Switchable continuous display information system above camera

Information

  • Patent Grant
  • 11363180
  • Patent Number
    11,363,180
  • Date Filed
    Sunday, July 21, 2019
    5 years ago
  • Date Issued
    Tuesday, June 14, 2022
    2 years ago
Abstract
Systems comprising a display having a first pixel array and a gap in the first pixel array in which at least some pixels of the first pixel array are missing, a device such as a camera, a light emitting device or a light receiving device, and a second pixel array. The systems are operable in a first operation mode in which the camera or light emitting device are operative while the second pixel array is not operative to display information, and in a second operation mode in which the camera or light emitting device are not operative while the second pixel array is operative to display the second array pixel information in the gap in the first pixel array. Systems are also operable in a third operation mode.
Description
TECHNICAL FIELD

The presently disclosed subject matter is related in general to the field of digital cameras and displays.


BACKGROUND

In many modern electronic devices (e.g. a cellphone. TV, tablet, laptop etc.) a camera or another electronic device such a light emitting device can be placed below a non-active area or a gap in a device display. FIGS. 1A and 1B show a known display information system 100 in, respectively, a top view and a cross section. System 100 comprises a display 102 (e.g. LCD, LED, etc.) and a camera 110. The display is positioned “above” the camera in an imaging optical path. The term “above” refers to the position of the display being between an imaged scene (not shown) and the camera. Display 102 includes a primary (first) pixel array 104. Primary pixel array 104 may have a pixel density in the range of few hundreds pixels-per-inch (PPI), for example 400 to 500 PPI. A gap 106 in primary pixel array 104 allows light to enter a camera 110, as indicated by an arrow 132 in FIG. 1B. Camera 110 can therefore capture the scene.


Gap 106 may have several shapes, for example circular, rectangular or square shapes. A typical dimension of gap 106 (circle diameter or square side) may be on the order of 0.5-5 mm. As a result, primary pixel array 104 may be missing information of a few hundreds of pixels in the area of gap 106. Camera 110 comprises a lens 112 and an image sensor 114. Camera 110 may have a typical entrance pupil of 1-4 mm, such that the entrance pupil can be accommodated below gap 106. The term “below” refers to the position of the entrance pupil being between the primary pixel display plane and the camera. In the schematic FIGS. 1A, 1B, 2, 3, 4A and 4B, gap 106 is only a few pixels in size, and the figures should be understood as illustrative only and not to scale. As a result, system 100 does not have continuous display information, in particular in the area of gap 106.


It would be desirable to have the camera hidden behind the display, unseen by a user, such that the display area is maximized and display information is provided even in the area above the camera, i.e. to have continuous display information.


SUMMARY

Embodiments disclosed herein provide several ways for showing continuous display information, while having a camera, a light emitting device or a light receiving device located below a non-active area in the display. As used herein, the term “continuous” means that no information is missing in a section of the display that includes display pixels and a camera.


In exemplary embodiments there are provided systems, comprising a display having a first pixel array and a gap in the first pixel array in which at least some pixels of the first pixel array are missing, a camera, and a second pixel array, wherein the system is operable in a first operation mode in which the camera is operative to capture images and the second pixel array is not operative to display information, and in a second operation mode in which the camera is not operative to capture images and the second pixel array is operative to display the second array pixel information in the gap in the first pixel array.


In an exemplary embodiment, a system is further operable in a third operation mode in which the camera is operative to capture images and the second pixel array is operative to display information.


In an exemplary embodiment, the second pixel array is operative to display second pixel array information continuously with displayed first pixel array information.


In an exemplary embodiment, a system further comprises a projection lens, wherein, when the second pixel array is operative to display second pixel array information, the displayed second pixel array information is projected to fill in display information missing in the gap using the projection lens.


In an exemplary embodiment, a system further comprises an optical element, capable of splitting light entering the gap between the camera and the second pixel array.


In an exemplary embodiment, the optical element is a beam splitter and the light is split evenly between the camera and the second pixel array.


In an exemplary embodiment, the optical element is a beam splitter the light is split unevenly between the camera and the second pixel array, such that a majority of light is transferred to the camera. In an embodiment, the majority of light includes more than 80% of the light. In an embodiment, the majority of light includes more than 90% of the light.


