit that can change the positional arrangement of the movable contact element relative to the wiring board without changing the positional arrangement of the first stationary contact element provided on the wiring board.
A switch unit according to an exemplary embodiment of the present disclosure will be described with reference to drawings.
As illustrated in
Movable contact element 30 is made of a thin metal plate having a predetermined shape. As illustrated in
Upon being pressed in a direction in which pressure receiving portion 30A approaches the upper surface of wiring board 10, movable contact element 30 deforms, and thereby, causes the surface (i.e., movable contact portion 30B) of movable contact element 30 that is opposite to pressure receiving portion 30A to contact first stationary contact portion 16A of first stationary contact element 11A. This configuration allows first stationary contact element 11A to be electrically connected with second stationary contact element 12A via movable contact element 30. In other words, switching from an off-state in which first stationary contact element 11A is electrically insulated from second stationary contact element 12A to an on-state in which first stationary contact element 11A is electrically connected with second stationary contact element 12A.
As illustrated in
As illustrated in
This configuration allows switch unit 100 to change the positional arrangement of movable contact element 30 relative to wiring board 10 from the state shown in
On the other hand,
Thus, switch unit 100 allows the position of first stationary contact portion 16A of first stationary contact element 11A to change dependently on the positional arrangement of movable contact element 30. In other words, switch unit 100 can change the position of first stationary contact portion 16A without changing the positional arrangement of first stationary contact element 11A. Accordingly, as long as movable contact portion 30B of movable contact element 30 is within the area in which movable contact portion 30B faces first stationary contact element 11A, switch unit 100 can arbitrarily change the positional arrangement of movable contact element 30 without changing the positional arrangement of first stationary contact element 11A. Therefore, only one type of wiring board 10 can provide plural types of switch units 100 having different positional arrangements of movable contact element 30.
A configuration and an operation of switch unit 100 will be detailed below.
As illustrated in
As illustrated in
Wiring board 10 includes predetermined conductive patterns provided thereon, and includes, for example, a polyimide flexible printed circuit board (FPC) having flexibility. Wiring board 10 includes main part 10A and lead part 10B extending outward from main part 10A. Main part 10A has a rectangular shape with a predetermined width. Lead part 10B has a predetermined width. First stationary contact elements 11A to 11C, second stationary contact elements 12A to 12C, and third stationary contact elements 13A to 13C are provided on an upper surface of main part 10A of wiring board 10. First stationary contact elements 11A to 11C have rectangular shapes extending in a longitudinal direction of main part 10A. Second stationary contact elements 12A to 12C have rectangular shapes extending in a longitudinal direction of main part 10A. Third stationary contact elements 13A to 13C have rectangular shapes extending in a longitudinal direction of main part 10A,
All of second stationary contact element 12A to 12C and third stationary contact element 13A to 13C have the same shape viewed from above. First stationary contact element 11A and third stationary contact element 13A are disposed parallel to each other and adjacent to each other. Second stationary contact element 12B and third stationary contact element 13B are disposed parallel to each other and adjacent to each other. Second stationary contact element 12C and third stationary contact element 13C are also disposed parallel to each other and adjacent to each other. All of second stationary contact elements 12A to 12C and third stationary contact elements 13A to 13C are electrically in contact with one another.
On the other hand, first stationary contact elements 11A to 11C has rectangular shapes with a slightly shorter length than second stationary contact elements 12A to 12C and third stationary contact elements 13A to 13C. First stationary contact element 11A is disposed between second stationary contact element 12A and third stationary contact element 13A. First stationary contact element 11B is disposed between second stationary contact element 12B and third stationary contact element 13B. First stationary contact element 11C is also disposed between second stationary contact element 12C and third stationary contact element 13C. First stationary contact elements 11A to 11C are electrically independent from one another, and electrically connected to respective connection terminals (not shown) provided at a tip end portion of lead part 10B via respective lead wiring lines (not shown) disposed on wiring board 10. The connector terminals are connected to a connector of an electronic device which is not shown in the drawings so that switch unit 100 can be used as an input operation unit of the electronic device.
Spacer 20 has a rectangular-shape and is made of an electrically insulative resin having a predetermined thickness. The outer shape of spacer 20 is substantially identical to the shape of main part 10A of wiring board 10 viewed from above. Spacer 20 is firmly adhered to the upper surface of wiring board 10 with an adhesive agent such as a thermosetting adhesive agent and an ultraviolet (UV) curable adhesive agent that is formed on the lower surface of spacer 20. Spacer 20 has openings 20A to 20C provided therein. Openings 20A to 20C are arranged at equal intervals in a straight line. Openings 20A to 20C are formed at positions corresponding to first stationary contact elements 11A to 11C, respectively. That is, first stationary contact elements 11A to 11C, second stationary contact elements 12A to 12C, and third stationary contact elements 13A to 13C are exposed from the insides of openings 20A to 20C of spacer 20, respectively.
