Switchable multi-radiator high band antenna apparatus

Information

  • Patent Grant
  • 9350081
  • Patent Number
    9,350,081
  • Date Filed
    Tuesday, January 14, 2014
    10 years ago
  • Date Issued
    Tuesday, May 24, 2016
    8 years ago
Abstract
Switchable multi-radiator high band antenna apparatus, and methods of tuning and utilizing the same. In one embodiment, the antenna apparatus is configured to operate in lower and upper frequency bands, for use within a handheld mobile device (e.g., cellular telephone or smartphone). In one variant, the antenna apparatus includes a metal cup, two feeding elements, and a ground element. One feeding element is used to tune the antenna in both the lower and the upper bands. The other feed element is used to tune the antenna in the upper band. A switching element is configured to change the signal routing for the feed elements. During device operation, a user's body (e.g., hand) may cover or obstruct one of the antenna elements. Responsive to a determination of reduced performance associated with covered/obstructed antenna element, the signal route may be automatically switched to the other element, thereby improving robustness of mobile device communications.
Description
COPYRIGHT

A portion of the disclosure of this patent document contains material that is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent files or records, but otherwise reserves all copyright rights whatsoever.


TECHNOLOGICAL FIELD

The present disclosure relates generally to antenna apparatus for use in electronic devices such as for example wireless or portable radio devices, and more particularly in one exemplary aspect to a switchable multi-radiator high band antenna apparatus, and methods of producing, tuning and utilizing the same.


DESCRIPTION OF RELATED TECHNOLOGY

Internal antennas are an element found in most modern radio devices, such as mobile computers, mobile phones, Blackberry® devices, smartphones, tablet computers, personal digital assistants (PDAs), “smart” watches, or other personal communication devices (PCDs).


Typically, these antennas comprise one or more radiating elements disposed within the device enclosure. It is a common requirement that the antenna operate in more than one frequency band; e.g., both lower (such as for instance LTE12, LTE13, LTE17, LTE14, LTE20, GSM850, E-GSM900) and an upper band (such as DCS1800, PCS1900, WCDMA-1) frequencies.


Portable mobile devices often comprise enclosures that are, at least partly, fabricated from an electrically conductive material (e.g., metals or alloys). During handheld operation of the mobile device by a user, the antenna operating at upper band frequencies may be detuned due to interference from the user's hand and/or head. The antenna detuning may lead to reduced performance of the communication device, e.g., reduced range, reduced data rate, increased directionality, and/or link drop.


Accordingly, there is a salient need for an improved internal antenna apparatus capable of supporting operation at the lower and the upper frequencies while operating inside a metal enclosure that may be placed in a user's hand and/or near their head.


SUMMARY

The present disclosure satisfies the foregoing needs by providing, inter alia, improved multiband antenna apparatus and methods useful in, e.g., mobile wireless devices.


In a first aspect, a multiband antenna apparatus is disclosed. In one embodiment, the apparatus is for use in a radio communications device, and includes: a radiator structure disposed to substantially envelop one lateral end of the device, and configured to be electrically connected to a ground plane of the device; a first and a second feed structure configured to be selectively connected to a radio frequency feed port; and a ground structure, configured to be electrically connected to the ground plane.


In one variant, the first feed structure is configured to effectuate radio frequency communications within at least one upper frequency band and at least one lower frequency band; and the second feed structure is configured to effectuate radio frequency communications within the at least one upper frequency band.


In another variant, the apparatus further includes a selector apparatus configured to selectively electrically connect one of (i) the first feed structure, or (ii) the second feed structure, to the feed port.


In another variant, the ground plane is connected via first and second ground elements, the second ground element configured to be connected to the ground plane via a switching circuit comprising two or more alternate electrical signal paths each comprising a reactive circuit characterized by a respective impedance value that enables selective tuning of an operational band of the radiator structure.


In a further variant, the first ground element comprises a static ground element characterized by a single connection state; the first feed structure comprises a first matching circuit configured to be coupled to the feed port, and to tune the antenna operation to the at least one upper frequency band; and the second feed structure comprises a second matching circuit configured to be coupled to the feed port, and to tune the antenna operation to the at least one upper frequency band.


In another aspect of the disclosure, a method of mitigating effects of user interference on a radio signal emitting and receiving mobile device is disclosed. In one embodiment, the mobile device is characterized by first and second user grasping locations, and the method includes: energizing a first antenna feed structure with a radio signal comprising at least a first frequency component, the first antenna feed structure being encompassed by a radiating element disposed proximate one end of the device; and determining a performance measure associated with a received signal at the first frequency by the radiating element. In one variant, the method further includes, based at least on the performance measure not meeting one or more prescribed criteria: de-energizing the first antenna feed structure; and energizing a second antenna feed structure with a radio signal comprising at the least first frequency component; the second antenna feed structure being encompassed by the radiating element.


In another variant, the first grasping location corresponds to a user's hand covering at least partly the radiating element proximate the antenna feed structure; and the energizing the second antenna feed structure and de-energizing the first antenna feed structure cooperate to effectuate the mitigation of the user interference.


In a further variant, the determining the performance measure comprises: causing radiation of a first signal magnitude via the first feed structure; and evaluating a threshold and a second signal magnitude received via the first feed structure.


In another aspect, a multi-band antenna apparatus is disclosed. In one embodiment, the apparatus includes: a first radiating element in communication with a first feed structure; a second radiating element in communication with a second feed structure; and logic, in operative communication with the first and second feed structures, to selectively cause feeding of one of the first and second radiating elements based on detection of a reduction in performance of the other of the first and second radiating elements due to proximity to part of a user's anatomy.


In a further aspect, a mobile radio frequency communication device is disclosed. In one embodiment, the device includes: an enclosure and an electronics assembly contained substantially therein, said electronics assembly comprising a ground plane and a first and a second feed port; and a multiband antenna apparatus. In one variant, the antenna apparatus includes: a metal cup structure disposed proximate one end of the enclosure and configured to be electrically connected to the ground plane via a first and a second ground element; a first and a second feed structure; a ground structure configured to be electrically connected to the ground plane; and a selector apparatus configured to selectively electrically connect one of (i) the first feed structure to the first feed port or (ii) the second feed structure to the second feed port.