In an exemplary embodiment, the second pixel array is mechanically moveable from a first position to a second position, wherein in the first position the displayed second pixel array information is displayed in the gap in the primary pixel array and wherein in the second position the displayed second pixel array information is not displayed in the gap in the first pixel array. In an embodiment, wherein in the second position the camera is operative to capture an image.


In an exemplary embodiment there is provided a system, comprising a display having a first pixel array and a gap in the first pixel array in which at least some pixels of the first pixel array are missing, a camera, and a second pixel array, wherein the camera is operative to capture images and the second pixel array is operative to display information in the gap in the first pixel array.


In exemplary embodiments, there are provided systems, comprising a display having a first pixel array and a gap in the first pixel array in which at least some pixels of the first pixel array are missing, a light emitting device, and a second pixel array, wherein the system is operable in a first operation mode in which the light emitting device is operative to emit light and the second pixel array is not operative to display information, and in a second operation mode in which the light emitting device is not operative to emit light and the second pixel array is operative to display the second array pixel information in the gap in the first pixel array. In an exemplary embodiment the system is further operable in a third operation mode in which the light emitting device is operative to emit light and the second pixel array is operative to display information.


In an exemplary embodiment there is provided a system, comprising a display having a first pixel array and a gap in the first pixel array in which at least some pixels of the first pixel array are missing, a light emitting device, and a second pixel array, wherein the light emitting device is operative to emit light and the second pixel array is operative to display information in the gap in the first pixel array.





BRIEF DESCRIPTION OF THE DRAWINGS

Non-limiting examples of embodiments disclosed herein are described below with reference to figures attached hereto that are listed following this paragraph. The drawings and descriptions are meant to illuminate and clarify embodiments disclosed herein, and should not be considered limiting in any way. Like elements in different drawings may be indicated like numerals.



FIG. 1A shows a known display information system in a top view;



FIG. 1B shows the display information system of FIG. 1A in cross section,



FIG. 2 shows in cross section one embodiment of a display information system disclosed herein;



FIG. 3 shows in cross section another embodiment of a display information system disclosed herein;



FIG. 4A shows in cross section yet another embodiment of a display information system disclosed herein in a first operation mode:



FIG. 4B shows in cross section the embodiment of FIG. 4A in a second operation mode;



FIG. 5 shows in cross section yet another embodiment of a display information system disclosed herein in a second operation mode.





DETAILED DESCRIPTION


FIG. 2 shows in cross section an embodiment numbered 200 of a continuous display information system disclosed herein. System 200 comprises a display 202 (e.g. a LCD, a LED, etc.) and a device 210 (e.g. a camera such as a red-green-blue (RGB) camera, a monochrome camera, an infrared (IR) camera, a time-of-flight (TOF) camera, etc.). While the embodiments below are described with reference to device 210 being a camera, in other embodiments device 210 may be a light emitting device, such as (but not limited to) a flood illuminator, a vertical cavity surface emitting laser (VCSEL) array, a pattern projector, a laser pointer, an IR source, etc. In yet other embodiments, 210 may be a light receiving device such as a photodiode or photodiode array. For simplicity, the following description refers to device 210 as “camera”, with the understanding that it may also be a light emitting device or a light receiving device. Display 202 includes a primary (first) pixel array 204. A gap 206 in primary pixel array 204 allows light to enter camera 210. Camera 210 comprises a lens 212 and an image sensor 214. System 200 further comprises a beam splitter 208. Beam splitter 208 may be polarized or may be a standard beam splitter.


The following description for the operation modes and methods involving cameras applies also to a light receiving device. Thus, analyses and methods of use presented herein should apply to any light emitting or receiving optical device.


In an exemplary operation mode, beam splitter 208 allows some (in some cases 50% and in other cases up to 90%) of the light arriving at gap 206 to be reflected to camera 210, as indicated by an arrow 234 in FIG. 2. Camera 210 can therefore capture a scene (not shown in the figure). System 200 further comprises a secondary (second) pixel array 220. In an operation method, indicated by arrow 232 in FIG. 2, secondary pixel array 220 can provide information by illuminating the area of the missing pixels in primary pixel array 202, namely in gap 206. In a method of operation, light from secondary pixel array 220 indicated by an arrow 232 in FIG. 2 may pass through beam splitter 208 such that the light is seen to a user as being a part of primary pixel array 204, and seamless information is provided on the display. Since some of the light from secondary pixel array 220 may not arrive at gap 206, the illumination intensity of pixel array 220 may be higher than that of the primary pixel array such that the light intensity at gap 206 is equal to the light intensity of primary pixel array 204.