The shape of each of openings 20A to 20C is slightly larger than movable contact element 30 viewed from above, which will be discussed later. In accordance with the present embodiment, each of openings 20A to 20C has a track shape (i.e., an oval shape) viewed from above. Each of movable contact elements 30 are accommodated inside respective one of openings 20A to 20C, so that each of movable contact elements 30 is retained and restricted in lateral directions. In accordance with the present embodiment, spacer 20 has three openings 20A to 20C therein and stacked on wiring board 10. Instead, three spacers each having only one opening 20A may be prepared and disposed consecutively on the upper surface of wiring board 10.
Movable contact element 30 is made of a thin metal plate with a predetermined shape. Movable contact element 30 has an upwardly convex dome shape. The shape of movable contact element 30 viewed from above is a track shape (oval shape) such that opposite side ends of a circular shape is cut away along parallel straight lines. As illustrated in
In accordance with the present embodiment, three movable contact elements 30 are accommodated in openings 20A to 20C of spacer 20, respectively, and are mounted on the upper surface of the wiring board 10. Each of the outer edges (the lower ends of curved portions 30D) of movable contact elements 30 contacts respective one of the upper surfaces of second stationary contact elements 12A to 12C and third stationary contact elements 13A to 13C of wiring board 10.
As illustrated in
The positional relationship among first stationary contact elements 11A to 11C, second stationary contact elements 12A to 12C, third stationary contact elements 13A to 13C, and movable contact elements 30 will be detailed below mainly with reference to
As illustrated in
The shape of movable contact element 30 viewed from above is a track shape (oval shape) such that opposite side ends of a circular shape is cut away along parallel straight lines, as described above. Therefore, the lower ends of the linear portions 30C are located higher than the lower ends of curved portions 30D. Therefore, as shown in, e.g.
As illustrated in
As described above, both second stationary contact element 12A and third stationary contact element 13A have rectangular shapes with predetermined widths. The longitudinal dimensions of second stationary contact element 12A and third stationary contact element 13A are slightly greater than the longitudinal dimension of first stationary contact element 11A. Both of second stationary contact element 12A and third stationary contact element 13A contact respective lower ends of curved portions 30D of movable contact element 30.
Spacer 20 overlaps portions of first stationary contact element 11A, second stationary contact element 12A, and third stationary contact element 13A that are disposed outside opening 20A of spacer 20. This configuration prevents first stationary contact element 11A, second stationary contact element 12A, and third stationary contact element 13A from being exposed unnecessarily, and thereby, protects the contact elements from corrosion, such as oxidation.
Pressing element 40 is made of an electrically insulating resin. As illustrated in
Protective sheet 50 is made of an electrically insulating film and is disposed over spacer 20 disposed so as to cover openings 20A to 20C. The outer peripheral portion of protective sheet 50 is firmly bonded to the upper surface of spacer 20. That is, a hermetically sealed state is obtained by closing openings 20A to 20C of spacer 20 with protective sheet 50. Protective sheet 50 may be firmly bonded so as to surround the respective outer edges of openings 20A to 20C of spacer 20. In accordance with the present embodiment, protective sheet 50 is welded and fixed to the upper surface of spacer 20 by, for example, laser application or ultrasonic processing. When protective sheet 50 and spacer 20 are fixed by welding, protective sheet 50 and spacer 20 be made of the same material. Protective sheet 50 may be retained on the upper surface of spacer 20 with a thermosetting adhesive agent, an ultraviolet curable (UV curable) adhesive agent, or an adhesive material.
In accordance with the present embodiment, one protective sheet 50 covers openings 20A to 20C, three protective sheets may be smaller than protective sheet 50 and cover respective openings 20A to 20C.
Switch unit 100 is configured as described above. As described above, switch unit 100 includes three contact sections 100A to 100C arranged along a straight line. A technical idea of the disclosure of the present application encompasses a switch unit including only contact section 100A.
Next, an operation of switch unit 100 will be described briefly taking, e.g. a switching operation of contact section 100A. Contact sections 100B and 100C operate in the same manner. When the operator depresses pressing element 40 downwardly via protective sheet 50, the pressing force is transmitted to pressure receiving portion 30A of movable contact element 30 via pressing element 40, causing movable contact element 30 to flip downwardly with a click feel. This operation causes movable contact portion 30B of movable contact element 30 to contact and first stationary contact portion 16A of first stationary contact element 11A. As a result, first stationary contact element 11A is electrically connected with second stationary contact element 12A via movable contact element 30, thus turning on contact section 100A as an on-state. Then, when the operator releases the pressing force, movable contact element 30 is brought back to has the original, upwardly convex dome shape by its own restoring force. Therefore, contact section 100A returns to an off-state, in which first stationary contact element 11A is electrically insulated from second stationary contact element 12A.