In another variant, the first feed structure is configured to effectuate the radio frequency communications within at least one high frequency band and at least one low frequency band; the second feed structure is configured to effectuate the radio frequency communications within the at least one high frequency band; the enclosure comprises a chassis and the cup, the cup being electrically separated from the chassis by a non-conductive slot thereby forming an operational antenna portion, the operational portion configured to form a first electromagnetic resonance in at least a second high frequency band; the second ground element is configured to be connected to the ground plane via a switching circuit comprising two or more alternate electrical signal paths; and the metal cup structure is configured to form a second electromagnetic resonance in at least a fourth and a third frequency bands.


In another aspect of the disclosure, a method of tuning the antenna apparatus is disclosed.


In yet a further aspect, a method of operating the antenna apparatus is disclosed.


In yet another aspect, a tuning circuit is disclosed. In one embodiment, the tuning circuit is configured for use with a multi-band antenna in a mobile wireless device.


Further features of the present disclosure, its nature and various advantages will be more apparent from the accompanying drawings and the following detailed description.





BRIEF DESCRIPTION OF THE DRAWINGS

The features, objectives, and advantages of the disclosure will become more apparent from the detailed description set forth below when taken in conjunction with the drawings, wherein:



FIG. 1 is a functional block diagram illustrating a switched dual radiator antenna apparatus, in accordance with one exemplary implementation of the present disclosure.



FIG. 2A is a perspective view of the backside of a mobile communications device comprising the switched dual radiator antenna apparatus, in accordance with one exemplary implementation.



FIG. 2B is a detailed view of an exemplary metal cup radiator element for use with the mobile communications device of FIG. 2A.



FIG. 2C is a bottom view of the exemplary metal cup radiator element shown in FIG. 2B.



FIG. 2D is a detailed perspective view of the exemplary metal cup radiator element shown in FIGS. 2B and 2C.



FIG. 2E is a detailed perspective view of an exemplary feed configuration for the switched dual radiator antenna apparatus of FIG. 2A.



FIG. 2F is a detailed perspective view of an exemplary ground configuration for the switched dual radiator antenna apparatus of FIG. 2A.



FIG. 3 is an electrical schematic diagram illustrating tuning of the switched dual radiator antenna apparatus (e.g., of FIG. 1), in accordance with one implementation.



FIG. 4A is a graphical illustration depicting operational placement of the mobile communications device of, e.g., FIG. 2A, in the user right hand, in accordance with one implementation.



FIG. 4B is a graphical illustration depicting operational placement of the mobile communications device of, e.g., FIG. 2A in the user left hand, in accordance with one implementation.



FIG. 5 is a graphical illustration depicting operational placement of the mobile communications device of, e.g., FIG. 2A in the user right hand and near the head, in accordance with one implementation.



FIG. 6 is a graphical illustration depicting operational placement of the mobile communications device of, e.g., FIG. 2A in the user left hand and near the head, in accordance with one implementation.



FIG. 7 is a logical flow diagram illustrating exemplary operation of the switched dual radiator antenna apparatus, in accordance with one or more implementations.



FIG. 8 is a logical flow diagram illustrating one embodiment of a radiator switching method for use with of the mobile communications apparatus of e.g., FIGS. 2A-2F.



FIG. 9A depicts free-space return loss (in dB) as a function of frequency for exemplary LTE 17 and LTE 12 bands, obtained using the exemplary antenna apparatus of FIG. 1.



FIG. 9B depicts free-space return loss (in dB) as a function of frequency for exemplary LTE 14, LTE 13, DCS1800, PCS1900 and WCDMA1 bands, obtained using the exemplary antenna apparatus of FIG. 1.



FIG. 9C depicts free-space return loss (in dB) as a function of frequency for an exemplary LTE 20 band, obtained using the exemplary antenna apparatus of FIG. 1.



FIG. 9D depicts free-space return loss (in dB) as a function of frequency for exemplary GSM 850 and GSM 900 bands, obtained using the exemplary antenna apparatus of FIG. 1.



FIG. 10 is a plot of total free space efficiency as a function of frequency, obtained using the exemplary antenna apparatus of FIG. 1.



FIG. 11 is a plot of total envelope correlation coefficient as a function of frequency obtained using the exemplary antenna apparatus of FIG. 1.



FIG. 12A depicts loss (in dB) as a function of frequency for the LTE 17 and LTE 12 operating bands, obtained using the mobile device configuration shown in FIG. 6; i.e., head with hand, left cheek (BHHL).



FIG. 12B depicts loss (in dB) as a function of frequency for the LTE 14, LTE 13, DCS 1800, PCS 1900 and WCDMA1 operating bands, obtained using the mobile device configuration shown in FIG. 6; i.e., head with hand, left cheek (BHHL).



FIG. 12C depicts loss (in dB) as a function of frequency for the LTE 20 operating band, obtained using the mobile device configuration shown in FIG. 6; i.e., head with hand, left cheek (BHHL).



FIG. 12D depicts loss (in dB) as a function of frequency for the GSM 850 and GSM 900 operating bands, obtained using the mobile device configuration shown in FIG. 6; i.e., head with hand, left cheek (BHHL).



FIG. 13A depicts loss (in dB) as a function of frequency for the LTE 17 and LTE 12 operating bands, obtained using the mobile device configuration shown in FIG. 5; i.e., head with hand, right cheek (BHHR).



FIG. 13B depicts loss (in dB) as a function of frequency for the LTE 14, LTE 13, DCS 1800, PCS 1900 and WCDMA1 operating bands, obtained using the mobile device configuration shown in FIG. 5; i.e., head with hand, right cheek (BHHR).



FIG. 13C depicts loss (in dB) as a function of frequency for the LTE 20 operating band, obtained using the mobile device configuration shown in FIG. 5; i.e., head with hand, right cheek (BHHR).



FIG. 13D depicts loss (in dB) as a function of frequency for the GSM 850 and GSM 900 operating bands, obtained using the mobile device configuration shown in FIG. 5; i.e., head with hand, right cheek (BHHR).



FIG. 14A antenna efficiency (in dB) as a function of frequency obtained using the mobile device configuration shown in FIG. 6; i.e., head with hand, left cheek (BHHL).



FIG. 14B antenna efficiency (in dB) as a function of frequency obtained using the mobile device configuration shown in FIG. 5; i.e., head with hand, right check (BHHR).





All Figures disclosed herein are © Copyright 2013 Pulse Finland Oy. All rights reserved.