FIG. 3 shows in cross section another embodiment numbered 300 of a continuous display information system disclosed herein. System 300 is similar to system 200, except for the following differences: (1) in system 300, a secondary pixel array 320 is located to a side of beam splitter 208, and (2), system 300 further comprises an optical imaging lens 302 located between secondary pixel array 320 and beam splitter 208, and a mirror 304 located below beam splitter 208.


In system 300, in one operation mode and as indicated by an arrow 322 in FIG. 3, light from secondary pixel array 320 may pass through imaging lens 302, be reflected by beam splitter 208 to mirror 304, be reflected back by mirror 304 to beam splitter 208 and be imaged in gap 206 in an embodiment, beam splitter 208 may be a polarized beam splitter and secondary pixel array 320 may be polarized such that all the light from secondary pixel array 320 may be reflected by the beam splitter to mirror 304. In another embodiment, mirror 304 can rotate the polarization of the light arriving from beam splitter 208 by 90 degrees (e.g. by being coupled to a lambda/4 plate) such that all the light arriving from mirror 304 will pass to gap 206.


In another operation mode, similar to the case in system 200 and as indicated by an arrow 234 in FIG. 3, light can enter from gap 206, be reflected by beam splitter 208 and enter camera 210 to form an image of a scene (the scene is not shown).


In yet another operation mode, light from secondary pixel array 320 may pass through imaging lens 302, be reflected by beam splitter 208 to mirror 304, be reflected back by mirror 304 to beam splitter 208 and be imaged in gap 206. Light can then enter through gap 206, be reflected by beam splitter 208 and enter camera 210 to form an image of a scene (not shown).



FIGS. 4A and 4B show in cross section yet another embodiment numbered 400 of a continuous display information system disclosed herein. As in systems 200 and 300, system 400 comprises display 202 and camera 210, display 202 has a primary pixel array 204, and camera 210 comprise lens 212 and image sensor 214. System 400 further comprises a secondary pixel array 420. In a first operational mode (FIG. 4A), secondary pixel array 420 may be located under gap 206 such that a continuous display information is provided when camera 210 is not operational. In a second operational mode (FIG. 4B), secondary pixel array 420 may be mechanically shifted (e.g. using an electrical motor, an actuator, etc.) such that light can arrive to camera 210 from gap 206 to capture an image with camera 210.



FIG. 5 shows in cross section yet another embodiment numbered 500 of a continuous display information system disclosed herein. System 500 is similar to system 300 except that beam splitter 302 is replaced with an optical element 502. Optical element 502 comprises four sections: two beam splitters 502a and 502b, each beam splitter having a reflection (or transmission) coefficient between 10% to 90%, and two fully reflective mirrors 502c and 502d with a 100% reflection coefficient.


In system 500, in a first operation mode, and as indicated by an arrow 522 in FIG. 5, light from secondary pixel array 320 may pass through imaging lens 302, be reflected by mirror 502c and be imaged in a left part of gap 206. In the same (first) operation mode, and as indicated by an arrow 524 in FIG. 5, light from secondary pixel array 320 may pass through imaging lens 302, pass beam splitter 502a and be reflected by beam splitter 502d and be imaged in a right part of gap 206. In a second operation mode, as indicated by arrows 526 and 528 in FIG. 5, light can enter from gap 206, be reflected by either beam splitter 502a or mirror 502d and enter camera 210 to form an image of a scene (not shown). In a third operation mode, light from secondary pixel array 320 may pass through imaging lens 302, be reflected by mirror 502c and be imaged in a left part of gap 206. In the third operation mode, and as indicated by an arrow 524 in FIG. 5, light from secondary pixel array 320 may pass through imaging lens 302, pass beam splitter 502a, be reflected by beam splitter 502d and be imaged in a right part of gap 206. Light can then enter from gap 206, be reflected by either beam splitter 502a or mirror 502d and enter camera 210 to form an image of a scene (not shown).


While this disclosure has been described in terms of certain embodiments and generally associated methods, alterations and permutations of the embodiments and methods will be apparent to those skilled in the art. The disclosure is to be understood as not limited by the specific embodiments described herein, but only by the scope of the appended claims.

