Many computing devices have movable and removable parts and peripherals. A smart phone may include a stylus, a laptop a hinged display, a tablet computer a battery charger, or a portable audio player a docking station, to name just a few. Current techniques often fix these parts and peripherals to their computing devices using mechanic connectors, such as latches, sliding tabs, and so forth. These mechanical connectors, however, often fail to provide a satisfactory design because they have objects that jut out or holes that pierce the computer body, part, or peripheral. Examples include exposed latches, latch holes, tabs hooks, and tab reception detents, to name just a few.
Some techniques have attempted to address this failure in design through electromagnets or permanent magnets. Electromagnets, however, are unsatisfactory due to their power requirements and low magnetic force. Current techniques that use permanent magnets do not suitably fix the computing device to the part or peripheral or, if they do, require excessive force to separate the computing device from the part or peripheral.
This document describes techniques enabling use of switchable magnetic locks and apparatuses including switchable magnetic locks. The techniques and apparatuses can enable computing devices to lock and unlock peripherals and other devices using little or no power and with a seamless design.
This summary is provided to introduce simplified concepts for switchable magnetic locks, which is further described below in the Detailed Description. This summary is not intended to identify essential features of the claimed subject matter, nor is it intended for use in determining the scope of the claimed subject matter.
Embodiments of techniques and apparatuses for switchable magnetic locks are described with reference to the following drawings. The same numbers are used throughout the drawings to reference like features and components:
Overview
This document describes techniques using, and apparatuses including, switchable magnetic locks. These techniques and apparatuses can enable locking and unlocking of parts and peripherals with low or no power consumption and a seamless design.
Consider, for example, a current laptop computing device having an integrated body and display. The body and the display are connected with a hinge allowing the display to rotate to and from the body. On closing the display to the body, the display is locked to the body with latches. To open the laptop, this locking system typically requires the user to find one or two latch-release slides and then manually operate the slides while pulling the display from the body. Thus, this design may require a user to operate manual controls and includes two latches that jut out from the display, two latch-holes that pierce the body, and latch-release slides that also jut out from either the display or body.
The described techniques and apparatuses, however, enable a switchable magnetic lock to be used. Assume that instead of the above latch locking system, a laptop includes a switchable magnetic lock. In this case, on closing the display to the body, a controller in the laptop senses the proximity of the display to the body, activates an actuator effective to cease a null state of a permanent magnet and instead direct the permanent magnet's magnetic field to a magnetically permeable material in the display. By so doing, the display is drawn to the body and locked to the body. The controller then ceases to use power, as the magnetic circuit does not require power to be maintained.
On opening the laptop, the controller may sense a touch of the user on a portion of the display at which a person is likely to touch when attempting to open the laptop. The controller then activates the actuator effective to null the magnetic field instead of direct it to the display's magnetically permeable material, thereby unlocking the display from the body. The display then easily moves away from the body. The magnetically permeable material can be seamlessly integrated into the display, as can the permanent magnet and actuator into the body. Therefore, instead of two latches and a latch release jutting out and two holes piercing the display or body, there are no jut-outs and no holes. Also, the techniques enable a user to easily open the laptop without operating a manual selector, such as the manual latch-release noted above.
This is but one example of how techniques and/or apparatuses enabling use of switchable magnetic locks can be performed. Techniques and/or apparatuses are referred to herein separately or in conjunction as the “techniques” as permitted by the context. This document now turns to an example environment in which the techniques can be embodied after which two example apparatus having a switchable magnetic lock, various example methods, and an example device are described.
Example Environment
Switchable magnetic lock 104 includes a permanent magnet 110 (or magnets), magnetic-field directors 112, and an actuator 114. Permanent magnet 110 is configured such that its magnetic field is capable of being directed. In some embodiments, permanent magnet 110 includes a diametrically magnetized magnet having a magnetic field polarized perpendicular to a long axis of the magnet such that rotating the magnet or field directors surrounding the magnet is effective to direct the magnetic field perpendicular to the long axis. These and other magnets and structures are set forth in greater detail below.
Magnetic-field directors 112 of switchable magnetic lock 104 are configured to direct the magnetic field of permanent magnet 110 to a null state and to a directed state. In the directed state, a magnetic circuit can be completed with a magnetically permeable material of another device (e.g., of a peripheral). These other devices may include various movable and/or removable parts and peripherals, such as cord connectors (e.g., power cords without mechanical retention), styluses, displays, mice, gaming controllers, docking stations, and so forth. When the directed state is completed, the other device is locked to computing device 102. Each of magnetic-field directors 112 may include an isolated magnetic circuit configured to selectably direct the magnetic field as noted. Alternatively or in addition to use of magnetic-field directors 112, switchable magnetic lock 104 may include a magnetic shield material to null or assist in nulling the magnetic field, such as Mu-metal, though this is not required.
Actuator 114 of switchable magnetic lock 104 is configured to move permanent magnet 110 and/or magnetic-field directors 112. Actuator 114 can be powered or unpowered. Thus, actuator 114 may include a simple mechanical device that can be manually operated by a user effective to direct the magnetic field so that switchable magnetic lock 104 locks or unlocks. Alternatively, actuator 114 can be powered and controlled, either manually or by controller 108. In the powered and controlled embodiment, actuator 114 moves permanent magnet 110 and/or field directors 112 effective to direct the magnetic field to a null state or a directed state. Actuator 114 may include various different types of electro-mechanical devices, such as a solenoid or geared vibrator motor.
Note that actuator 114 may be operated without using power in the manual case effective to change the state of switchable magnetic lock 104. Even in the powered case, however, power is not needed to maintain the state of switchable magnetic lock 104, rather, power is used to switch between the states. Switching between states can be done at low power and generally quickly, such that little power is used.
Sensors 106 are capable of sensing a user's interaction with computing device 102 and/or an associated device or peripheral, such as moving a peripheral in proximity with computing device 102, touching computing device 102, and so forth. Sensors 106 may sense actively, passively, and/or responsive to an explicit or implicit selection. In some cases, sensors 106 include a capacitive sensor capable of sensing contact of a user touching computing device 102 or another device having a magnetically permeable material. Alternatively or additionally, sensors 106 may include a magnetic load sensor capable of sensing proximity of a device, such as device having a digitizer or an LC circuit (e.g., an inductor-capacitor circuit capable of sensing a particular signal). In addition to being capable of sensing a user's interaction, sensors 106 may sense a current state of switchable magnetic lock 104, such as with hall-effect sensors.
Controller 108 is capable of controlling actuator 114 effective to lock and unlock switchable magnetic lock 104. For example, in a case where permanent magnet 110 is a diametrically magnetized magnet having a long axis, controller 108 powers actuator 114 to rotate the diametrically magnetized magnet about the long axis from a lock position to an unlock position. Controller 108 acts responsive to input, such as from a sensor indicating a user's implicit or explicit selection to lock or unlock switchable magnetic lock 104. Controller 108 may also receive information indicating a current state of the magnetic field of switchable magnetic lock 104, such as from the above-noted hall-effect sensors.
