This disclosure relates to a switch with a moveable contact and an elastic assembly. The switch is configured for use with an electrical apparatus.
Switches are used in an electrical apparatus (for example, an oil capacitor switch) to control a connection between the electrical apparatus and an external electrical device and/or between the electrical apparatus and an alternating current (AC) power grid.
In one aspect, an electrical apparatus includes: a first electrically conductive contact; and a switch. The switch includes: an electrically conductive moveable contact; a cam; and an actuator connected to the electrically conductive moveable contact, the actuator including a cam region configured to interact with the cam. Rotation of the cam moves the actuator between one of two stable positions, the two stable positions including a first position and a second position. The switch also includes an elastic assembly coupled to the actuator, the elastic assembly configured to hold the actuator in either of the two stable positions. When the actuator is in the first position, the switch is closed and the electrically conductive moveable contact is connected to the first electrically conductive contact; and, when the actuator is in the second position, the switch is open and the electrically conductive moveable contact is separated from the first electrically conductive contact.
Implementations may include one or more of the following features.
The elastic assembly may be in a relaxed state when the actuator is in the first position and in the relaxed state when the actuator is in the second position.
The elastic device may include one or more springs.
The actuator may include a rod that extends from a first end to a second end, the first end of the rod may be connected to the electrically conductive moveable contact, and the cam region may include a slot that extends from the rod. The slot may include a first side and a second side. The cam may include a first lobe and a second lobe. The first lobe may push on the first side of the slot to separate the moveable electrically conductive contact and the first electrically conductive contact; and the second lobe may push on the second side of the slot to connect the moveable electrically conductive contact and the first electrically conductive contact. In some implementations, the cam is oblong, and, in these implementations, a first portion of the cam pushes on the first side of the slot to separate the moveable electrically conductive contact and the first electrically conductive contact; and a second portion of the cam pushes on the second side of the slot to connect the moveable electrically conductive contact and the first electrically conductive contact.
The electrical apparatus also may include a support, the elastic assembly may be connected to the actuator and the support, and the first electrically conductive contact may be mounted to the support. The electrical apparatus also may include a tank that defines an interior region, and the switch and the first electrically conductive contact may be in the interior region. The electrical apparatus also may include an operating interface coupled to the cam, and the operating interface may be accessible from an exterior of the tank such that interacting with the operating interface causes the cam to rotate. The electrical apparatus may include an insulating fluid, and the first electrically conductive contact may be a stationary contact that is electrically connected to a capacitive device in the interior region.
The elastic assembly may have an expanded state and a compressed state, and the elastic assembly may be in the expanded state when the actuator is in the first position and when the actuator is in the second position.
The elastic assembly may have an expanded state and a compressed state, and the elastic assembly may be in the compressed state when the actuator is at a midpoint between the first position and the second position. The elastic assembly may be in the expanded state when the actuator is in the first position and when the actuator is in the second position.
In another aspect, a switch includes: an electrically conductive moveable contact; a cam; an actuator connected to the electrically conductive moveable contact, the actuator including a cam region configured to interact with the cam, where the actuator is associated with a first stable position and a second stable position; and an elastic assembly coupled to the actuator, the elastic assembly configured to hold the actuator in either the first stable position or the second stable position. When the actuator is in the first stable position, the switch is closed and the electrically conductive moveable contact is connected to a first electrically conductive contact; and, when the actuator is in the second stable position, the switch is open and the electrically conductive moveable contact is separated from the first electrically conductive contact.
Implementations may include one or more of the following features.
The elastic assembly may be in a relaxed state when the actuator is in the first stable position and in the relaxed state when the actuator is in the second stable position.
The elastic device may include one or more springs.
In another aspect, a switch for an electrical apparatus includes: an electrically conductive moveable contact; an actuator connected to the electrically conductive moveable contact, the actuator associated with a first stable position in which the electrically conductive contact is electrically connected to a stationary contact and a second stable position in which the electrically conductive contact is disconnected from the stationary contact; and an elastic assembly coupled to the actuator. The elastic assembly is configured to allow the actuator to move between the first stable position and the second stable position and to hold the actuator in the first position or the second position.
Implementations may include one or more of the following features.
The elastic assembly may be further configured to apply force along a direction of movement of the actuator to thereby urge the actuator into the first position or the second position. The elastic assembly may have an expanded state and a compressed state, the elastic assembly, may be in the expanded state when the actuator is in the first position and when the actuator is in the second position, and the elastic assembly may be in the compressed state when the actuator is at a midpoint between the first position and the second position.
Implementations of any of the techniques described herein may be a system, an electrical apparatus that includes a switch, a switch for an electrical apparatus, a method or a switch. The details of one or more implementations are set forth in the accompanying drawings and the description below. Other features will be apparent from the description and drawings, and from the claims.