Claims
  • 1. A system, comprising: a display having a first pixel array and a gap in the first pixel array in which at least some pixels of the first pixel array are missing;a camera;a second pixel array; andan optical element, capable of splitting light entering the gap between the camera and the second pixel array,wherein the system is operable in a first operation mode in which the camera is operative to capture images and the second pixel array is not operative to display information, and in a second operation mode in which the camera is not operative to capture images and the second pixel array is operative to display the second array pixel information in the gap in the first pixel array.
  • 2. The system of claim 1, wherein the optical element is a beam splitter.
  • 3. The system of claim 1, wherein the light is split evenly between the camera and the second pixel array.
  • 4. The system of claim 1, wherein the light is split unevenly between the camera and the second pixel array, such that a majority of light is transferred to the camera.
  • 5. The system of claim 4, wherein the majority of light includes more than 80% of the light.
  • 6. The system of claim 4, wherein the majority of light includes more than 90% of the light.
  • 7. A system, comprising: a display having a first pixel array and a gap in the first pixel array in which at least some pixels of the first pixel array are missing;a camera; anda second pixel array;wherein the system is operable in a first operation mode in which the camera is operative to capture images and the second pixel array is not operative to display information, and in a second operation mode in which the camera is not operative to capture images and the second pixel array is operative to display the second array pixel information in the gap in the first pixel array, andwherein the second pixel array is mechanically moveable from a first position to a second position, wherein in the first position the displayed second pixel array information is displayed in the gap in the primary pixel array, and wherein in the second position the displayed second pixel array information is not displayed in the gap in the first pixel array.
  • 8. The system of claim 7, wherein in the second position the camera is operative to capture an image.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a 371 application from international patent application PCT/IB2019/056225 filed Jul. 21, 2019, and claims the benefit of priority from U.S. Provisional patent application No. 62/714,685 filed Aug. 4, 2018, which is incorporated herein by reference in its entirety.