Controller 108 can be embodied as part of, or separate from, switchable magnetic lock 104. Controller 108 may also be implemented as computer-executable instructions stored on computer-readable storage media 116 (media 116) and executable by one or more processors 118, though this is not required. Alternatively or additionally, controller 108 can be embodied as hardware, firmware, and/or computer-executable instructions as noted above, in whole or in part.
As shown in
Example Computing Devices Having a Switchable Magnetic Lock
Low-power permanent magnet 206 is shown within retention structure 204, though proximity rather than inclusion is sufficient. Low-power permanent magnet 206 provides another magnetic field in addition to that of the switchable magnetic lock. This other magnetic field has a power substantially less than the power of the magnetic field of the diametrically magnetized magnet. It does not lock stylus 202 to smart phone 102-3 sufficient to prevent accidental removal, but instead retains stylus 202 so that stylus 202 does not fall off when the switchable magnetic lock nulls its more-powerful magnetic field. Other low-force or temporary retention manners may also or instead be used in conjunction with the switchable magnetic lock, though they are not required. Note that nulling the magnetic field includes substantially weakening the magnetic field or fully nulling the magnetic field. Thus, some small amount of magnetic field may remain when in the null state, such as an amount sufficient to provide the low-force retention manner set forth above.
As illustrated in detail in
Portion 304 and its magnetically permeable material can be located in multiple parts of stylus 202. Thus, assume that two portions 304 are included within stylus 202. In such a case, a user may select to lock stylus 202 into retention structure 204 such that stylus 202 does not project from smart phone 102-3 or does project some amount from smart phone 102-3. Thus, multiple portions 304 within stylus 202 permit a user to select to lock stylus 202 flush with smart phone 102-3 or projecting from smart phone 102-3. The projecting end of stylus 202 may enable a user to more easily locate and remove stylus 202, especially if the user cannot see or does not wish to focus on smart phone 102-3 or stylus 202. The magnetically permeable material can vary in these portions 304, or controller 108 may determine which portion 304 is proximate magnetic field directors 308, effective to vary a holding force based on which portion 304, and thus the location of stylus 202 relative to smart phone 102-3.
Further, and as noted in part above, smart phone 102-3 includes controller 108 (not shown), which is capable of powering the actuator to rotate diametrically magnetized magnet 306. In so doing, the rotation acts to release stylus 202 by releasing the magnetically permeable material of portion 304 from retention structure 204 or locks the magnetically permeable material of portion 304 to retention structure 204, depending on the rotation.
By way of further illustration, consider
Cross-section view 404 illustrates switchable magnetic lock 302 in a null state, the null state nulling the magnetic field of diametrically magnetized magnet 306 through field directors 406 as shown at nulling directions 410. Directions and manners in which the magnetic field is nulled may vary, including through a magnetic circuit disparate (e.g., opposite) from stylus 202. In this null state, stylus 202 is released and therefore unlocked. Low-power permanent magnet 206 of
In this example of switchable magnetic lock 302 shown in
Switchable magnetic lock 510 is configured to switch being a lock state and an unlock state. In an unlock state 516, which is illustrated in
Hinge 506 is configured to rotate display 504 to and from base 502 and, when closed, contact surface 508 with surface 512. In some embodiments, hinge 506 is configured to include a spring, the spring causing display 504 to separate from surface 508 from surface 512 through a hinge force caused by the spring. This hinge force is insufficient to separate surface 508 and 512 when switchable magnetic lock 510 is in the lock state but is sufficient to separate surface 508 and 512 when in an unlock state. This hinge force is shown acting in two directions, an upward direction 524 and a downward direction 526.
Note that switchable magnetic lock 510 locks base 502 to display 504 without mechanical dents, detents, or latches. This switchable magnetic lock 510 may also do so without being visible at all, as the magnetic field may pass through a smooth, seamless surfaces (e.g., surfaces 508 and 512) on base 502 and display 504.
While not shown in
In this powered example case, a controller can receive selections in the various manners set forth above. Thus, the controller may receive an indication that a user has touched one of capacitive sensors 604 or a button 606 on display 504, which may indicate that the user wishes to unlock switchable magnetic lock 510. Alternatively or additionally, the controller may sense that surface 508 and surface 512 are near to each other, such as through a proximity sensor or a sensor that determines when hinge 506 is closed or nearly closed. This indicates that switchable magnetic lock 510 should be switched to a lock state, and so forth.
In another embodiment of hinge 506, hinge 506 includes a counter-balance rather than the spring described above. This counter-balance enables substantially forceless separation of surface 508 from surface 512 when switchable magnetic lock 510 is in the unlock state. A controller of switchable magnetic lock 510 may sense that a user wishes to open all-in-one computer 102-4 and, responsive to that sensing, unlock display 504 from base 502. The counter-balance then enables a user to almost effortlessly move display 504 relative to base 502. This can be performed through implicit sensing, such as through a capacitive sensor or proximity sensor or explicitly through a raised button, voice command, and so forth.
These and other capabilities and configurations, as well as ways in which entities of
Example Methods Using Switchable Magnetic Lock
Block 702 receives a selection to switch a magnetic lock between a lock state and an unlock state. This switchable magnetic lock can be embodied in one of the many manners set forth above, such as with a permanent magnet having a magnetic field and magnetic-field directors proximate the permanent magnet, each of the field directors configured to selectably direct a magnetic field of the permanent magnet, a first direction nulling the magnetic field to provide the unlock state and a second direction redirecting the magnetic field to provide the lock state. The selection received may be implicit or explicit, such as with one of the various sensing devices and manners set forth above.
Block 704, responsive to the selection, moves the permanent magnet relative to the magnetic-field directors or the magnetic-field directors relative to the permanent magnet effective to direct the magnetic field to a lock or unlock state. This moving of the permanent magnet or magnetic-field directors may be a rotation along a long axis of the permanent magnet. The moving can instead be a lateral movement relative to multiple sets of magnetic-field directors, such as by moving one set of magnetic-field directors that null the magnetic field proximate or distant the permanent magnet and distant or proximate another set directing the magnetic field to a magnetically permeable material. Various other movements based on other structures of permanent magnets and magnetic-field directors are also envisioned.
As noted above, the techniques permit locking and unlocking of devices, such as computing devices and peripherals, though other devices may be used. Further, the techniques permit this locking and unlocking seamlessly on devices and also permit, in some embodiments, implicit selection by a user. Methods 700 can be performed using the various controllers, sensors, and actuators noted herein (e.g., controller 108 based on data sensed by sensors 106 and by controlling actuator 114).
The preceding discussion describes methods relating to switchable magnetic locks, as well as other methods and techniques. Aspects of these methods may be implemented in hardware (e.g., fixed logic circuitry), firmware, software, manual processing, or any combination thereof. A software implementation represents program code that performs specified tasks when executed by a computer processor. The example methods may be described in the general context of computer-executable instructions, which can include software, applications, routines, programs, objects, components, data structures, procedures, modules, functions, and the like. The program code can be stored in one or more computer-readable memory devices, both local and/or remote to a computer processor. The methods may also be practiced in a distributed computing mode by multiple computing devices. Further, the features described herein are platform-independent and can be implemented on a variety of computing platforms having a variety of processors.
