A portion of the disclosure of this patent document contains material which is subject to copyright protection. This patent document may show and/or describe matter which is or may become trade dress of the owner. The copyright and trade dress owner has no objection to the facsimile reproduction by any one of the patent disclosure as it appears in the Patent and Trademark Office patent files or records, but otherwise reserves all copyright and trade dress rights whatsoever.
1. Field of the Invention
The present invention relates to data switches.
2. Description of the Related Art
The Peripheral Component Interconnect (“PCI”) standard was promulgated about ten years ago, and has since been updated a number of times. One update led to the PCI/X standard, and another, more recently, to PCI Express. The PCI standards are defined for chip-level interconnects, adapter cards and device drivers. The PCI standards are considered cost-effective, backwards compatible, scalable and forward-thinking.
PCI buses, whether they be PCI Express or previous PCI generations, provide an electrical, physical and logical interconnection for multiple peripheral components of microprocessor based systems. PCI Express systems differ substantially from their PCI and PCI/X predecessors in that all communication in the system is performed point-to-point. Unlike PCI/X systems in which two or more end points share the same electrical interface, PCI Express buses connect a maximum of two end points, one on each end of the bus. If a PCI Express bus must communicate with more than one end point, a switch, also known as a fan out device, is required to convert the single PCI Express source to multiple sources.
The communication protocol in a PCI Express system is identical to legacy PCI/X systems from the host software perspective. In all PCI systems, each end point is assigned one or more memory and IO address ranges. Each end point is also assigned a bus/device/function number to uniquely identify it from other end points in the system. With these parameters set a system host can communicate with all end points in the system. In fact, all end points can communicate with all other end points within a system.
Throughout this description, the embodiments and examples shown should be considered as exemplars, rather than limitations on the apparatus and methods of the present invention.
Description of Systems
Referring now to
The term “switch” as used herein means a system element that logically connects two or more ports to allow data units to be routed from one port to another, and the switch 110 is a switch. The switch routes data units using memory-mapped I/O or I/O-mapped I/O (both, collectively, “mapped I/O”). The switch 110 further includes a buffer 115 and logic 117. The switch 110 includes a number of ports 112a, 112b, 112c, 112d, which are physical interfaces between the buffer 115 and logic 117 and the end points 120.
By data unit, it is meant a frame, cell, datagram, packet or other unit of information. In some embodiments, such as PCI, a data unit is unencapsulated. Data units may be stored in the buffer 115. By buffer, it is meant a dedicated or shared memory, a group or pipeline of registers, and/or other storage device or group of storage devices which can store data temporarily. The buffer 115 may operate at a speed commensurate with the communication speed of the switching environment 100. For example, it may be desirable to provide a dedicated memory for individual portions (as described below) and pipelined registers for multicast portions (as described below).
The logic 117 includes software and/or hardware for providing functionality and features described herein. The logic 117 may include one or more of: logic arrays, memories, analog circuits, digital circuits, software, firmware, and processors such as microprocessors, field programmable gate arrays (FPGAs), application specific integrated circuits (ASICs), programmable logic devices (PLDs) and programmable logic arrays (PLAs). The hardware and firmware components of the logic 117 may include various specialized units, circuits, software and interfaces for providing the functionality and features described herein. The invention may be embodied in whole or in part in software which operates in the switch 110 and may be in the form of firmware, an application program, an applet (e.g., a Java applet), a browser plug-in, a COM object, a dynamic linked library (DLL), a script, one or more subroutines, or an operating system component or service. The hardware and software of the invention and its functions may be distributed such that some components are performed by the switch 110 and others by other devices.
The end points 120a, 120b, 120c, 120d are logical devices which connect to and communicate with the switch 110 respectively through the ports 112. At least some of the end points may share an address domain, such as a memory address domain or an I/O address domain. The term “address domain” means the total range of addressable locations. If the shared address domain is a memory address domain, then data units are transmitted via memory mapped I/O to a destination address into the shared memory address domain.
The end points 120 may be connected to the ports 112 by electrical contacts, wirelessly, optically or otherwise.