PCT Information
Filing Document Filing Date Country Kind
PCT/IB2019/056225 7/21/2019 WO 00
Publishing Document Publishing Date Country Kind
WO2020/031005 2/13/2020 WO A
US Referenced Citations (293)
Number Name Date Kind
4199785 McCullough et al. Apr 1980 A
5005083 Grage et al. Apr 1991 A
5032917 Aschwanden Jul 1991 A
5041852 Misawa et al. Aug 1991 A
5051830 von Hoessle Sep 1991 A
5099263 Matsumoto et al. Mar 1992 A
5248971 Mandl Sep 1993 A
5287093 Amano et al. Feb 1994 A
5394520 Hall Feb 1995 A
5436660 Sakamoto Jul 1995 A
5444478 Lelong et al. Aug 1995 A
5459520 Sasaki Oct 1995 A
5657402 Bender et al. Aug 1997 A
5682198 Katayama et al. Oct 1997 A
5768443 Michael et al. Jun 1998 A
5801758 Heirich Sep 1998 A
5926190 Turkowski et al. Jul 1999 A
5940641 McIntyre et al. Aug 1999 A
5982951 Katayama et al. Nov 1999 A
6101334 Fantone Aug 2000 A
6128416 Oura Oct 2000 A
6148120 Sussman Nov 2000 A
6208765 Bergen Mar 2001 B1
6268611 Pettersson et al. Jul 2001 B1
6549215 Jouppi Apr 2003 B2
6611289 Yu et al. Aug 2003 B1
6643416 Daniels et al. Nov 2003 B1
6650368 Doron Nov 2003 B1
6680748 Monti Jan 2004 B1
6714665 Hanna et al. Mar 2004 B1
6724421 Glatt Apr 2004 B1
6738073 Park et al. May 2004 B2
6741250 Furlan et al. May 2004 B1
6750903 Miyatake et al. Jun 2004 B1
6778207 Lee et al. Aug 2004 B1
7002583 Rabb, III Feb 2006 B2
7015954 Foote et al. Mar 2006 B1
7038716 Klein et al. May 2006 B2
7199348 Olsen et al. Apr 2007 B2
7206136 Labaziewicz et al. Apr 2007 B2
7248294 Slatter Jul 2007 B2
7256944 Labaziewicz et al. Aug 2007 B2
7305180 Labaziewicz et al. Dec 2007 B2
7339621 Fortier Mar 2008 B2
7346217 Gold, Jr. Mar 2008 B1
7365793 Cheatle et al. Apr 2008 B2
7411610 Doyle Aug 2008 B2
7424218 Baudisch et al. Sep 2008 B2
7509041 Hosono Mar 2009 B2
7533819 Barkan et al. May 2009 B2
7619683 Davis Nov 2009 B2
7738016 Toyofuku Jun 2010 B2
7773121 Huntsberger et al. Aug 2010 B1
7809256 Kuroda et al. Oct 2010 B2
7880776 LeGall et al. Feb 2011 B2
7918398 Li et al. Apr 2011 B2
7964835 Olsen et al. Jun 2011 B2
7978239 Deever et al. Jul 2011 B2
8115825 Culbert et al. Feb 2012 B2
8149327 Lin et al. Apr 2012 B2
8154610 Jo et al. Apr 2012 B2
8238695 Davey et al. Aug 2012 B1
8274552 Dahi et al. Sep 2012 B2
8390729 Long et al. Mar 2013 B2
8391697 Cho et al. Mar 2013 B2
8400555 Georgiev et al. Mar 2013 B1
8439265 Ferren et al. May 2013 B2
8446484 Muukki et al. May 2013 B2
8483452 Ueda et al. Jul 2013 B2
8514491 Duparre Aug 2013 B2
8547389 Hoppe et al. Oct 2013 B2
8553106 Scarff Oct 2013 B2
8587691 Takane Nov 2013 B2
8619148 Watts et al. Dec 2013 B1
8803990 Smith Aug 2014 B2
8896655 Mauchly et al. Nov 2014 B2
8976255 Matsuoto et al. Mar 2015 B2
9019387 Nakano Apr 2015 B2
9025073 Attar et al. May 2015 B2
9025077 Attar et al. May 2015 B2
9041835 Honda May 2015 B2
9137447 Shibuno Sep 2015 B2
9185291 Shabtay et al. Nov 2015 B1
9215377 Sokeila et al. Dec 2015 B2
9215385 Luo Dec 2015 B2
9270875 Brisedoux et al. Feb 2016 B2
9286680 Jiang et al. Mar 2016 B1
9344626 Silverstein et al. May 2016 B2
9360671 Zhou Jun 2016 B1
9369621 Malone et al. Jun 2016 B2
9413930 Geerds Aug 2016 B2
9413984 Attar et al. Aug 2016 B2
9420180 Jin Aug 2016 B2
9438792 Nakada et al. Sep 2016 B2
9485432 Medasani et al. Nov 2016 B1
9578257 Attar et al. Feb 2017 B2
9618748 Munger et al. Apr 2017 B2
9681057 Attar et al. Jun 2017 B2
9723220 Sugie Aug 2017 B2
9736365 Laroia Aug 2017 B2