DETAILED DESCRIPTION

Reference is now made to the drawings wherein like numerals refer to like parts throughout.


As used herein, the terms “antenna,” “antenna element”, and “antenna system,” refer without limitation to any apparatus that incorporates a single element, multiple elements, or one or more arrays of elements that receive/transmit and/or propagate one or more frequency bands of electromagnetic radiation. The radiation may be of numerous types, e.g., microwave, millimeter wave, radio frequency, digital modulated, analog, analog/digital encoded, digitally encoded millimeter wave energy, or the like. The energy may be transmitted from location to another location, using, one or more repeater links, and one or more locations may be mobile, stationary, or fixed to a location on earth such as a base station.


As used herein, the terms “board” and “substrate” refer generally and without limitation to any substantially planar or curved surface or component upon which other material and/or components can be disposed. For example, a substrate may comprise a single or multi-layered printed circuit board (e.g., FR4), a semi-conductive die or wafer, or even a surface of a housing or other device component, and may be substantially rigid or alternatively at least somewhat flexible.


As used herein, the terms “frequency range”, “frequency band”, and “frequency domain” refer without limitation to any frequency range for communicating signals. Such signals may be communicated pursuant to one or more standards or wireless air interfaces.


As used herein, the terms “portable device”, “mobile device”, “client device”, “portable wireless device”, and “host device” include, but are not limited to, personal computers (PCs) and minicomputers, whether desktop, laptop, or otherwise, set-top boxes, personal digital assistants (PDAs), handheld computers, tablets, “smart” watches, personal communicators, tablet computers, portable navigation aids, J2ME equipped devices, cellular telephones, smartphones, personal integrated communication or entertainment devices, or literally any other device capable of interchanging data with a network or another device.


As used herein, the terms “radiator,” and “radiating element” refer without limitation to an element that can function as part of a system that receives and/or transmits radio-frequency electromagnetic radiation; e.g., an antenna.


As used herein, the terms “RF feed”, “feed” and “feed conductor” refer without limitation to any energy conductor and coupling element(s) that can transfer energy, transform impedance, enhance performance characteristics, and conform impedance properties between incoming/outgoing RF energy signals to that of one or more connective elements, such as for example a radiator.


As used herein, the terms “top”, “bottom”, “side”, “up”, “down”, “left”, “right”, “back”, “front”, and the like merely connote a relative position or geometry of one component to another, and in no way connote an absolute frame of reference or any required orientation. For example, a “top” portion of a component may actually reside below a “bottom” portion when the component is mounted to another device (e.g., to the underside of a PCB).


As used herein, the term “wireless” means any wireless signal, data, communication, or other interface including without limitation Wi-Fi, Bluetooth, 3G (e.g., 3GPP, 3GPP2, and UMTS), HSDPA/HSUPA, TDMA, CDMA (e.g., IS-95A, WCDMA, etc.), FHSS, DSSS, GSM, PAN/802.15, WiMAX (802.16), 802.20, narrowband/FDMA, OFDM, PCS/DCS, Long Term Evolution (LTE) or LTE-Advanced (LTE-A), analog cellular, NFC/RFID, CDPD, satellite systems such as GPS, millimeter wave or microwave systems, optical, acoustic, and infrared (i.e., IrDA).


Overview


The present disclosure provides, inter alia, a switchable multi-radiator high-band antenna apparatus, and methods of tuning and utilizing the same. An exemplary embodiment of the antenna apparatus may be configured to operate in dual (i.e., lower and upper) frequency bands, so as to facilitate use within a handheld mobile communications device (e.g., cellular telephone or smartphone). The mobile communications device may comprise at least partly, a metal enclosure configured to house the antenna and the radio frequency (RF) electronics “engine” (e.g., transceiver). The antenna apparatus in one embodiment includes a metal cup, two feeding structures, a switching element, and a ground element. One feeding structure may be used to tune the antenna in both the lower (e.g., GSM850, E-GSM900, LTE12, LTE 17, and/or other) and the upper band frequencies (e.g., DCS1800, WCDMA1, LTE7, and/or other). The other feed structure may be used to tune the antenna in the upper band. Frequency tuning of the antenna feed structures may be effectuated via respective impedance matching circuits. The switching element is in one variant configured to direct signal routing from the RF engine to one of the two feed structures (such as e.g., 700 MHz to 2170 MHz via the main feed, and 1710-2170 MHz for the alternate or high-band (HB) feed).


During device operation, a user's hand may cover one of the antenna elements (e.g., radiators that are proximate the first feeding structure). Responsive to a determination by the device electronics of reduced performance associated with the partially covered antenna element, the RF engine may direct the switching element to alter the feed signal route to the second feed structure. The automatic switching of the antenna active radiator advantageously mitigates antenna detuning due to proximity to the user's body (e.g., hand, and/or head) thereby user improving robustness of the mobile device communications and enhancing user experience.


DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS

Detailed descriptions of the various embodiments and variants of the apparatus and methods of the disclosure are now provided. While primarily discussed in the context of mobile devices, the various apparatus and methodologies discussed herein are not so limited. In fact, many of the apparatus and methodologies described herein are useful in any number of other antenna applications, whether associated with mobile or fixed devices, cellular or otherwise.


Moreover, while primarily described in the exemplary context of a dual (two) radiator apparatus, the various principles of the disclosure can be readily extended and applied to implementations having three or more radiators. e.g., tri-band, quad-band, etc.


Exemplary Antenna Element Apparatus and Methods


Referring now to FIGS. 1 through 2, exemplary embodiments of the switched multi-radiator radio antenna apparatus of the disclosure are described in detail. One exemplary implementation of the switched antenna apparatus for use in a mobile radio device is presented in FIG. 1. As shown, the antenna apparatus 100 comprises an element 120, first 130 and second 132 feeding structures (e.g., main and high band (HB) feed structures), and first and second ground elements 122, 126 (see e.g., elements 218 and 222, respectively, in FIG. 2F herein).