These techniques may be embodied on one or more of the entities shown in
Example Device
Device 800 includes communication devices 802 that enable wired and/or wireless communication of device data 804 (e.g., received data, data that is being received, data scheduled for broadcast, data packets of the data, etc.). Device data 804 or other device content can include configuration settings of the device, media content stored on the device, and/or information associated with a user of the device. Media content stored on device 800 can include any type of audio, video, and/or image data. Device 800 includes one or more data inputs 806 via which any type of data, media content, and/or inputs can be received, such as human utterances, user-selectable inputs (explicit or implicit), messages, music, television media content, recorded video content, and any other type of audio, video, and/or image data received from any content and/or data source.
Device 800 also includes communication interfaces 808, which can be implemented as any one or more of a serial and/or parallel interface, a wireless interface, any type of network interface, a modem, and as any other type of communication interface. Communication interfaces 808 provide a connection and/or communication links between device 800 and a communication network by which other electronic, computing, and communication devices communicate data with device 800.
Device 800 includes one or more processors 810 (e.g., any of microprocessors, controllers, and the like), which process various computer-executable instructions to control the operation of device 800 and to enable techniques for switchable magnetic locks. Alternatively or in addition, device 800 can be implemented with any one or combination of hardware, firmware, or fixed logic circuitry that is implemented in connection with processing and control circuits which are generally identified at 812. Although not shown, device 800 can include a system bus or data transfer system that couples the various components within the device. A system bus can include any one or combination of different bus structures, such as a memory bus or memory controller, a peripheral bus, a universal serial bus, and/or a processor or local bus that utilizes any of a variety of bus architectures.
Device 800 also includes computer-readable storage media 814, such as one or more memory devices that enable persistent and/or non-transitory data storage (i.e., in contrast to mere signal transmission), examples of which include random access memory (RAM), non-volatile memory (e.g., any one or more of a read-only memory (ROM), flash memory, EPROM, EEPROM, etc.), and a disk storage device. A disk storage device may be implemented as any type of magnetic or optical storage device, such as a hard disk drive, a recordable and/or rewriteable compact disc (CD), any type of a digital versatile disc (DVD), and the like. Device 800 can also include a mass storage media device 816.
Computer-readable storage media 814 provides data storage mechanisms to store device data 804, as well as various device applications 818 and any other types of information and/or data related to operational aspects of device 800. For example, an operating system 820 can be maintained as a computer application with computer-readable storage media 814 and executed on processors 810. Device applications 818 may include a device manager, such as any form of a control application, software application, signal-processing and control module, code that is native to a particular device, a hardware abstraction layer for a particular device, and so on.
Device applications 818 also include any system components, engines, or modules to implement techniques enabling switchable magnetic locks. In this example, device applications 818 include controller 108.
Although embodiments of techniques using, and apparatuses including, switchable magnetic locks have been described in language specific to features and/or methods, it is to be understood that the subject of the appended claims is not necessarily limited to the specific features or methods described. Rather, the specific features and methods are disclosed as example implementations of switchable magnetic locks.
Number | Name | Date | Kind |
---|---|---|---|
4046975 | Seeger, Jr. | Sep 1977 | A |
4065649 | Carter et al. | Dec 1977 | A |
4237347 | Burundukov et al. | Dec 1980 | A |
4243861 | Strandwitz | Jan 1981 | A |
4302648 | Sado et al. | Nov 1981 | A |
4317013 | Larson | Feb 1982 | A |
4365130 | Christensen | Dec 1982 | A |
4492829 | Rodrique | Jan 1985 | A |
4527021 | Morikawa et al. | Jul 1985 | A |
4559426 | Van Zeeland et al. | Dec 1985 | A |
4588187 | Dell | May 1986 | A |
4607147 | Ono et al. | Aug 1986 | A |
4643604 | Enrico | Feb 1987 | A |
4651133 | Ganesan et al. | Mar 1987 | A |
5067573 | Uchida | Nov 1991 | A |
5220521 | Kikinis | Jun 1993 | A |
5283559 | Kalendra et al. | Feb 1994 | A |
5331443 | Stanisci | Jul 1994 | A |
5548477 | Kumar et al. | Aug 1996 | A |
5558577 | Kato | Sep 1996 | A |
5618232 | Martin | Apr 1997 | A |
5681220 | Bertram et al. | Oct 1997 | A |
5745376 | Barker et al. | Apr 1998 | A |
5748114 | Koehn | May 1998 | A |
5750939 | Makinwa et al. | May 1998 | A |
5781406 | Hunte | Jul 1998 | A |
5807175 | Davis et al. | Sep 1998 | A |
5818361 | Acevedo | Oct 1998 | A |
5828770 | Leis et al. | Oct 1998 | A |
5850135 | Kuki et al. | Dec 1998 | A |
5874697 | Selker et al. | Feb 1999 | A |
5926170 | Oba | Jul 1999 | A |
5971635 | Wise | Oct 1999 | A |
5973677 | Gibbons | Oct 1999 | A |
6002389 | Kasser | Dec 1999 | A |
6005209 | Burleson et al. | Dec 1999 | A |
6012714 | Worley et al. | Jan 2000 | A |
6040823 | Seffernick et al. | Mar 2000 | A |