9736391 Du et al. Aug 2017 B2
9768310 Ahn et al. Sep 2017 B2
9800798 Ravirala et al. Oct 2017 B2
9851803 Fisher et al. Dec 2017 B2
9894287 Qian et al. Feb 2018 B2
9900522 Lu Feb 2018 B2
9927600 Goldenberg et al. Mar 2018 B2
20020005902 Yuen Jan 2002 A1
20020030163 Zhang Mar 2002 A1
20020063711 Park et al. May 2002 A1
20020075258 Park et al. Jun 2002 A1
20020122113 Foote Sep 2002 A1
20020167741 Koiwai et al. Nov 2002 A1
20030030729 Prentice et al. Feb 2003 A1
20030093805 Gin May 2003 A1
20030160886 Misawa et al. Aug 2003 A1
20030202113 Yoshikawa Oct 2003 A1
20040008773 Itokawa Jan 2004 A1
20040012683 Yamasaki et al. Jan 2004 A1
20040017386 Liu et al. Jan 2004 A1
20040027367 Pilu Feb 2004 A1
20040061788 Bateman Apr 2004 A1
20040141065 Hara et al. Jul 2004 A1
20040141086 Mihara Jul 2004 A1
20040240052 Minefuji et al. Dec 2004 A1
20050013509 Samadani Jan 2005 A1
20050046740 Davis Mar 2005 A1
20050157184 Nakanishi et al. Jul 2005 A1
20050168834 Matsumoto et al. Aug 2005 A1
20050185049 Iwai et al. Aug 2005 A1
20050200718 Lee Sep 2005 A1
20060054782 Olsen et al. Mar 2006 A1
20060056056 Ahiska et al. Mar 2006 A1
20060067672 Washisu et al. Mar 2006 A1
20060072027 Shibayama Apr 2006 A1
20060102907 Lee et al. May 2006 A1
20060125937 LeGall et al. Jun 2006 A1
20060170793 Pasquarette et al. Aug 2006 A1
20060175549 Miller et al. Aug 2006 A1
20060187310 Janson et al. Aug 2006 A1
20060187322 Janson et al. Aug 2006 A1
20060187338 May et al. Aug 2006 A1
20060227236 Pak Oct 2006 A1
20070024737 Nakamura et al. Feb 2007 A1
20070126911 Nanjo Jun 2007 A1
20070177025 Kopet et al. Aug 2007 A1
20070188653 Pollock et al. Aug 2007 A1
20070189386 Imagawa et al. Aug 2007 A1
20070257184 Olsen et al. Nov 2007 A1
20070285550 Son Dec 2007 A1
20080017557 Witdouck Jan 2008 A1
20080024614 Li et al. Jan 2008 A1
20080025634 Border et al. Jan 2008 A1
20080030592 Border et al. Feb 2008 A1
20080030611 Jenkins Feb 2008 A1
20080084484 Ochi et al. Apr 2008 A1
20080106629 Kurtz et al. May 2008 A1
20080117316 Orimoto May 2008 A1
20080129831 Cho et al. Jun 2008 A1
20080218611 Parulski et al. Sep 2008 A1
20080218612 Border et al. Sep 2008 A1
20080218613 Janson et al. Sep 2008 A1
20080219654 Border et al. Sep 2008 A1
20090086074 Li et al. Apr 2009 A1
20090109556 Shimizu et al. Apr 2009 A1
20090122195 Van Baar et al. May 2009 A1
20090122406 Rouvinen et al. May 2009 A1
20090128644 Camp et al. May 2009 A1
20090219547 Kauhanen et al. Sep 2009 A1
20090252484 Hasuda et al. Oct 2009 A1
20090295949 Ojala Dec 2009 A1
20090324135 Kondo et al. Dec 2009 A1
20100013906 Border et al. Jan 2010 A1
20100020221 Tupman et al. Jan 2010 A1
20100060746 Olsen et al. Mar 2010 A9
20100097444 Lablans Apr 2010 A1
20100103194 Chen et al. Apr 2010 A1
20100165131 Makimoto et al. Jul 2010 A1
20100196001 Ryynnen et al. Aug 2010 A1
20100238327 Griffith et al. Sep 2010 A1
20100259836 Kang et al. Oct 2010 A1
20100283842 Guissin et al. Nov 2010 A1
20100321494 Peterson et al. Dec 2010 A1
20110058320 Kim et al. Mar 2011 A1
20110063417 Peters et al. Mar 2011 A1
20110063446 McMordie et al. Mar 2011 A1
20110064327 Dagher et al. Mar 2011 A1
20110080487 Venkataraman et al. Apr 2011 A1
20110128288 Petrou et al. Jun 2011 A1
20110164172 Shintani et al. Jul 2011 A1
20110229054 Weston et al. Sep 2011 A1
20110234798 Chou Sep 2011 A1
20110234853 Hayashi et al. Sep 2011 A1
20110234881 Wakabayashi et al. Sep 2011 A1