Referring now to
The address domains 200, 250 are contiguous ranges. Each address domains is defined by a master end point. Address portions associated with the individual end points 120 may be non-contiguous and the term “portions” is meant to refer to contiguous and non-contiguous spaces. The master end point for a given address domain allocates address portions to the other end points which share that address domain. The end points communicate their address space needs to the master device, and the master device allocates address space accordingly.
Data units may be written into or communicated into an address portion. In a switch conforming to the PCI Express standard, it is expected that the address portions in a 32-bit shared memory address domain or shared I/O address domain will be at least as large as the largest expected transaction, and comparable to those shown in
Within the shared address domain 200, separate address portions 210a, 210b, 210c may be associated with the corresponding end points 120a, 120b, 120c. The address domain 200 may be allocated so as to provide the corresponding end points 120a, 120b, 120c with unique address portions. The address portions may be unique within the shared address domain 200 with respect to one another.
Within the non-shared address domain 250, there may be a portion 250d associated with the end point 120d. The non-shared address domain 250 is considered isolated from the shared address domain 210. Other non-shared address domains could be included, and they would also be considered isolated from the shared address domain, and from each other. By “isolated” it is meant that the address domains are separated such that interaction does not directly take place between them, and therefore uniquely addressable addresses are provided.
The address portions 210 may have various characteristics. The address portions 210 may have respective sizes. The sizes may be fixed or variable. The address portions 210 may be defined by a base address, as well as by a size or end address. The address portions 210 may come to be associated with the end points 120 through an arbitrage process, through centralized assignment (e.g., by a host or the switch 110), otherwise or through a combination of these. The address portion 210 for a given end point 120 need not be contiguous. To avoid errors, it may be desirable if the address portions 210 within the same address domain do not overlap.
Data units may be directed to one or more of the end points 120 by addressing. That is, a destination address is associated with and may be included in the data units. The destination address determines which end point 120 should receive a given data unit. Thus, data units addressed to the individual portion for a given end point 120 should be received only by that end point 120. Depending on the embodiment, the destination address may be the same as the base address or may be within the address portion.
The end points 120 may be associated with respective ports 112. Through this association, a given end point 120 may send data units to and receive data units from its associated port 112. This association may be on a one-to-one basis. Because of these relationships, the ports 112 also have associations with the address portions 210 of the end points 120. Thus, the ports 112 may be said to have address portions 210 within the address domains 200, 250.
Ports within a shared addressed domain are considered “transparent”, and those not within a shared address domain are considered “non-transparent”. Data units from one transparent port to another may be transferred directly. However, data units between a transparent port and a non-transparent port require address translation to accommodate the differences in their respective address domains. Transparent ports are logical interfaces within a single addressing domain. Non-transparent ports allow interaction between completely separate addressing domains, but addresses from one domain must be converted from one domain to the other.
The status of a port—transparent or non-transparent—may be fixed or configurable. The logic 117 may allow designation on a port-by-port of transparency or non-transparency, including the address domain for a given port. The switch 110 may be responsive to requests or instructions from the devices 120 to indicate such things as which address domain the devices will be in, and the address portion associated with a given device.
Description of Methods
Referring now to
Domain maps for each address domain may be communicated to the switch. There may be provided a master end point, such as a processor, which is responsible for allocating address portions within its address domain. End points may communicate their address space needs to the master device, and the master device may allocate address space accordingly. The master device may query end points for their address space needs. These allocations, and other allocations and designations, define the address map which the master end point communicates to the switch. The switch may receive a single communication of an address map from a master end point. The switch may receive partial or revised address maps from time to time.
In a first step 305, the switch receives a data unit. The switch then stores the data unit in a buffer (step 310). Next, the switch determines the destination address of the data unit (step 315). Next, the switch determines whether the destination address is associated with a transparent or non-transparent port (step 325).
If the address is associated with a non-transparent port, then the switch translates the address (step 330). Many different schemes of memory and I/O address translation for mapping from one address domain into another may be used. These schemes include direct memory translation both with and without offsets, and indirect memory translation through lookup registers or tables. Furthermore, addresses may be translated using schemes other than address map translation, such as mailbox mechanisms and doorbell registers.