6044717 | Biegelsen et al. | Apr 2000 | A |
6061644 | Leis | May 2000 | A |
6112797 | Colson et al. | Sep 2000 | A |
6178443 | Lin | Jan 2001 | B1 |
6254105 | Rinde et al. | Jul 2001 | B1 |
6279060 | Luke et al. | Aug 2001 | B1 |
6329617 | Burgess | Dec 2001 | B1 |
6344791 | Armstrong | Feb 2002 | B1 |
6366440 | Kung | Apr 2002 | B1 |
6380497 | Hashimoto et al. | Apr 2002 | B1 |
6437682 | Vance | Aug 2002 | B1 |
6511378 | Bhatt et al. | Jan 2003 | B1 |
6532147 | Christ, Jr. | Mar 2003 | B1 |
6543949 | Ritchey et al. | Apr 2003 | B1 |
6545577 | Yap | Apr 2003 | B2 |
6565439 | Shinohara et al. | May 2003 | B2 |
6600121 | Olodort et al. | Jul 2003 | B1 |
6603408 | Gaba | Aug 2003 | B1 |
6617536 | Kawaguchi | Sep 2003 | B2 |
6681333 | Cho | Jan 2004 | B1 |
6685369 | Lien | Feb 2004 | B2 |
6704864 | Philyaw | Mar 2004 | B1 |
6721019 | Kono et al. | Apr 2004 | B2 |
6725318 | Sherman et al. | Apr 2004 | B1 |
6774888 | Genduso | Aug 2004 | B1 |
6776546 | Kraus et al. | Aug 2004 | B2 |
6781819 | Yang et al. | Aug 2004 | B2 |
6784869 | Clark et al. | Aug 2004 | B1 |
6813143 | Makela | Nov 2004 | B2 |
6819082 | Yang | Nov 2004 | B2 |
6819316 | Schulz et al. | Nov 2004 | B2 |
6856506 | Doherty et al. | Feb 2005 | B2 |
6861961 | Sandbach et al. | Mar 2005 | B2 |
6898315 | Guha | May 2005 | B2 |
6902214 | Smith | Jun 2005 | B2 |
6914197 | Doherty et al. | Jul 2005 | B2 |
6922333 | Weng et al. | Jul 2005 | B2 |
6929291 | Chen | Aug 2005 | B2 |
6950950 | Sawyers et al. | Sep 2005 | B2 |
6970957 | Oshins et al. | Nov 2005 | B1 |
6976799 | Kim et al. | Dec 2005 | B2 |
7019491 | Bozzone et al. | Mar 2006 | B2 |
7023430 | Liu et al. | Apr 2006 | B2 |
7051149 | Wang et al. | May 2006 | B2 |
7083295 | Hanna | Aug 2006 | B1 |
7091436 | Serban | Aug 2006 | B2 |
7106222 | Ward et al. | Sep 2006 | B2 |
7123292 | Seeger et al. | Oct 2006 | B1 |
7194662 | Do et al. | Mar 2007 | B2 |
7199554 | Kim et al. | Apr 2007 | B2 |
7213991 | Chapman et al. | May 2007 | B2 |
7277087 | Hill et al. | Oct 2007 | B2 |
7287738 | Pitlor | Oct 2007 | B2 |
7447934 | Dasari et al. | Nov 2008 | B2 |
7457108 | Ghosh | Nov 2008 | B2 |
7469386 | Bear et al. | Dec 2008 | B2 |
7499037 | Lube | Mar 2009 | B2 |
7502803 | Culter et al. | Mar 2009 | B2 |
7542052 | Solomon et al. | Jun 2009 | B2 |
7558594 | Wilson | Jul 2009 | B2 |
7559834 | York | Jul 2009 | B1 |
7626582 | Nicolas et al. | Dec 2009 | B1 |
7636921 | Louie | Dec 2009 | B2 |
7656392 | Bolender | Feb 2010 | B2 |
7705558 | Silverman | Apr 2010 | B2 |
7715187 | Hotelling et al. | May 2010 | B2 |
7733326 | Adiseshan | Jun 2010 | B1 |
7773076 | Pittel et al. | Aug 2010 | B2 |
7775567 | Ligtenberg et al. | Aug 2010 | B2 |
7777972 | Chen et al. | Aug 2010 | B1 |
7782342 | Koh | Aug 2010 | B2 |
7788474 | Switzer et al. | Aug 2010 | B2 |
7813715 | McKillop et al. | Oct 2010 | B2 |
7822338 | Wernersson | Oct 2010 | B2 |
7852621 | Lin et al. | Dec 2010 | B2 |
7884807 | Hovden et al. | Feb 2011 | B2 |
D636397 | Green | Apr 2011 | S |
7928964 | Kolmykov-Zotov et al. | Apr 2011 | B2 |
7945717 | Rivalsi | May 2011 | B2 |
7973771 | Geaghan | Jul 2011 | B2 |
7978281 | Vergith et al. | Jul 2011 | B2 |
8053688 | Conzola et al. | Nov 2011 | B2 |
8059391 | Chang et al. | Nov 2011 | B2 |
8065624 | Morin et al. | Nov 2011 | B2 |
8069356 | Rathi et al. | Nov 2011 | B2 |
8130203 | Westerman | Mar 2012 | B2 |
8154524 | Wilson et al. | Apr 2012 | B2 |
D659139 | Gengler | May 2012 | S |
8169185 | Partovi et al. | May 2012 | B2 |
8169421 | Wright et al. | May 2012 | B2 |
8223489 | Shih | Jul 2012 | B2 |
8229509 | Paek et al. | Jul 2012 | B2 |
8229522 | Kim et al. | Jul 2012 | B2 |
8259091 | Yeh | Sep 2012 | B2 |
8264310 | Lauder et al. | Sep 2012 | B2 |
8279589 | Kim | Oct 2012 | B2 |
8497657 | Franks et al. | Jul 2013 | B2 |
8515501 | Lee et al. | Aug 2013 | B2 |
8560004 | Tsvetkov et al. | Oct 2013 | B1 |
8571539 | Ranganathan et al. | Oct 2013 | B1 |
8599542 | Healey et al. | Dec 2013 | B1 |
8600120 | Gonion et al. | Dec 2013 | B2 |
8600526 | Nielsen et al. | Dec 2013 | B2 |
8699215 | Whitt, III et al. | Apr 2014 | B2 |
8700931 | Gudlavenkatasiva et al. | Apr 2014 | B2 |
8705229 | Ashcraft et al. | Apr 2014 | B2 |
8723842 | Kaneda et al. | May 2014 | B2 |
8724302 | Whitt et al. | May 2014 | B2 |
8738090 | Kanda | May 2014 | B2 |
8854799 | Whitt, III et al. | Oct 2014 | B2 |
8873227 | Whitt, III et al. | Oct 2014 | B2 |
20010020455 | Schifferl | Sep 2001 | A1 |
20020103616 | Park et al. | Aug 2002 | A1 |
20020134828 | Sandbach et al. | Sep 2002 | A1 |
20020138772 | Crawford et al. | Sep 2002 | A1 |
20020163510 | Williams et al. | Nov 2002 | A1 |
20020190823 | Yap | Dec 2002 | A1 |
20030148740 | Yau et al. | Aug 2003 | A1 |
20030197687 | Shetter | Oct 2003 | A1 |
20040258924 | Berger et al. | Dec 2004 | A1 |
20040268000 | Barker et al. | Dec 2004 | A1 |
20050057515 | Bathiche | Mar 2005 | A1 |
20050059489 | Kim | Mar 2005 | A1 |
20050134717 | Misawa | Jun 2005 | A1 |
20050146512 | Hill et al. | Jul 2005 | A1 |
20050231156 | Yan | Oct 2005 | A1 |
20050236848 | Kim et al. | Oct 2005 | A1 |
20050264653 | Starkweather et al. | Dec 2005 | A1 |
20050264988 | Nicolosi | Dec 2005 | A1 |
20050265035 | Brass et al. | Dec 2005 | A1 |
20050285703 | Wheeler et al. | Dec 2005 | A1 |
20060070384 | Ertel | Apr 2006 | A1 |
20060085658 | Allen et al. | Apr 2006 | A1 |
20060125799 | Hillis et al. | Jun 2006 | A1 |
20060154725 | Glaser et al. | Jul 2006 | A1 |
20060156415 | Rubinstein et al. | Jul 2006 | A1 |
20060181514 | Newman | Aug 2006 | A1 |
20060195522 | Miyazaki | Aug 2006 | A1 |
20060261778 | Elizalde Rodarte | Nov 2006 | A1 |
20070062089 | Homer et al. | Mar 2007 | A1 |
20070072474 | Beasley et al. | Mar 2007 | A1 |
20070114967 | Peng | May 2007 | A1 |