As discussed in greater detail below, the switch 120 includes an elastic assembly 122 (or a snap fit contact mechanism 122) that encourages the switch 120 to remain in the open state or the closed state, transitions the switch between the open and closed states quickly when the switch 120 is intentionally transitioned between states, and includes fewer components than legacy switching mechanisms. Before discussing the switch 120 in more detail, an overview of the system 100 is provided.
The electrical apparatus 110 may be any type of device that can be used in the AC power grid 101. The electrical apparatus 110 may be an electrically operated oil switch for switching capacitive and/or inductive currents, a capacitor switch, a transformer, or a regulator, just to name a few. A single phase is shown in
The AC power grid 101 is a three-phase power grid that operates at a fundamental frequency of, for example, 50 or 60 Hertz (Hz). The power grid 101 includes devices, systems, and components that transfer, distribute, generate, and/or absorb electricity. For example, the AC power grid 101 may include, without limitation, generators, power plants, electrical substations, transformers, renewable energy sources, transmission lines, reclosers and switchgear, fuses, surge arrestors, combinations of such devices, and any other device used to transfer or distribute electricity. The electrical apparatus 110 may be connected to any device in the power grid 101.
The AC power grid 101 may be low-voltage (for example, up to 1 kilovolt (kV)), medium-voltage or distribution voltage (for example, between 1 kilovolts (kV) and 35 kV), or high-voltage (for example, 35 kV and greater). The power grid 101 may include more than one sub-grid or portion. For example, the power grid 101 may include AC micro-grids, AC area networks, or AC spot networks that serve particular customers. These sub-grids may be connected to each other via switches and/or other devices to form the grid 101. Moreover, sub-grids within the grid 101 may have different nominal voltages. For example, the grid 101 may include a medium-voltage portion connected to a low-voltage portion through a distribution transformer. All or part of the power grid 101 may be underground.
The load 103 may be any device that uses, transfers, or distributes electricity in a residential, industrial, or commercial setting, and the load 103 may include more than one device. For example, the load 103 may be a motor, an uninterruptable power supply, a capacitor, a power-factor correction device (such as a capacitor bank), or a lighting system. The load 103 may be a device that connects the electrical apparatus 110 to another portion of the power grid 101. For example, the load 103 may be a recloser or switchgear, a transformer, or a point of common coupling (PCC) that provides an AC bus for more than one discrete load. The load 103 may include one or more distributed energy resources (DER). A DER is an electricity-producing resource and/or a controllable load. Examples of DER include, for example, solar-based energy sources such as, for example, solar panels and solar arrays; wind-based energy sources, such as, for example wind turbines and windmills; combined heat and power plants; rechargeable sources (such as batteries); natural gas-fueled generators; electric vehicles; and controllable loads, such as, for example, some heating, ventilation, air conditioning (HVAC) systems and electric water heaters.
The actuator 225 includes a cam region 226, which is configured to interact with a cam 227. Rotation of the cam 227 along the arc A causes the actuator 225 (and the moveable contact 224, which is connected to the actuator 225) to move along an axis 228. The switch 220 also includes an elastic assembly 222 that is attached to the actuator 225. The elastic assembly 222 is any device or combination of devices that is capable of holding the actuator 225 in two stable positions while also allowing the actuator 225 to move between the two stable positions. The elastic assembly 222 may include any component that expands and contracts. For example, the elastic assembly 222 may be one or more coil springs, one or more diaphragms, one or more leaf springs, and/or one or more tension compression springs, just to name a few. In operational use, the switch 220 is positioned such that the moveable electrical contact 224 makes contact with an electrical contact in the electrical apparatus 110 when the actuator 225 is in a first stable position and is electrically disconnected from the electrical contact in the electrical apparatus 110 when the actuator 225 is in the second stable position.
The switch 220 may be rated to switch AC currents having a peak magnitude between, for example, 60 and 200 Amperes (A), up to 200 A, between 150 A and 300 A, or between 200 A and 400 A. These current values are provided as examples, and the switch 220 may be configured for use in applications in which larger or smaller AC currents flow in the switch 220. The elastic assembly 222 provides a force that is sufficient to maintain the switch 220 in one of the two stable positions at currents that meet or exceed the rated current of the switch. For example, the elastic assembly 222 may provide a force between about 0.2 Newtons (N) and 60 N on the moveable contact 224 in the first stable position, depending on the currents expected for the application. Moreover, the elastic assembly 222 may provide force that is sufficient to maintain the switch 220 in the first stable position (with the moveable contact 224 in contact with the electrical contact in the apparatus 110) when the current is 150% or 200% of the rated current of the switch 220. For applications in which the switch 220 is rated at 200 A, the elastic apparatus 222 may be configured to apply a force of about 60 N so that the moveable electrical contact 224 remains in the first stable position even if the switch 220 conducts large currents (for example, 300 A peak).