The first feed structure 130 (also referred to as the main feed structure in this embodiment) may be utilized to tune the antenna 100 in both lower and upper band frequencies, and the second feed structure 132 only to high band. Impedance matching in this embodiment is made with matching circuits. Frequency tuning of the antenna feed structures 130, 132 may be effectuated via impedance matching circuits 114, 116, respectively. One exemplary embodiment of the matching circuits 114, 116 is shown and described with respect to FIG. 3, below. Individual ones of the feed structures 130, 132 are configured to cause an electromagnetic resonance in at least one band, e.g., W-CDMA 1. For example, the resonance from the exemplary feed structures 130 and 132 can be seen in high band frequencies in the vicinity of 2000 MHz (PCS1900 and WCDMA1), with the same band for both feeds. In one variant, the main antenna feeding uses all the possible frequencies from 700 MHz to 2170 MHz, while the HB antenna feed is used as an alternative signal path for frequencies from 1710-2170 MHz (such as when the main antenna is covered by the user's hand in the upper frequencies).


The lower and/or the upper frequency bands may comprise one or more individual bands configured to support one or more communications standards (e.g., Global System for Mobile Communications (GSM), Long Term Evolution (LTE), Wideband Code Division Multiple Access (W-CDMA), Code Division Multiple Access (CDMA), and/or other standards. In some implementations, the lower frequency band includes one or more of the following: LTE 12 (698-746 MHz), LTE 17 (704 MHz to 746 MHz), LTE 13 (746 MHz to 787 MHz), LTE 14 (758 MHz to 798 MHz), LTE 20 (791 to 862 MHz), GSM850 (824 MHz to 894 MHz), E-GSM-900 (880 MHz to 960), and/or other bands, and the upper frequency band includes one or more of the following: DCS1800 (1710 MHz to 1880 MHz), PCS1900 (1850 MHz to 1990 MHz), WCDMA1 (1920 MHz to 2170 MHz), LTE 7 (2500 MHz to 2690 MHz) and/or other bands. Various other combinations or permutations of the foregoing (and in fact others) will be recognized by those of ordinary skill given the present disclosure.


The element 120 may comprise a metal structure and/or plastic structure with one or more metallic (conductive) layers. In some implementations, e.g., such as those illustrated and described with respect to FIGS. 2A-2B, the element 120 includes a metallic “cup” forming a portion of the mobile device enclosure and configured to cover one lateral (e.g., the bottom) end of the mobile device. The element 120 can be capacitively coupled to the feed structures 130, 132. The electromagnetic coupling 134, 138 of the element 120 is in the illustrated embodiment configured to cause at least two resonances, thereby effectuating radio communications in the respective frequency bands, e.g., LTE12/LTE17 lower bands, LTE 13/LTE14 upper bands, GSM 850/GSM 900 lower bands and/or other bands.


The element 120 may be isolated from the device metal enclosure and/or chassis (e.g., 210 in FIG. 2A) by a slot (e.g., 204 in FIG. 2A) or other approach. The slot 204 is in the illustrated embodiment configured to cause at least one upper band resonance, thereby effectuating radio communications in the respective frequency band, e.g., DCS1800/PCS1900, and/or other bands.


The exemplary mobile device further includes a ground plane, e.g., disposed on a printed circuit board of the device. The cup element 120 is coupled to the ground plane via first 118 and second ground 122 structures. The ground structure 122 may comprise a solid or fixed ground characterized by a single connection state (e.g., always connected to ground via the same circuit). In some implementations, e.g., as shown in FIG. 2F, the solid ground structure 122 comprises a metal strip 218. The position of the solid ground 218 may be used to select the antenna resonant frequency, and the width of the solid ground used to select the bandwidth of the antenna. In the illustrated embodiment, a switched ground 202 (see FIGS. 2A-2E) is provided, and the structure 222 is tuned for WCDMA1-Rx (but can also be used to cover other frequencies, such as e.g., LTE7 frequencies).


The exemplary ground structure 118 includes a switched ground characterized by two or more connection states. In some implementations, e.g., such as shown in FIG. 1, the switched ground structure 118 may comprise a switching circuit 128 configured to couple the element 120 to ground via one of four circuits 142, 144, 146, 148. The individual circuits 142, 144, 146, 148 are in one variant characterized by respective impedances configured to tune the element 120 to a given operating frequency band (e.g., LTE 12, LTE 17, LTE 13, LTE14, GSM850, GSM900, LTE 20, and/or other). The switching element 128 may comprise for instance a single pole four throw switch (SP4T) controlled by the RF engine of the antenna apparatus (e.g., the RF chipset 102). The SP4T switch 128 may be used to present different impedance values from antenna to ground. It will be appreciated by those skilled in the art given the present disclosure that the foregoing switching configuration (e.g., the switch type, number of input and/or output contacts, and/or frequency band composition) is exemplary, and various other switched ground implementations may be utilized consistent with the antenna application specifications.


The ground element 126 is in the exemplary embodiment configured to capacitively (electromagnetically) couple to the main feed structure 130 (shown by the arrow 136 in FIG. 1), and/or the high band (HB) feed structure 132. The ground element 126 may be tuned to comprise a parasitic element (e.g., passive radiator) at one or more upper band frequencies. In the antenna embodiment described with respect to FIGS. 1, 2A-2F, the parasitic resonance is tuned to WCDMA1-Rx frequencies.


The antenna apparatus 100 further comprises a switch 110 which in some implementations, is embodied as a two pole dual throw (DPDT) switch configured to be controlled by the RF engine 102 via a control line 104. The RF engine may direct the switching element 110 to alter the feed signal path from the path 112 to the signal path 108 as described in greater detail below.



FIGS. 2A through 2F depict an exemplary mobile communications device comprising the switched dual radiator antenna apparatus (e.g., the apparatus 100 described with respect to FIG. 1, supra).


The exemplary mobile communications device 200 of FIG. 2A includes a metal or partly metallic enclosure and/or chassis 210. The antenna apparatus includes a metallic element 220 (e.g., 120 in FIG. 1A). The apparatus element 220 is isolated from the enclosure 210 by e.g., a slot 204 or other mechanism. One resonance (in the upper frequency band frequencies) may be excited from the slot 204. In the implementation illustrated in FIGS. 2A-2B, 2D, the slot width has been selected at 1 mm, thereby causing an upper band resonance at frequency bands associated with the exemplary DCS1800/PCS1900 standards. It will be appreciated by those skilled in the art that the foregoing slot configuration may be adjusted in accordance with the antenna specification (e.g., the slot width may be selected between e.g., 0.1 mm and 5 mm) in order to tune the antenna as desired or required by a given application.


The location denoted by arrow 202 in FIGS. 2A-2D denotes the switched ground location of the antenna apparatus (e.g., 118 in FIG. 1).