20070126393 | Bersenev | Jun 2007 | A1 |
20070133156 | Ligtenberg et al. | Jun 2007 | A1 |
20070182663 | Biech | Aug 2007 | A1 |
20070188478 | Silverstein et al. | Aug 2007 | A1 |
20070194752 | McBurney | Aug 2007 | A1 |
20070234420 | Novotney et al. | Oct 2007 | A1 |
20070236408 | Yamaguchi et al. | Oct 2007 | A1 |
20070236467 | Marshall et al. | Oct 2007 | A1 |
20070247432 | Oakley | Oct 2007 | A1 |
20070247800 | Smith et al. | Oct 2007 | A1 |
20070260892 | Paul et al. | Nov 2007 | A1 |
20070271527 | Paas et al. | Nov 2007 | A1 |
20070283179 | Burnett et al. | Dec 2007 | A1 |
20080002350 | Farrugia | Jan 2008 | A1 |
20080005423 | Jacobs et al. | Jan 2008 | A1 |
20080048654 | Takahashi et al. | Feb 2008 | A1 |
20080061565 | Lee et al. | Mar 2008 | A1 |
20080090626 | Griffin et al. | Apr 2008 | A1 |
20080104437 | Lee | May 2008 | A1 |
20080111518 | Toya | May 2008 | A1 |
20080151478 | Chern | Jun 2008 | A1 |
20080158185 | Westerman | Jul 2008 | A1 |
20080186683 | Ligtenberg et al. | Aug 2008 | A1 |
20080238884 | Harish | Oct 2008 | A1 |
20080253822 | Matias | Oct 2008 | A1 |
20080258679 | Manico et al. | Oct 2008 | A1 |
20080303479 | Park et al. | Dec 2008 | A1 |
20080316002 | Brunet et al. | Dec 2008 | A1 |
20080320190 | Lydon et al. | Dec 2008 | A1 |
20090009476 | Daley, III | Jan 2009 | A1 |
20090013275 | May et al. | Jan 2009 | A1 |
20090073957 | Newland et al. | Mar 2009 | A1 |
20090102419 | Gwon et al. | Apr 2009 | A1 |
20090134838 | Raghuprasad | May 2009 | A1 |
20090140985 | Liu | Jun 2009 | A1 |
20090167728 | Geaghan et al. | Jul 2009 | A1 |
20090251008 | Sugaya | Oct 2009 | A1 |
20090262492 | Whitchurch et al. | Oct 2009 | A1 |
20090268386 | Lin | Oct 2009 | A1 |
20090303204 | Nasiri et al. | Dec 2009 | A1 |
20090320244 | Lin | Dec 2009 | A1 |
20090321490 | Groene et al. | Dec 2009 | A1 |
20090322278 | Franks et al. | Dec 2009 | A1 |
20100026656 | Hotelling et al. | Feb 2010 | A1 |
20100038821 | Jenkins et al. | Feb 2010 | A1 |
20100045609 | Do et al. | Feb 2010 | A1 |
20100045633 | Gettemy | Feb 2010 | A1 |
20100051356 | Stern et al. | Mar 2010 | A1 |
20100051432 | Lin et al. | Mar 2010 | A1 |
20100053534 | Hsieh et al. | Mar 2010 | A1 |
20100077237 | Sawyers | Mar 2010 | A1 |
20100081377 | Chatterjee et al. | Apr 2010 | A1 |
20100085321 | Pundsack | Apr 2010 | A1 |
20100103112 | Yoo et al. | Apr 2010 | A1 |
20100149111 | Olien | Jun 2010 | A1 |
20100149134 | Westerman et al. | Jun 2010 | A1 |
20100149377 | Shintani et al. | Jun 2010 | A1 |
20100156798 | Archer | Jun 2010 | A1 |
20100161522 | Tirpak et al. | Jun 2010 | A1 |
20100164857 | Liu et al. | Jul 2010 | A1 |
20100171891 | Kaji et al. | Jul 2010 | A1 |
20100174421 | Tsai et al. | Jul 2010 | A1 |
20100180063 | Ananny et al. | Jul 2010 | A1 |
20100188299 | Rinehart et al. | Jul 2010 | A1 |
20100206614 | Park et al. | Aug 2010 | A1 |
20100214214 | Corson et al. | Aug 2010 | A1 |
20100214257 | Wussler et al. | Aug 2010 | A1 |
20100222110 | Kim et al. | Sep 2010 | A1 |
20100237970 | Liu | Sep 2010 | A1 |
20100238620 | Fish | Sep 2010 | A1 |
20100250988 | Okuda et al. | Sep 2010 | A1 |
20100271771 | Wu et al. | Oct 2010 | A1 |
20100274932 | Kose | Oct 2010 | A1 |
20100279768 | Huang et al. | Nov 2010 | A1 |
20100289457 | Onnerud et al. | Nov 2010 | A1 |
20100295812 | Burns et al. | Nov 2010 | A1 |
20100302378 | Marks et al. | Dec 2010 | A1 |
20100304793 | Kim et al. | Dec 2010 | A1 |
20100306538 | Thomas et al. | Dec 2010 | A1 |
20100308778 | Yamazaki et al. | Dec 2010 | A1 |
20100308844 | Day et al. | Dec 2010 | A1 |
20100315348 | Jellicoe et al. | Dec 2010 | A1 |
20100321877 | Moser | Dec 2010 | A1 |
20100325155 | Skinner et al. | Dec 2010 | A1 |
20100331059 | Apgar et al. | Dec 2010 | A1 |
20110012873 | Prest et al. | Jan 2011 | A1 |
20110019123 | Prest et al. | Jan 2011 | A1 |
20110031287 | Le Gette et al. | Feb 2011 | A1 |
20110037721 | Cranfill et al. | Feb 2011 | A1 |
20110043990 | Mickey et al. | Feb 2011 | A1 |
20110060926 | Brooks et al. | Mar 2011 | A1 |
20110069148 | Jones et al. | Mar 2011 | A1 |
20110074688 | Hull et al. | Mar 2011 | A1 |
20110102326 | Casparian et al. | May 2011 | A1 |
20110102356 | Kemppinen et al. | May 2011 | A1 |
20110134032 | Chiu et al. | Jun 2011 | A1 |
20110163955 | Nasiri et al. | Jul 2011 | A1 |
20110164370 | McClure et al. | Jul 2011 | A1 |
20110167181 | Minoo et al. | Jul 2011 | A1 |
20110167287 | Walsh et al. | Jul 2011 | A1 |
20110167391 | Momeyer et al. | Jul 2011 | A1 |
20110167992 | Eventoff et al. | Jul 2011 | A1 |
20110176035 | Poulsen | Jul 2011 | A1 |
20110179864 | Raasch et al. | Jul 2011 | A1 |
20110184646 | Wong et al. | Jul 2011 | A1 |
20110193787 | Morishige et al. | Aug 2011 | A1 |
20110205372 | Miramontes | Aug 2011 | A1 |
20110227913 | Hyndman | Sep 2011 | A1 |
20110248920 | Larsen | Oct 2011 | A1 |
20110290686 | Huang | Dec 2011 | A1 |
20110297566 | Gallagher et al. | Dec 2011 | A1 |
20110304577 | Brown et al. | Dec 2011 | A1 |
20110316807 | Corrion | Dec 2011 | A1 |
20120007821 | Zaliva | Jan 2012 | A1 |
20120023459 | Westerman | Jan 2012 | A1 |
20120024682 | Huang et al. | Feb 2012 | A1 |
20120044179 | Hudson | Feb 2012 | A1 |
20120047368 | Chinn et al. | Feb 2012 | A1 |
20120050975 | Garelli et al. | Mar 2012 | A1 |
20120075249 | Hoch | Mar 2012 | A1 |
20120092279 | Martin | Apr 2012 | A1 |
20120094257 | Pillischer et al. | Apr 2012 | A1 |
20120099749 | Rubin et al. | Apr 2012 | A1 |
20120117409 | Lee et al. | May 2012 | A1 |
20120127118 | Nolting et al. | May 2012 | A1 |
20120140396 | Zeliff et al. | Jun 2012 | A1 |
20120145525 | Ishikawa | Jun 2012 | A1 |
20120162693 | Ito | Jun 2012 | A1 |
20120182242 | Lindahl et al. | Jul 2012 | A1 |
20120185803 | Wang et al. | Jul 2012 | A1 |
20120194448 | Rothkopf | Aug 2012 | A1 |