20110242286 Pace et al. Oct 2011 A1
20110242355 Goma et al. Oct 2011 A1
20110298966 Kirschstein et al. Dec 2011 A1
20120026366 Golan et al. Feb 2012 A1
20120044372 Cote et al. Feb 2012 A1
20120062780 Morihisa Mar 2012 A1
20120069235 Imai Mar 2012 A1
20120075489 Nishihara Mar 2012 A1
20120105579 Jeon et al. May 2012 A1
20120124525 Kang May 2012 A1
20120154547 Aizawa Jun 2012 A1
20120154614 Moriya et al. Jun 2012 A1
20120196648 Havens et al. Aug 2012 A1
20120229663 Nelson et al. Sep 2012 A1
20120249815 Bohn et al. Oct 2012 A1
20120287315 Huang et al. Nov 2012 A1
20120320467 Baik et al. Dec 2012 A1
20130002928 Imai Jan 2013 A1
20130016427 Sugawara Jan 2013 A1
20130063629 Webster et al. Mar 2013 A1
20130076922 Shihoh et al. Mar 2013 A1
20130093842 Yahata Apr 2013 A1
20130094126 Rappoport et al. Apr 2013 A1
20130113894 Mirlay May 2013 A1
20130135445 Dahi et al. May 2013 A1
20130155176 Paripally et al. Jun 2013 A1
20130182150 Asakura Jul 2013 A1
20130190086 Maison Jul 2013 A1
20130201360 Song Aug 2013 A1
20130202273 Ouedraogo et al. Aug 2013 A1
20130235224 Park et al. Sep 2013 A1
20130250150 Malone et al. Sep 2013 A1
20130258044 Betts-LaCroix Oct 2013 A1
20130270419 Singh et al. Oct 2013 A1
20130278785 Nomura et al. Oct 2013 A1
20130321668 Kamath Dec 2013 A1
20140009631 Topliss Jan 2014 A1
20140049615 Uwagawa Feb 2014 A1
20140118584 Lee et al. May 2014 A1
20140192238 Attar et al. Jul 2014 A1
20140192253 Laroia Jul 2014 A1
20140218587 Shah Aug 2014 A1
20140313316 Olsson et al. Oct 2014 A1
20140362242 Takizawa Dec 2014 A1
20150002683 Hu et al. Jan 2015 A1
20150042870 Chan et al. Feb 2015 A1
20150070781 Cheng et al. Mar 2015 A1
20150092066 Geiss et al. Apr 2015 A1
20150103147 Ho et al. Apr 2015 A1
20150138381 Ahn May 2015 A1
20150154776 Zhang et al. Jun 2015 A1
20150162048 Hirata et al. Jun 2015 A1
20150195458 Nakayama et al. Jul 2015 A1
20150215516 Dolgin Jul 2015 A1
20150237280 Choi et al. Aug 2015 A1
20150242994 Shen Aug 2015 A1
20150244906 Wu et al. Aug 2015 A1
20150253543 Mercado Sep 2015 A1
20150253647 Mercado Sep 2015 A1
20150261299 Wajs Sep 2015 A1
20150271471 Hsieh et al. Sep 2015 A1
20150281678 Park et al. Oct 2015 A1
20150286033 Osborne Oct 2015 A1
20150316744 Chen Nov 2015 A1
20150334309 Peng et al. Nov 2015 A1
20160044250 Shabtay et al. Feb 2016 A1
20160070088 Koguchi Mar 2016 A1
20160154202 Wippermann et al. Jun 2016 A1
20160154204 Lim et al. Jun 2016 A1
20160212358 Shikata Jul 2016 A1
20160212418 Demirdjian et al. Jul 2016 A1
20160241751 Park Aug 2016 A1
20160291295 Shabtay et al. Oct 2016 A1
20160295112 Georgiev et al. Oct 2016 A1
20160301840 Du et al. Oct 2016 A1
20160353008 Osborne Dec 2016 A1
20160353012 Kao et al. Dec 2016 A1
20170019616 Zhu et al. Jan 2017 A1
20170064282 Lo Mar 2017 A1
20170070731 Darling et al. Mar 2017 A1
20170187962 Lee et al. Jun 2017 A1
20170214846 Du et al. Jul 2017 A1
20170214866 Zhu et al. Jul 2017 A1
20170242225 Fiske Aug 2017 A1
20170289458 Song et al. Oct 2017 A1
20180013944 Evans, V et al. Jan 2018 A1
20180017844 Yu et al. Jan 2018 A1
20180024329 Goldenberg et al. Jan 2018 A1
20180059379 Chou Mar 2018 A1
20180120674 Avivi et al. May 2018 A1
20180150973 Tang et al. May 2018 A1
20180176426 Wei et al. Jun 2018 A1
20180198897 Tang et al. Jul 2018 A1
20180241922 Baldwin et al. Aug 2018 A1
20180295292 Lee et al. Oct 2018 A1
20180300901 Wakai et al. Oct 2018 A1
20190121103 Bachar et al. Apr 2019 A1