First stationary contact element 11A is electrically connected with second stationary contact element 12A via movable contact element 30. Third stationary contact element 13A may not necessarily be connected with second stationary contact element 12A. Third stationary contact element 13A may not be provided. Nevertheless, In the case that third stationary contact element 13A is provided, curved portion 30D of movable contact element 30 can contact either one of second stationary contact element 12A and third stationary contact element 13A, as in switch unit 100 of the present embodiment, movable contact element 30 can be mounted stably on wiring board 10. This configuration provides a stable operation feel.
In switch unit 100 of the present exemplary embodiment, first stationary contact element 11A extends continuously from a region of wiring board 10 that faces movable contact portion 30B of movable contact element 30 to a region of wiring board 10 that is outside of a region onto which movable contact element 30 is projected. This configuration allows switch unit 100 to change the positional arrangement of movable contact element 30 relative to wiring board 10 from the state shown in
On the other hand,
Thus, switch unit 100 allows the position of first stationary contact portion 16A to change depending on the positional arrangement of movable contact element 30. In other words, as long as movable contact portion 30B of movable contact element 30 is within the area in which movable contact portion 30B faces first stationary contact element 11A, switch unit 100 can arbitrarily change the positional arrangement of movable contact element 30 without changing the positional arrangement of first stationary contact element 11A. Therefore, since switch unit 100 does not necessarily change the positional arrangement of the first stationary contact element depending on the mount position of the movable contact element, only one type of wiring board 10 is required to construct plural types of switch units 100 having different positional arrangements of movable contact element 30.
Electronic devices having the switch unit incorporated therein generally includes plural pushbuttons, and the positional arrangement of the pushbuttons are determined according to various design conditions, such as the design of the electronic device and the layout of electronic components. This means that different switch units with different positional arrangements of contact sections need to be manufactured according to the positional arrangement of pushbuttons required by various electronic devices.
The switch unit according to the present exemplary embodiment is adapted to change the positional arrangement of movable contact elements 30 in contact sections 100A to 100C. That is, switch unit 100 is adapted to appropriately set the positional arrangement of contact sections 100A to 100C and the distances therebetween (for example, the distance between contact section 100A and contact section 100C). In other words, unlike conventional switch units, switch unit 100 can change the positional arrangements of the contact sections and the distances therebetween, without preparing wiring boards in which the first stationary contact elements and the second stationary contact elements are arranged according to the positional arrangement of the pushbuttons required by various electronic devices.
The switch unit according to the technical idea of the present disclosure does not necessarily include the plural contact sections 100A to 100C, and may include, e.g. only contact section 100A.
In accordance with the above-described exemplary embodiment, wiring board 10 on which second stationary contact elements 12A to 12C are disposed at positions contacting curved portions 30D of respective movable contact elements 30. Wiring board 10 may be modified to those as shown in
Switch unit 101 according to modified example 1, as well as switch unit 100, includes plural contact sections (contact sections 101A to 101C),
As illustrated in
As illustrated in
A region of first stationary contact element 61A facing movable contact portion 30B constitutes first stationary contact portion 66A. A region of second stationary contact element 62A facing movable contact portion 30B constitutes second stationary contact portion 67A.
Movable contact element 30 deforms upon being pressed in a direction in which pressure receiving portion 30A approaches the upper surface of wiring board 10, thereby causing the surface thereof opposite to pressure receiving portion 30A (i.e., movable contact portion 30B) to contact first stationary contact portion 66A and second stationary contact portion 67A. This configuration allows first stationary contact element 61A to be electrically connected with second stationary contact element 62A via movable contact element 30. In other words, switching takes place from an off-state in which first stationary contact element 61A is electrically insulated from second stationary contact element 62A to an on-state in which first stationary contact element 61A is electrically connected with second stationary contact element 62A.
As illustrated in
As illustrated in
Accordingly, as long as movable contact portion 30B of movable contact element 30 is within the area in which movable contact portion 30B faces both of first stationary contact element 61A and second stationary contact element 62A, switch unit 101 can arbitrarily change the positional arrangement of movable contact element 30.
A switch unit according to the present disclosure is useful for electronic devices incorporating the switch unit according to the present disclosure since the switch unit according to the present disclosure can change the positional arrangement of the movable contact element relative to the wiring board without changing the positional arrangement of the first stationary contact element formed on the wiring board.
Number | Date | Country | Kind |
---|---|---|---|
2016-148145 | Jul 2016 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2017/015410 | 4/17/2017 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/020754 | 2/1/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6274825 | Aaltonen et al. | Aug 2001 | B1 |
20090242374 | Ohsumi | Oct 2009 | A1 |
Number | Date | Country |
---|---|---|
2006-040808 | Feb 2006 | JP |
2009-205885 | Sep 2009 | JP |
2011-249264 | Dec 2011 | JP |
2013-125671 | Jun 2013 | JP |
Entry |
---|
International Search Report of PCT application No. PCT/JP2017/015410 dated Jul. 4, 2017. |
English Translation of Chinese Search Report dated Aug. 20, 2019 issued in corresponding Chinese Patent Application No. 201780028515.4. |
Number | Date | Country | |
---|---|---|---|
20190103238 A1 | Apr 2019 | US |