20120224073 | Miyahara | Sep 2012 | A1 |
20120235790 | Zhao et al. | Sep 2012 | A1 |
20120246377 | Bhesania | Sep 2012 | A1 |
20120256959 | Ye et al. | Oct 2012 | A1 |
20120274811 | Bakin | Nov 2012 | A1 |
20120278744 | Kozitsyn et al. | Nov 2012 | A1 |
20120284297 | Aguera-Arcas et al. | Nov 2012 | A1 |
20120300275 | Vilardell et al. | Nov 2012 | A1 |
20120323933 | He et al. | Dec 2012 | A1 |
20130009413 | Chiu et al. | Jan 2013 | A1 |
20130027867 | Lauder et al. | Jan 2013 | A1 |
20130063873 | Wodrich et al. | Mar 2013 | A1 |
20130083466 | Becze et al. | Apr 2013 | A1 |
20130187753 | Chiriyankandath | Jul 2013 | A1 |
20130207937 | Lutian | Aug 2013 | A1 |
20130229354 | Whitt, III | Sep 2013 | A1 |
20130229756 | Whitt, III | Sep 2013 | A1 |
20130229757 | Whitt, III | Sep 2013 | A1 |
20130283212 | Zhu et al. | Oct 2013 | A1 |
20130301199 | Whitt | Nov 2013 | A1 |
20130329360 | Aldana | Dec 2013 | A1 |
20140053108 | Johansson | Feb 2014 | A1 |
20140123273 | Matus | May 2014 | A1 |
20140185215 | Whitt | Jul 2014 | A1 |
20140185220 | Whitt | Jul 2014 | A1 |
20140362506 | Whitt, III et al. | Dec 2014 | A1 |
Number | Date | Country |
---|---|---|
1425763 | Jun 2004 | EP |
2353978 | Aug 2011 | EP |
2618247 | Jul 2013 | EP |
10326124 | Dec 1998 | JP |
1173239 | Mar 1999 | JP |
20080006404 | Jan 2008 | KR |
Entry |
---|
“Accessing Device Sensors”, retrieved from <https://developer.palm.com/content/api/dev-guide/pdk/accessing-device-sensors.html> on May 25, 2012, 4 pages. |
“ACPI Docking for Windows Operating Systems”, Retrieved from: <http://www.scritube.com/limba/engleza/software/ACPI-Docking-for-Windows-Opera331824193.php> on Jul. 6, 2012, 10 pages. |
“Cirago Slim Case®—Protective case with built-in kickstand for your iPhone 5®”, Retrieved from <http://cirago.com/wordpress/wp-content/uploads/2012/10/ipc15000brochure1.pdf> on Jan. 29, 2013, (Jan. 2013), 1 page. |
“DR2PA”, retrieved from <http://www.architainment.co.uk/wp-content/uploads/2012/08/DR2PA-AU-US-size-Data-Sheet-Rev-H—LOGO.pdf> on Sep. 17, 2012, 4 pages. |
“First One Handed Fabric Keyboard with Bluetooth Wireless Technology”, Retrieved from: <http://press.xtvworld.com/article3817.html> on May 8, 2012,(Jan. 6, 2005), 2 pages. |
“Force and Position Sensing Resistors: An Emerging Techology”, Interlink Electronics, Available at <http://staff.science.uva.nl/˜vlaander/docu/FSR/An—Exploring—Technology.pdf>,(Feb. 1990), pp. 1-6. |
“Frogpad Introduces Weareable Fabric Keyboard with Bluetooth Technology”, Retrieved from: <http://www.geekzone.co.nz/content.asp?contentid=3898> on May 7, 2012,(Jan. 7, 2005), 3 pages. |
“Incipio LG G-Slate Premium Kickstand Case—Black Nylon”, Retrieved from: <http://www.amazon.com/Incipio-G-Slate-Premium-Kickstand-Case/dp/B004ZKP916> on May 8, 2012, 4 pages. |
“Membrane Keyboards & Membrane Keypads”, Retrieved from: <http://www.pannam.com/> on May 9, 2012,(Mar. 4, 2009), 2 pages. |
“Motion Sensors”, Android Developers, retrieved from <http://developer.android.com/guide/topics/sensors/sensors—motion.html> on May 25, 2012, 7 pages. |
“NI Releases New Maschine & Maschine Mikro”, Retrieved from <http://www.djbooth.net/index/dj-equipment/entry/ni-releases-new-maschine-mikro/> on Sep. 17, 2012, 19 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/471,001, (Feb. 19, 2013), 15 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/471,139, (Mar. 21, 2013), 12 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/471,202, (Feb. 11, 2013), 10 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/471,336, (Jan. 18, 2013), 14 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/651,195, (Jan. 2, 2013), 14 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/651,232, (Jan. 17, 2013), 15 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/651,272, (Feb. 12, 2013), 10 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/651,287, (Jan. 29, 2013), 13 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/651,304, (Mar. 22, 2013), 9 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/651,327, (Mar. 22, 2013), 6 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/651,871, (Mar. 18, 2013), 14 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/651,976, (Feb. 22, 2013), 16 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/653,321, (Feb. 1, 2013), 13 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/653,682, (Feb. 7, 2013), 11 pages. |
“Notice of Allowance”, U.S. Appl. No. 13/470,633, (Mar. 22, 2013), 7 pages. |
“Position Sensors”, Android Developers, retrieved from <http://developer.android.com/guide/topics/sensors/sensors—position.html> on May 25, 2012, 5 pages. |
“Restriction Requirement”, U.S. Appl. No. 13/471,139, (Jan. 17, 2013), 7 pages. |
“Restriction Requirement”, U.S. Appl. No. 13/651,304, (Jan. 18, 2013), 7 pages. |
“Restriction Requirement”, U.S. Appl. No. 13/651,726, (Feb. 22, 2013), 6 pages. |
“Restriction Requirement”, U.S. Appl. No. 13/651,871, (Feb. 7, 2013), 6 pages. |
“SoIRx™ E-Series Multidirectional Phototherapy Expandable™ 2-Bulb Full Body Panel System”, Retrieved from: < http://www.solarcsystems.com/us—multidirectional—uv—light—therapy—1—intro.html > on Jul. 25, 2012,(2011), 4 pages. |
“The Microsoft Surface Tablets Comes With Impressive Design and Specs”, Retrieved from <http://microsofttabletreview.com/the-microsoft-surface-tablets-comes-with-impressive-design-and-specs> on Jan. 30, 2013, (Jun. 2012), 2 pages. |
“Tilt Shift Lenses: Perspective Control”, retrieved from http://www.cambridgeincolour.com/tutorials/tilt-shift-lenses1.htm, (Mar. 28, 2008), 11 Pages. |
“Virtualization Getting Started Guide”, Red Hat Enterprise Linux 6, Edition 0.2, retrieved from <http://docs.redhat.com/docs/en-US/Red—Hat—Enterprise—Linux/6/html-single/Virtualization—Getting—Started—Guide/index.html> on Jun. 13, 2012, 24 pages. |