Whether or not translated, the switch forwards the data unit to the port for the designated destination address (step 395). In this way, data units are transferred between the transparent ports, between the transparent and non-transparent ports, and between the non-transparent ports. In effect, non-transparent ports allow data transfers from one address domain to another.
In one embodiment, the switch is a PCI Express switch in which one or more of the interfaces (i.e., ports) are optionally non-transparent. A device connected to a non-transparent port of the switch is isolated from the address domain of the other ports on the switch. Two or more processors with their own address maps could all communicate with each other through this type of PCI Express switch.
With regard to
If the address is associated with a non-transparent port, then the switch translates the address (step 330). Many different schemes of memory and I/O address translation for mapping from one address domain into another may be used. These schemes include direct memory translation both with and without offsets, and indirect memory translation through lookup registers or tables. Furthermore, communication paths through the switch other than address map translation may be provided. These include mailbox mechanisms and doorbell registers.
This patent claims priority from U.S. Application No. 60/523,246 filed Nov. 18, 2003 which is incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
4330824 | Girard | May 1982 | A |
4394725 | Bienvenu | Jul 1983 | A |
4704606 | Hasley | Nov 1987 | A |
4958299 | Akada | Sep 1990 | A |
5550823 | Irie | Aug 1996 | A |
5555543 | Grohoski | Sep 1996 | A |
5617421 | Chin | Apr 1997 | A |
5649149 | Stormon | Jul 1997 | A |
5659713 | Goodwin | Aug 1997 | A |
5841874 | Kempke | Nov 1998 | A |
5860085 | Stormon | Jan 1999 | A |
5898689 | Kumar | Apr 1999 | A |
5905911 | Shimizu | May 1999 | A |
5923893 | Moyer | Jul 1999 | A |
5961626 | Harrison | Oct 1999 | A |
5982749 | Daniel | Nov 1999 | A |
6067408 | Runaldue | May 2000 | A |
6122674 | Olnowich | Sep 2000 | A |
6172927 | Taylor | Jan 2001 | B1 |
6292878 | Morioka | Sep 2001 | B1 |
6346946 | Jeddeloh | Feb 2002 | B1 |
6389489 | Stone | May 2002 | B1 |
6442674 | Lee | Aug 2002 | B1 |
6477623 | Jeddeloh | Nov 2002 | B2 |
6493347 | Sindhu | Dec 2002 | B2 |
6510138 | Pannell | Jan 2003 | B1 |
6557053 | Bass | Apr 2003 | B1 |
6574194 | Sun | Jun 2003 | B1 |
6611527 | Moriwaki | Aug 2003 | B1 |
6708262 | Manning | Mar 2004 | B2 |
6714555 | Excell | Mar 2004 | B1 |
6735219 | Clauberg | May 2004 | B1 |
6795870 | Bass | Sep 2004 | B1 |
20010037435 | Van Doren | Nov 2001 | A1 |
20020061022 | Allen | May 2002 | A1 |
20020099855 | Bass | Jul 2002 | A1 |
20020114326 | Mahalingaiah | Aug 2002 | A1 |
20020122386 | Calvignac | Sep 2002 | A1 |
20020165947 | Akerman | Nov 2002 | A1 |
20020188754 | Foster et al. | Dec 2002 | A1 |
20030084219 | Yao et al. | May 2003 | A1 |
20030084373 | Phelps et al. | May 2003 | A1 |
20030225724 | Weber | Dec 2003 | A1 |
20040019729 | Kelley et al. | Jan 2004 | A1 |
20040030857 | Krakirlan | Feb 2004 | A1 |
20040123014 | Schaefer et al. | Jun 2004 | A1 |
20040230735 | Moll | Nov 2004 | A1 |
20050117578 | Stewart et al. | Jun 2005 | A1 |
20060010355 | Arndt et al. | Jan 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
20050105516 A1 | May 2005 | US |
Number | Date | Country | |
---|---|---|---|
60523246 | Nov 2003 | US |