FIGS. 2B-2C illustrate dimensions and configuration of the exemplary metal cup radiator element 220. The width 208 and height 214 of the element 220 are in this implementation configured at 69.8 mm and 5 mm, respectively, e.g., commensurate with the device 200 enclosure 210 dimensions, although it will be appreciated that these values (and this radiator/enclosure relationship) are not a requirement. The element 220 depth 206 in the illustrated implementation is configured at 11 mm, although other values may be used as well. The cup element 220 includes in this implementation an opening configured to accept a power and/or communications connector 212 (e.g., a micro USB connector).



FIG. 2E illustrates an exemplary feed configuration of a switched dual radiator antenna disposed in the portable communications device. The cup element 220 is not shown in the isometric view depicted in FIG. 2E for clarity. The illustrated structures 230, 232 correspond to the main and the high-band (HB) antenna feed structures (e.g., the structures 130, 132 described with respect to FIG. 1 above). The structures 230, 232 comprise metal strips of about 1.4 mm in width and 10.6 mm in length, although other values may be readily substituted. The feed structures 230, 232 may be spaced from one another by about 32 mm in the exemplary embodiment. It is noted that the antenna feeding point is typically placed at a location corresponding to about one-third (⅓) of the device total width. In the illustrated implementation, the middle point of the feed structure is 16.9 mm from the device edge, which is about one-fourth (¼) of the device width, although other placements and positions are readily employed consistent with the present disclosure, the foregoing being merely exemplary.



FIG. 2F illustrates an exemplary ground configuration of a switched dual radiator antenna disposed in the portable communications device. The cup element 220 is not shown in the isometric view depicted in FIG. 2F for clarity. The elements 218, 222 are used for various functions. Specifically, in the exemplary embodiment, the position of the element 218 may be used to select the antenna resonant frequency, while the width of the element 218 may be used to select the bandwidth of the antenna (in the low band). Additionally, the solid ground 222 behaves as a parasitic resonator tuned to e.g., WCDMA1-Rx frequencies.



FIG. 3 illustrates an exemplary implementation of a tuning circuit for the switched multi-radiator antenna apparatus (e.g., the dual radiator apparatus of FIG. 1). The illustrated circuit 300 includes tuning circuits 310, 320 configured to tune the main and the HB antenna feed structures (e.g., 130, 132 in FIG. 1), respectively. The circuit 310 also includes a reactive circuit configured to adjust the impedance of a signal path between the RF engine (e.g., the block 102 in FIG. 1) main antenna feed port 312 and the antenna main antenna feed port 314. The circuit 320 in this implementation includes a reactive circuit configured to adjust impedance of a signal path between the RF engine HB antenna feed port 322 and the antenna HB antenna feed port 324.


The exemplary circuit 300 comprises a switched ground block 340 configured to selectively couple the element 120 in FIG. 1 to the ground plane. The block 340 in one embodiment includes a single pole four throw switch 330 controlled by the RF engine of the antenna apparatus (e.g., the RF chipset 102) via control line 356. The switch 330 is characterized by four states 332, 334, 336, 338 that may be used to present different impedance values from the antenna port 350 to ground. The block 340 may also comprise two or more reactive circuits 342, 344, 346, 348 configured to adjust impedance of a signal path between the antenna port 350 and ground.



FIG. 4A illustrates an exemplary operational placement of a mobile communications device (e.g., the device 200 of FIG. 2A), in the user's right hand. When the device 400 is placed in the user's right hand (e.g., in order to press an answer button during a call, access a touch and/or perform other actions), the antenna radiator portion 402 proximate to the HB feed structure 432 (e.g., the structure 132 in FIG. 1 and/or the structure 232 in FIG. 2E) may become, at least partly, blocked by the hand 404. This HB feed structure blocking may cause detuning of the antenna in one or more upper frequency bands. The antenna detuning may cause, inter alia, an increase signal return loss and/or a reduction in total antenna efficiency when communicating using the one or more upper frequency band. The device processing electronics is configured in the exemplary implementation to detect the reduced antenna performance, and switch over the communication signal path from the HB feed structure 432 to the main antenna feed structure 430. This signal path adjustment corresponds to the RF engine 102 directing the switching element 110 over the control line 104 to switch feed signal from the signal path 112 to the signal path 108, shown in FIG. 1.



FIG. 4B illustrates an exemplary operational placement of a mobile communications device (e.g., the device 200 of FIG. 2A), in the user's left hand. When the device 400 is placed in the user's left hand (e.g., in order to press an answer button during a call, access a touch and/or perform other actions), the antenna radiator portion 422 proximate to the main feed structure 430 (e.g., the structure 130 in FIG. 1 and/or the structure 230 in FIG. 2E) may become, at least partly, blocked by the user hand 424 (in contrast to the right-handed grasp of FIG. 4A, wherein the HB structure is partly blocked). The main feed structure blocking may cause, inter alia, detuning of the antenna in one or more upper frequency bands. The antenna detuning may cause an increase signal return loss and/or a reduction in total antenna efficiency when communicating using the one or more upper frequency bands. The device processing electronics are in one implementation configured to detect the reduced antenna performance, and switch over the communication signal path from the main feed structure 430 to the HB antenna feed structure 432. This signal path adjustment corresponds to the RF engine 102 directing the switching element 110 over the control line 104 to switch feed signal from the signal path 108 to the signal path 112, shown in FIG. 1.



FIGS. 5-6 illustrate exemplary scenarios of operational placement of a mobile communications device (e.g., the device 400 of FIGS. 4A-4B), near the user's head, and in the user right or left hand, respectively. As shown in FIG. 5, when the device 400 is placed in the user's right hand and near the user's head, the HB antenna radiator portion may become at least partly blocked. The device 400 processing electronics is configured to mitigate the partial antenna blocking by switching over the feed signal from the HB feed 432 to the main feed 430.


When the device 400 is placed in the user's left hand and near the user's head, the main antenna radiator portion may become at least partly blocked. The device 400 processing electronics mitigates the partial antenna blocking by switching over the feed signal from the main feed 430 to the HB feed 432.


The operational configurations of the device 400 illustrated in FIGS. 4A-6 have been used by the Assignee hereof during simulation and testing of an exemplary antenna apparatus constructed according to one embodiment of the disclosure, as described in detail below with respect to FIGS. 9A-13.