“What is Active Alignment?”, http://www.kasalis.com/active—alignment.html, retrieved on Nov. 22, 2012, 2 Pages. |
Block, Steve et al., “DeviceOrientation Event Specification”, W3C, Editor's Draft, retrieved from <https://developer.palm.com/content/api/dev-guide/pdk/accessing-device-sensors.html> on May 25, 2012,(Jul. 12, 2011), 14 pages. |
Brown, Rich “Microsoft Shows Off Pressure-Sensitive Keyboard”, retrieved from <http://news.cnet.com/8301-17938—105-10304792-1.html> on May 7, 2012, (Aug. 6, 2009), 2 pages. |
Butler, Alex et al., “SideSight: Multi-“touch” Interaction around Small Devices”, In the proceedings of the 21st annual ACM symposium on User interface software and technology., retrieved from <http://research.microsoft.com/pubs/132534/sidesight—crv3.pdf> on May 29, 2012,(Oct. 19, 2008), 4 pages. |
Crider, Michael “Sony Slate Concept Tablet “Grows” a Kickstand”, Retrieved from: <http://androidcommunity.com/sony-slate-concept-tablet-grows-a-kickstand-20120116/> on May 4, 2012,(Jan. 16, 2012), 9 pages. |
Das, Apurba et al., “Study of Heat Transfer through Multilayer Clothing Assemblies: A Theoretical Predicition”, Retrieved from <http://www.autexrj.com/cms/zalaczone—pliki/5—013—11.pdf>, (Jun. 2011), 7 pages. |
Dietz, Paul H., et al., “A Practical Pressure Sensitive Computer Keyboard”, In Proceedings of UIST 2009,(Oct. 2009), 4 pages. |
Glatt, Jeff “Channel and Key Pressure (Aftertouch).”, Retrieved from: <http://home.roadrunner.com/˜jgglatt/tutr/touch.htm> on Jun. 11, 2012, 2 pages. |
Hanlon, Mike “ElekTex Smart Fabric Keyboard Goes Wireless”, Retrieved from: <http://www.gizmag.com/go/5048/ > on May 7, 2012,(Jan. 15, 2006), 5 pages. |
Kaur, Sukhmani “Vincent Liew's redesigned laptop satisfies ergonomic needs”, Retrieved from: <http://www.designbuzz.com/entry/vincent-liew-s-redesigned-laptop-satisfies-ergonomic-needs/> on Jul. 27, 2012,(Jun. 21, 2010), 4 pages. |
Khuntontong, Puttachat et al., “Fabrication of Molded Interconnection Devices by Ultrasonic Hot Embossing on Thin Polymer Films”, IEEE Transactions on Electronics Packaging Manufacturing, vol. 32, No. 3,(Jul. 2009), pp. 152-156. |
Linderholm, Owen “Logitech Shows Cloth Keyboard for PDAs”, Retrieved from: <http://www.pcworld.com/article/89084/logitech—shows—cloth—keyboard—for—pdas.html> on May 7, 2012,(Mar. 15, 2002), 5 pages. |
McLellan, Charles “Eleksen Wireless Fabric Keyboard: a first look”, Retrieved from: <http://www.zdnetasia.com/eleksen-wireless-fabric-keyboard-a-first-look-40278954.htm> on May 7 2012,(Jul. 17, 2006), 9 pages. |
Post, E.R. et al., “E-Broidery: Design and Fabrication of Textile-Based Computing”, IBM Systems Journal, vol. 39, Issue 3 & 4,(Jul. 2000), pp. 840-860. |
Purcher, Jack “Apple is Paving the Way for a New 3D GUI for IOS Devices”, Retrieved from: <http://www.patentlyapple.com/patently-apple/2012/01/apple-is-paving-the-way-for-a-new-3d-gui-for-ios-devices.html> on Jun. 4, 2012,(Jan. 12, 2012), 15 pages. |
Takamatsu, Seiichi et al., “Flexible Fabric Keyboard with Conductive Polymer-Coated Fibers”, In Proceedings of Sensors 2011,(Oct. 28, 2011), 4 pages. |
Valliath, G T., “Design of Hologram for Brightness Enhancement in Color LCDs”, Retrieved from <http://www.loreti.it/Download/PDF/LCD/44—05.pdf> on Sep. 17, 2012, 5 pages. |
Williams, Jim “A Fourth Generation of LCD Backlight Technology”, Retrieved from <http://cds.linear.com/docs/Application%20Note/an65f.pdf>, (Nov. 1995), 124 pages. |
Zhang, et al., “Model-Based Development of Dynamically Adaptive Software”, In Proceedings of ICSE 2006, Available at <http://www.irisa.fr/lande/lande/icse-proceedings/icse/p371.pdf>,(May 20, 2006), pp. 371-380. |
“Non-Final Office Action”, U.S. Appl. No. 13/563,435, (Jun. 14, 2013), 6 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/564,520, (Jun. 19, 2013), 8 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/565,124, (Jun. 17, 2013), 5 pages. |
“Non-Final Office Action”, Application No. 13/371,725, (Nov. 7, 2013), 19 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/780,228, Oct. 30, 2013, 12 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 13/563,435, Jan. 14, 2014, 2 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 13/563,435, Jan. 22, 2014, 2 pages. |
“Notice of Allowance”, U.S. Appl. No. 13/563,435, Nov. 12, 2013, 5 pages. |
“Surface”, Retrieved from <http://www.microsoft.com/surface/en-us/support/hardware-and-drivers/type-cover> on Dec. 24, 2013, 6 pages. |
“Notice of Allowance”, U.S. Appl. No. 13/565,124, Dec. 24, 2013, 6 pages. |
“Final Office Action”, U.S. Appl. No. 13/564,520, Jan. 15, 2014, 7 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 13/563,435, Mar. 20, 2014, 2 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 13/565,124, Apr. 3, 2014, 4 pages. |
“Edwards 1508 Series Surface Wall Mount Electromagnetic Door Holder”, Edwards Signaling, retrieved from <http://www.thesignalsource.com/documents/1508.pdf>, 2000, 1 page. |
“Final Office Action”, U.S. Appl. No. 12/163,614, Nov. 8, 2012, 15 pages. |
“Final Office Action”, U.S. Appl. No. 12/163,614, Aug. 19, 2011, 15 pages. |
“Final Office Action”, U.S. Appl. No. 13/371,725, Apr. 2, 2014, 22 pages. |
“Final Office Action”, U.S. Appl. No. 13/780,228, Mar. 28, 2014, 13 pages. |
“Magnetic Cell Phone Holder”, Extreme Computing, retrieved from <http://www.extremecomputing.com/magnetholder.html> on May 7, 2008, 1 page. |
“Non-Final Office Action”, U.S. Appl. No. 12/163,614, Apr. 27, 2011, 15 pages. |