20190130822 Jung et al. May 2019 A1
20200162673 Kanda May 2020 A1
Foreign Referenced Citations (42)
Number Date Country
101276415 Oct 2008 CN
201514511 Jun 2010 CN
102739949 Oct 2012 CN
103024272 Apr 2013 CN
103841404 Jun 2014 CN
107682489 Feb 2018 CN
1536633 Jun 2005 EP
1780567 May 2007 EP
2523450 Nov 2012 EP
S59191146 Oct 1984 JP
04211230 Aug 1992 JP
H07318864 Dec 1995 JP
08271976 Oct 1996 JP
2002010276 Jan 2002 JP
2003298920 Oct 2003 JP
2004133054 Apr 2004 JP
2004245982 Sep 2004 JP
2005099265 Apr 2005 JP
2006237914 Sep 2006 JP
2006238325 Sep 2006 JP
2007228006 Sep 2007 JP
2007306282 Nov 2007 JP
2008076485 Apr 2008 JP
2010204341 Sep 2010 JP
2011085666 Apr 2011 JP
2013106289 May 2013 JP
20070005946 Jan 2007 KR
20090058229 Jun 2009 KR
20100008936 Jan 2010 KR
20130104764 Sep 2013 KR
20140014787 Feb 2014 KR
101477178 Dec 2014 KR
20140144126 Dec 2014 KR
20150118012 Oct 2015 KR
2000027131 May 2000 WO
2004084542 Sep 2004 WO
2006008805 Jan 2006 WO
2010122841 Oct 2010 WO
2014072818 May 2014 WO
2017025822 Feb 2017 WO
2017037688 Mar 2017 WO
2018130898 Jul 2018 WO
Non-Patent Literature Citations (19)
Entry
Statistical Modeling and Performance Characterization of a Real-Time Dual Camera Surveillance System, Greienhagen et al., Publisher: IEEE, 2000, 8 pages.
A 3MPixel Multi-Aperture Image Sensor with 0.7μm Pixels in 0.11μm CMOS, Fife et al., Stanford University, 2008, 3 pages.
Dual camera intelligent sensor for high definition 360 degrees surveillance, Scotti et al., Publisher: IET, May 9, 2000, 8 pages.
Dual-sensor foveated imaging system, Hua et al., Publisher: Optical Society of America, Jan. 14, 2008, 11 pages.
Defocus Video Matting, McGuire et al., Publisher: ACM SIGGRAPH, Jul. 31, 2005, 11 pages.
Compact multi-aperture imaging with high angular resolution, Santacana et al., Publisher: Optical Society of America, 2015, 10 pages.
Multi-Aperture Photography, Green et al., Publisher: Mitsubishi Electric Research Laboratories, Inc., Jul. 2007, 10 pages.
Multispectral Bilateral Video Fusion, Bennett et al., Publisher: IEEE, May 2007, 10 pages.
Super-resolution imaging using a camera array, Santacana et al., Publisher: Optical Society of America, 2014, 6 pages.
Optical Splitting Trees for High-Precision Monocular Imaging, McGuire et al., Publisher: IEEE, 2007, 11 pages.
High Performance Imaging Using Large Camera Arrays, Wilburn et al., Publisher: Association for Computing Machinery, Inc., 2005, 12 pages.
Real-time Edge-Aware Image Processing with the Bilateral Grid, Chen et al., Publisher: ACM SIGGRAPH, 2007, 9 pages.
Superimposed multi-resolution imaging, Carles et al., Publisher: Optical Society of America, 2017, 13 pages.
Viewfinder Alignment, Adams et al., Publisher: EUROGRAPHICS, 2008, 10 pages.
Dual-Camera System for Multi-Level Activity Recognition, Bodor et al., Publisher: IEEE, Oct. 2014, 6 pages.
Engineered to the task: Why camera-phone cameras are different, Giles Humpston, Publisher: Solid State Technology, Jun. 2009, 3 pages.
Office Action in related EP patent application No. 19845570.1, dated Jun. 9, 2020. 10 pages.
Office action in related KR patent application 2020-7002194, dated Feb. 16, 2021.
Office action in related EP patent application 19845570.1, dated Jan. 26, 2021.
Related Publications (1)
Number Date Country
20210360131 A1 Nov 2021 US
Provisional Applications (1)
Number Date Country
62714685 Aug 2018 US