The electrical apparatus 310 also includes stationary contacts 314a and 314b. The stationary contacts 314a and 314b are discrete contacts that are not electrically connected to each other. The stationary contacts 314a and 314b are mounted to an interior structure 317. The interior structure 317 may be, for example, an interior wall of the housing 312 or a shelf in the interior region 311. The stationary contacts 314a and 314b are fixed to the structure 317 such that the stationary contacts 314a and 314b do not move. For example, the stationary contacts 314a and 314b may be bolted to the structure 317, attached to the structure 317 with an adhesive, and/or welded or brazed to the structure 317. The stationary contacts 314a and 314b are made with an electrically conductive material. For example, the stationary contacts 314a and 314b may be metal, a metal alloy, or a substrate coated with a metallic material. The stationary contacts 314a and 314b are electrically isolated from the housing 312 and other components in the interior region 311
The stationary contact 314a is electrically connected to the first power line 115, and the stationary contact 314b is electrically connected to the second power line 116. The electrical apparatus 310 also includes bushings 319a and 319b. The bushings 319a and 319b extend from an exterior of the housing 312 and are made of an electrically insulating material such as, for example, ceramic or a polymer. The first power line 115 passes through the bushing 319a, and the second power line 116 passes through the bushing 319b.
The electrical apparatus 310 also includes an operating interface 330. The operating interface 330 is accessible from outside of the housing 312, and the operating interface 330 is coupled to the cam 227. The operating interface 330 may be, for example, a handle, rod, or a button that is configured to be operated by a human operator. The operating interface 330 may be configured to be operated directly by the human operator, for example, by the operating grasping or otherwise manually manipulating the operating interface 330. Additionally or alternatively, the operating interface 330 may be configured for remote operation, electronic operation, motor operation, and/or configured for indirect operation by an operator, for example, by an operator who manipulates the operating interface 330 with a hot stick. Manipulation of the operating interface 330 causes the cam 227 to rotate in the Y-Z plane and to interact with the cam region 226, thereby moving the actuator 225 in the +Z direction or —Z direction.
In the example of
When the switch 220 is closed, electrical current flows in a current path formed by the first power line 115, the stationary contact 314a, the moveable contact 224, the stationary contact 315b, and the second power line 116. When the switch 220 is open, the moveable contact 224 is separated from the stationary contacts 314a and 314b such that current cannot flow in the current path. In the example of
The switch 420 includes an actuator 425 and a moveable contact 424. The actuator 425 has a rod-shaped base 423 that extends in the Z direction from an end 441 to an end 442. The actuator 425 is electrically insulating and may be made of, for example, a non-conductive polymer or ceramic material. The moveable contact 424 is attached to the end 441. The moveable contact 424 is electrically conductive. For example, the moveable contact 424 may be made of and/or coated with a metal or a metal alloy. The moveable contact 424 extends in the X-Y plane such that the moveable contact 424 touches the stationary contact 314a and the stationary contact 314b when the switch 420 is closed. For example, the moveable contact 424 may be a disk that has a circular cross-section in the X-Y plane.
The actuator 425 also includes a cam region 426. The cam region 426 is sized and shaped to interact with a cam 427. In the example shown in
Other configurations of the cam region 426 are possible. For example, the first shelf member 445a may be flush with the end 442 (as shown in the example of
The switch 420 also includes a support 440. In the example of
The switch 420 also includes an elastic assembly 422. The elastic assembly 422 includes a first elastic member 429a and a second elastic member 429b. The first elastic member 429a is attached to the base 423 and to a first side 444 of the support 440. The second elastic member 429b is attached to the base 423 and to a second side 445 of the support 440. The second side 445 is opposite the first side 444.
The first and second elastic members 429a and 429b may be any type of structure that is capable of expanding and contracting. For example, the first and second elastic members 429a and 429b may be coil springs. Two elastic members are shown in the example of
The cam 427 includes a base 427c and lobes 427a and 427b that extend from the base 427c. The base 427c is a disk and has a circular cross-section in the Y-Z plane. The base 427c is mounted on the operating interface 330 (which extends into the page in
When the switch 420 is closed (
Referring to
Referring to
To close the switch 420, the operating interface 330 is rotated in the counterclockwise direction and the lobe 427b presses the second shelf member 445b in the —Z direction. The actuator 425 moves in the —Z direction and the elastic members 429a and 429b are compressed as shown in
Other implementations are within the scope of the claims. For example, the electrical apparatus 310 includes the two stationary contacts 314a and 314b. However, the switch 120, 220, 420, and 520 may be used in an electrical apparatus that includes one stationary contact or in an electrical apparatus that includes more than two stationary contacts.
This application claims the benefit of U.S. Provisional Application No. 63/355,173, filed on Jun. 24, 2022 and titled Switch with a Movable Contact and an Elastic Assembly, which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
63355173 | Jun 2022 | US |