FIGS. 7-8 illustrate methods of operating an exemplary embodiment of the switched antenna apparatus of the disclosure, in accordance with one or more implementations. The operations of methods 700, 800 presented below are intended to be illustrative. In some implementations, methods 700, 800, may be accomplished with one or more additional operations not described, and/or without one or more of the operations discussed. Additionally, the order in which the operations of methods 700, 800 are illustrated in FIGS. 7-8 described below is not intended to be limiting.


In some implementations, methods 700, 800 may be implemented in one or more processing devices (e.g., a digital processor, an analog processor, a digital circuit designed to process information, an analog circuit designed to process information, a state machine, and/or other mechanisms for electronically processing information and/or execute computer program modules). The one or more processing devices may include one or more devices executing some or all of the operations of methods 700, 800 in response to instructions stored electronically on an electronic storage medium. The one or more processing devices may include one or more devices configured through hardware, firmware, and/or software to be specifically designed for execution of one or more of the operations of methods 700, 800.



FIG. 7 illustrates operation of the exemplary switched dual radiator antenna apparatus. The steps of the method 700 may be performed for example by a mobile communications device, such as that described above with respect to FIGS. 2A-2F, or by another entity, or by combinations thereof.


At step 702 of method 700 a first antenna element may be operated in one or more upper frequency bands. In some implementations, the first antenna element operation comprises energizing one of the feed structures 130 or 132 via the respective pathway 108 or 112. The one or more upper frequency bands may include for example one or more of the following: DCS1800, PCS1900, WCDMA1, LTE 7, and/or other bands.


At step 704, a reduction in performance associated with the first antenna operation is determined. In certain cases, the antenna performance reduction may be due to antenna radiator detuning caused by a user placing the device in their right/left hand and/or proximate their head, e.g., as described above with respect to FIGS. 4A-6.


At step 706, a second antenna element is operated in the one or more upper frequency bands. In certain implementations, the second antenna element operation comprises energizing the other one of the two feed structures 132 or 130 via the respective pathway 112 or 108.


It will also be appreciated that in certain implementations, the two feeds may be operated simultaneously, such as e.g., in the case of a MIMO or other implementation with multiple transmission/receiving elements.



FIG. 8 illustrates an exemplary embodiment of a radiator switching method for use with of the mobile communications apparatus of e.g., FIG. 2, in accordance with the present disclosure.


At step 802 of the method 800, a performance measure associated with the operation of a first antenna may be determined. In one or more implementations, the performance measure may comprise antenna efficiency (e.g., of Eqn. 1) and/or a return loss.


At step 804, a determination may be made as to whether the antenna performance breached a threshold or acceptability criterion. In one or more implementations, the threshold may comprise minimum target efficiency, selected, for example at 15% (about −8 dB). This exemplary value is selected based on the simulated BHH performances, although it will be appreciated that other values and/or selection criteria may be utilized.


The performance of step 802 may be determined instantaneously, or over a time interval such as one selected from the range between a first value and a second value (e.g., temporal averaging performed to identify sustained low performance), in some embodiments, or in other cases, over multiple different time intervals (and e.g., averaged).


Responsive to a determination that the performance has breached the threshold/criterion, the method proceeds to step 806, wherein the first antenna element may be decoupled from the RF engine (e.g., element 102 in FIG. 1).


At step 808, a second antenna element is coupled to the feed engine. In some embodiments, the de-coupling/coupling operations of steps 806/808 may be effectuated by the RF engine 102 directing the switching element 110 to alter the feed signal path from one of the paths (e.g., 108 or 112) to the other path (e.g., 112 or 108). This may occur substantially simultaneously if desired, or in a “break before make” type sequence so as to decouple the first element before the second element is coupled.


Performance



FIGS. 9A through 14B present performance results obtained during simulation and testing by the Assignee hereof of an exemplary antenna apparatus configured according to one or more embodiments described above with respect to FIGS. 1 and 2A-2F.


The data presented in FIGS. 9A-9D depict free-space return loss (in dB) as a function of frequency for the main S11 (solid unmarked curves) and HB S22 (solid curves marked with ‘x’) antenna radiators (e.g., comprising the feed structures 130, 132 in FIG. 1 or 430, 432 in FIG. 4A). The data in FIG. 9A correspond to antenna radiators operating in exemplary LTE 17 and LTE 12 bands. Data in FIG. 9B correspond to antenna radiators operating in exemplary LTE 14, LTE 13, DCS1800, PCS1900, and WCDMA1 bands. The data in FIG. 9C correspond to antenna radiators operating in an exemplary LTE 20 band. The data in FIG. 9D correspond to antenna radiators operating in exemplary GSM 850 and GSM900 bands. The curves marked with designators 900, 910, 920, 930 in FIGS. 9A-9D denote the performance of the main antenna radiator (e.g., 130 in FIG. 1), while the curves marked with designators 902, 912, 922, 932 in FIGS. 9A-9D denote the performance of the HB antenna radiator (e.g., 132 in FIG. 1).



FIG. 10 presents data regarding free-space efficiency obtained for the same antenna apparatus as described above with respect to FIGS. 9A-9D (e.g., the antenna 100 of FIG. 1). Efficiency of an antenna (in dB) is may be defined decimal logarithm of a ratio of radiated to input power:









AntennaEfficiency
=

10







log
10



(


Radiated





Power


Input





Power


)







(

Eqn
.




1

)







An efficiency of zero (0) dB corresponds to an ideal theoretical radiator, wherein all of the input power is radiated in the form of electromagnetic energy.


The curve marked with designator 1000 in FIG. 10 corresponds to operating the main antenna feed (e.g., 130 in FIG. 1) in the upper frequency bands (e.g., DCS1800, PCS1900, WCDMA-1 bands). The curve marked with designator 1002 and a solid square marker in FIG. 10 corresponds to operating the main antenna feed in the lower frequency (e.g., LTE 14, LTE 13) bands. The curve marked with designator 1004 and marker X in FIG. 10 corresponds to operating the HB antenna feed (e.g., 132 in FIG. 1) in the upper frequency (e.g., DCS1800, PCS1900, WCDMA-1) bands, while the curves marked with designators 1006 and marker +, designator 1008 and marker O, and designator 1010 and solid triangle marker correspond to operating the main antenna feed in the (i) LTE 20, (ii) GSM 850/GSM900 and (iii) LTE17/LTE12 lower frequency bands, respectively.