“Non-Final Office Action”, U.S. Appl. No. 12/163,614, May 24, 2012, 15 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/471,237, Mar. 24, 2014, 7 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/564,520, Feb. 14, 2014, 5 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/199,924, Apr. 10, 2014, 6 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/200,595, Apr. 11, 2014, 4 pages. |
“Notice of Allowance”, U.S. Appl. No. 12/163,614, Apr. 3, 2013, 9 pages. |
“Advisory Action”, U.S. Appl. No. 14/199,924, May 28, 2014, 2 pages. |
“Can I Customize my Samsung Galaxy S® 4 Lock Screen? Which Features can I Access When the Device is Locked?”, Retrieved From: <http://www.samsung.com/us/support/howtoguide/N0000006/10632/127767> Jul. 3, 2014, May 16, 2014, 12 Pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 13/565,124, Mar. 10, 2014, 2 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 13/565,124, Apr. 14, 2014, 2 pages. |
“Final Office Action”, U.S. Appl. No. 14/199,924, May 6, 2014, 5 pages. |
“Lock Screen Overview (Windows Runtime Apps)”, Retrieved From: <http://msdn.microsoft.com/en-in/library/windows/apps/hh779720.aspx> Jul. 8, 2014, Dec. 31, 2012, 5 Pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/564,520, Jun. 16, 2014, 5 pages. |
“Notice of Allowance”, U.S. Appl. No. 13/471,237, May 12, 2014, 8 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/199,924, Jun. 10, 2014, 4 pages. |
“Windows 7: Display Reminder When Click on Shutdown?”, Retrieved From: < http://www.sevenforums.com/customization/118688-display-reminder-when-click-shutdown.html> Jul. 8, 2014, Oct. 18, 2010, 5 Pages. |
Campbell, “Future iPhones May Unlock, Hide Messages based on a User's Face”, Retrieved From:<http://appleinsider.com/articles/13/12/03/future-iphones-may-unlock-hide-messages-based-on-a-users-face> Jul. 3, 2014, Dec. 3, 2013, 11 Pages. |
Caprio, “Enabling Notification Badges for Whatsapp and Other Android Apps”, Retrieved From: <http://geek.ng/2013/05/enabling-notification-badges-for-whatsapp-and-other-android-apps.html> Jul. 3, 2014, May 20, 2014, 7 Pages. |
Carlon, “How to Add a WhatsApp Widget to your Lock Screen”, Retrieved From: <http://www.androidpit.com/how-to-add-a-whatsapp-widget-to-your-lock-screen> Jul. 3, 2014, Apr. 9, 2014, 6 Pages. |
Constine, “Cover is an Android-Only Lockscreen that Shows Apps When You Need Them”, Retrieved From: <http://techcrunch.com/2013/10/24/cover-android/> Jul. 2, 2014, Oct. 24, 2013, 15 pages. |
Haslam, “This App for Android Customizes your Lock Screen Automatically Depending on Time of Day or Situation”, Retrieved From: <http://www.redmondpie.com/this-app-for-android-customizes-your-lock-screen-automatically-depending-on-time-of-day-or-situation/> Jul. 8, 2014, Jun. 1, 2012, 6 Pages. |
Henry, “Supercharge Your Lock Screen with DashClock and These Add-Ons”, Retrieved From: <http://lifehacker.com/supercharge-your-lock-screen-with-dashclock-and-these-a-493206006> Jul. 3, 2014, May 7, 2013, 12 Pages. |
Patterson, “iOS 7 Tip: Alerts, Banners, and Badges—What's the Difference?”, Retrieved From: <http://heresthethingblog.com/2014/01/22/ios-7-tip-whats-difference-alert/>, Jan. 22, 2014, 6 Pages. |
Ritchie, “How to Use Lock Screen, Today, Popups, and Banners in Notification Center for iPhone and iPad”, Retrieved From: <http://www.imore.com/how-use-notification-center-iphone-ipad> Jul. 3, 2014, Apr. 30, 2014, 8 pages. |
Royman, “NiLS Lockscreen Notifications”, Retrieved From: <https://play.google.com/store/apps/details?id=com.roymam.android.notificationswidget&hl=en> Jul. 3, 2014, Jun. 28, 2014, 3 Pages. |
Salman, “Create a Minimal Lock Screen With WidgetLocker”, Retrieved From: <http://android.appstorm.net/how-to/create-a-minimal-lock-screen-with-widgetlocker/> Jul. 3, 2014, Dec. 26, 2011, 12 Pages. |
Whitwam, “How to Tweak Android's Lock Screen and Notifications”, Retrieved From: <http://www.tested.com/tech/android/457766-tips-and-tricks-make-androids-lock-screen-and-notifications-even-better/?icid=pets%7Chat%7Ctestedlink%7C457766-how-to-tweak-androids-lock-screen-and-notifications> Jul. 3, 2014, Sep. 18, 2013, 4 Pages. |
Iwase, Eiji, “Multistep Sequential Batch Assembly of Three-Dimensional Ferromagnetic Microstructures with Elastic Hinges”, Retrieved at <<http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1549861>> Proceedings: Journal of Microelectromechanical Systems, Dec. 2005, pp. 7. |
“Controlling Your Desktop's Power Management”, Retrieved From: <http://www.vorkon.de/SU1210.001/drittanbieter/Dokumentation/openSUSE—11.2/manual/sec.gnomeuserstart.power—mgmt.html> Jul. 7, 2014, 6 Pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 14/199,924, Aug. 29, 2014, 2 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 14/199,924, Sep. 5, 2014, 2 pages. |
“Foreign Notice of Allowance”, CN Application No. 201320097065.3, Nov. 21, 2013, 2 pages. |
“Foreign Office Action”, CN Application No. 201320097065.3, Jun. 18, 2013, 2 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2013/028481, Jun. 19, 2014, 11 pages. |
Eckel, “Personalize Alerts with the Help of OS X Mavericks Notifications”, Retrieved From: <http://www.techrepublic.com/article/customize-os-x-mavericks-notifications-to-personalize-alerts/> Jul. 8, 2014, Mar. 10, 2014, 7 Pages. |
Mack, “Moto X: The First Two Weeks”, Retrieved From: <http://www.gizmag.com/two-weeks-motorola-google-moto-x-review/28722/> Jul. 8, 2014, Aug. 16, 2013, 8 pages. |
Thurrott, “Nokia Lumia “Black”: Glance 2.0”, Retrieved From:<http://winsupersite.com/windows-phone/nokia-lumia-black-glance-20> Jul. 8, 2014, Jan. 11, 2014, 3 Pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 14/199,924, Sep. 19, 2014, 2 pages. |
“Final Office Action”, U.S. Appl. No. 14/200,595, Nov. 19, 2014, 5 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/371,725, Nov. 3, 2014, 27 pages. |
Number | Date | Country | |
---|---|---|---|
20140049894 A1 | Feb 2014 | US |