FIG. 11 presents data regarding free-space envelope correlation coefficient efficiency for the same antenna apparatus as described above with respect to FIGS. 9A-9D (e.g., the antenna 100 of FIG. 1). The data presented in FIG. 11 were obtained in upper frequency band between 1710 MHz and 2170 MHz.


The data presented in FIGS. 9A-10 may be used as a reference when evaluating performance of the exemplary antenna operable in-hand and/or near the user's head, as described below with respect to FIGS. 12A-14B.



FIGS. 12A-12D depict return loss (in dB) as a function of frequency obtained according to a CTIA v3.1 “beside head with hand, left cheek (BHHL)” measurement configuration. The data in FIG. 12A correspond to antenna radiators operating in LTE 17 and LTE 12 bands. The data in FIG. 12B correspond to antenna radiators operating in LTE 14, LTE 13, DCS1800, PCS1900, and WCDMA1 bands. The data in FIG. 12C correspond to antenna radiators operating in LTE 20 band. The data in FIG. 12D correspond to antenna radiators operating in GSM 850 and GSM900 bands. The curves marked with designators 1200, 1210, 1220, 1230 in FIGS. 12A-12D denote the performance of the main antenna radiator (e.g., 430 in FIG. 6), while the curves marked with designators 1202, 1212, 1222, 1232 in FIGS. 12A-12D denote the performance of the HB antenna radiator (e.g., 432 in FIG. 6).



FIGS. 13A-13D depict return loss (in dB) as a function of frequency obtained according to CTIA v3.1 “beside head with hand, left cheek (BHHL)” measurement configuration. The data in FIG. 13A correspond to antenna radiators operating in LTE 17 and LTE 12 bands. The data in FIG. 13B correspond to antenna radiators operating in LTE 14, LTE 13, DCS1800, PCS1900, and WCDMA1 bands. The data in FIG. 13C correspond to antenna radiators operating in LTE 20 band. The data in FIG. 13D correspond to antenna radiators operating in GSM 850 and GSM900 bands. The curves marked with designators 1300, 1310, 1320, 1330 in FIGS. 13A-13D denote the performance of the main antenna radiator (e.g., 430 in FIG. 5), while the curves marked with designators 1302, 1313, 1322, 1332 in FIGS. 13A-13D denote the performance of the HB antenna radiator (e.g., 432 in FIG. 5).



FIG. 14A presents a comparison of data regarding antenna efficiency obtained in free space versus data obtained according to CTIA v3.1BHHL measurement configuration using the dual radiator antenna of, e.g., FIG. 1 (i.e., comprising main and HB radiators).


The curves marked with designators 1400 through 1410 in FIG. 14A depict antenna efficiency in free space. The curves marked with designators 1420 through 1430 in FIG. 14A depict antenna efficiency for BHHL. The curves marked with designators 1400 and 1420 present data obtained when operating the main antenna feed (e.g., 130 in FIG. 1) in upper frequency bands (e.g., DCS1800, PCS1900, WCDMA-1 bands). The curves marked with designator 1402 and a solid square marker and 1422 and an open square marker corresponds to operating the main antenna feed in lower frequency (e.g., LTE 14, LTE 13) bands. The curves marked with designator 1404 and marker X and designator 1414 and marker ‘−X’ correspond to operating the HB antenna feed (e.g., 132 in FIG. 1) in upper frequency (e.g., DCS1800, PCS1900, WCDMA-1) bands. The curves marked with designator 1406 and marker + and designator 1406 and marker ‘−+’ correspond to operating the main antenna feed in LTE 20 band. The curves marked with designator 1408 and solid circle marker and designator 1428 and open circle marker correspond to operating the main antenna feed in GSM 850/GSM900 bands. The curves marked with designator 1410 and solid triangle marker and designator 1430 and open triangle marker correspond to operating the main antenna feed in LTE 17/LTE 12 bands.



FIG. 14B presents a comparison of data regarding antenna efficiency obtained in free space versus data obtained according to CTIA v3.BHHR measurement configuration using the dual radiator antenna of, e.g., FIG. 1 (i.e., comprising main and HB radiators). The curves marked with designators 1440 and 1460 present data obtained when operating the main antenna feed (e.g., 130 in FIG. 1) in upper frequency bands (e.g., DCS1800, PCS1900, WCDMA-1 bands). The curves marked with designator 1442 and a solid square marker and 1462 and an open square marker corresponds to operating the main antenna feed in lower frequency (e.g., LTE 14, LTE 13) bands. The curves marked with designator 1444 and marker X and designator 1454 and marker ‘−X’ correspond to operating the HB antenna feed (e.g., 132 in FIG. 1) in upper frequency (e.g., DCS1800, PCS1900, WCDMA-1) bands. The curves marked with designator 1446 and marker + and designator 1466 and marker ‘−+’ correspond to operating the main antenna feed in LTE 20 band. The curves marked with designator 1448 and solid circle marker and designator 1468 and open circle marker correspond to operating the main antenna feed in GSM 850/GSM900 bands. The curves marked with designator 1450 and solid triangle marker and designator 1470 and open triangle marker correspond to operating the main antenna feed in LTE 17/LTE 12 bands.


As may be seen from the data presented in FIGS. 12A-14B, the lower band and upper band of the dedicated HB antenna (e.g., 432 in FIG. 5) become de-tuned when the antenna apparatus is placed in the user's right hand besides head, while the main antenna radiator (e.g., 430 in FIG. 5) HB radiator remains in-band. The HB antenna radiator BHHR performance reduction in the lower band is between about 6 dB and about 9 dB, while in the upper frequency band, the reduction is between about 3 dB and 6 dB.


When the antenna apparatus is placed in the left hand besides left cheek (BHHL), the lower band and upper band of the main antenna radiator (e.g., 430 in FIG. 6) become de-tuned, while the HB radiator remains in band. The main antenna BHHL performance reduction in the lower band is between about 6 dB and about 9 dB, while in the upper frequency band, the reduction is between about 3.5 dB and 5 dB.


The present disclosure provides for an antenna apparatus comprising multiple (e.g., dual) upper band radiators. The two radiators may be configured to operate within one or more upper frequency bands (e.g., DCS1800, PCS1900, WCDMA1, LTE 7, and/or other) while being disposed within the same metal enclosure of a handheld communications device. The upper band radiator switching methodology described herein enables inter alia, automatic switchover of a detuned antenna radiator to another radiator in order to maintain antenna performance when the device in placed in a user's hand and/or near a user's head. Placement of the two radiators within the same enclosure provides for a smaller and/or a lower cost device. Furthermore, the antenna switchover capability described herein improves antenna operational robustness, and enables the communications device to maintain uninterrupted communications while in-hand and/or beside the user's head.


It will be recognized that while certain aspects of the disclosure are described in terms of a specific sequence of steps of a method, these descriptions are only illustrative of the broader methods, and may be modified as required by the particular application. Certain steps may be rendered unnecessary or optional under certain circumstances. Additionally, certain steps or functionality may be added to the disclosed embodiments, or the order of performance of two or more steps permuted. All such variations are considered to be encompassed within the disclosure and claims provided herein.


While the above detailed description has shown, described, and pointed out novel features as applied to various embodiments, it will be understood that various omissions, substitutions, and changes in the form and details of the device or process illustrated may be made by those skilled in the art. The foregoing description is of the best mode presently contemplated. This description is in no way meant to be limiting, but rather should be taken as illustrative of the general principles of the disclosure.

Claims
  • 1. A mobile radio frequency communication device, comprising: an enclosure and an electronics assembly contained substantially therein, said electronics assembly comprising a ground plane and a first and a second feed port; anda multiband antenna apparatus, comprising: a metal cup structure disposed proximate one end of the enclosure and configured to be electrically connected to the ground plane via a first and a second ground element;a first and a second feed structure;a ground structure configured to be electrically connected to the ground plane; anda selector apparatus configured to selectively electrically connect one of (i) the first feed structure to the first feed port or (ii) the second feed structure to the second feed port;wherein: the first feed structure is configured to effectuate radio frequency communications within at least one high frequency band and at least one low frequency band;the second feed structure is configured to effectuate the radio frequency communications within the at least one high frequency band;the enclosure comprises a chassis and the cup, the cup being electrically separated from the chassis by a non-conductive slot thereby forming an operational antenna portion, the operational portion configured to form a first electromagnetic resonance in at least a second high frequency band;the second ground element is configured to be connected to the ground plane via a switching circuit comprising two or more alternate electrical signal paths; andthe metal cup structure is configured to form a second electromagnetic resonance in at least a fourth and a third frequency bands.
  • 2. The mobile radio frequency communication device of claim 1, further comprising a radiator structure disposed to substantially envelop one lateral end of the multiband antenna apparatus, and configured to be electrically connected to the ground plane.
  • 3. The mobile radio frequency communication device of claim 2, wherein the two or more alternate electrical signal paths each comprise a reactive circuit characterized by a respective impedance value configured to enable selective tuning of an operational band of the radiator structure.
  • 4. The mobile radio frequency communication device of claim 3, wherein: the at least one low frequency band comprises two or more low frequency bands; andthe operational band is selected from the two or more low frequency bands.
  • 5. The mobile radio frequency communication device of claim 1, wherein: the first ground element comprises a static ground element characterized by a single connection state;the first feed structure comprises a first matching circuit configured to be coupled to the first feed port, and to tune an antenna operation to the at least one high frequency band; andthe second feed structure comprises a second matching circuit configured to be coupled to the second feed port, and to tune the antenna operation to the at least one high frequency band.
  • 6. The mobile radio frequency communication device of claim 5, wherein: individual ones of the first and the second matching circuits comprise a reactive circuit; andthe selective electrical connection of the first or the second feed structure to the first or second feed port, respectively, is effectuated by the switching circuit based at least on a determination of a performance measure associated with operation of the antenna in at least the at least one high frequency band.
  • 7. The mobile radio frequency communication device of claim 1, wherein: the at least one high frequency band comprises a first and the second high frequency band;the ground structure is configured to effectuate radio frequency communications within the second high frequency band;individual ones of the first feed structure and the second feed structure are configured to effectuate the radio frequency communications within the first high frequency band; andthe radio frequency communications via the first feed structure and the second feed structure are configured to occur in alternate time intervals with one another.
  • 8. The mobile radio frequency communication device of claim 1, wherein the low frequency band comprises a GSM band, and the first and the second high frequency bands are selected from a group consisting of DCS1800 (1710 MHz to 1880 MHz), PCS1900 (1850 MHz to 1990 MHz), WCDMA1 (1920 MHz to 2170 MHz), and LTE 7 (2500 MHz to 2690 MHz) bands.
  • 9. The mobile radio frequency communication device of claim 2, wherein the enclosure comprises a metallic enclosure.
  • 10. The mobile radio frequency communication device of claim 9, wherein: the mobile radio frequency communication device comprises top and bottom plane sides;the enclosure comprises a first electrically conductive surface; andthe radiator structure comprises the cup structure, the cup structure having a second electrically conductive surface; andwherein the non-conductive slot is configured to electrically isolate the first electrically conductive surface from the second electrically conductive surface along at least one of the top and the bottom plane sides.
  • 11. The mobile radio frequency communication device of claim 10, wherein: the radiator structure is characterized by width, depth and length dimensions; andthe non-conductive slot is characterized by a width dimension smaller than individual ones of the width, depth and length dimensions.
  • 12. The mobile radio frequency communication device of claim 11, wherein the first and the second feed structures are spaced from one another laterally by a distance that is greater than at least one of: (i) five times a width of individual feed elements; or (ii) twice the depth of the radiator structure.
  • 13. The mobile radio frequency communication device of claim 1, wherein: the at least one high frequency band comprises the third and the fourth upper frequency bands;the radiator structure is configured to form the second electromagnetic resonance in at least the third and the fourth upper frequency bands; andindividual ones of the first, the second, the third and the fourth upper frequency bands are characterized by a center frequency and a bandwidth, the individual center frequencies being separated by at least one-half (½) of the respective bandwidth.
  • 14. The mobile radio frequency communication device of claim 1, wherein individual ones of the first and the second feed structures are configured to electromagnetically couple to the radiator structure, the electromagnetic coupling being characterized by an absence of a galvanic path from the radiator structure to any of the first or the second feed structure.
  • 15. The mobile radio frequency communication device of claim 1, wherein individual ones of the first and the second feed structures are configured to electromagnetically couple to the ground structure, the electromagnetic coupling being characterized by an absence of a galvanic path from the ground structure to any of the first or the second feed structure.
  • 16. The mobile radio frequency communication device of claim 1, wherein the low frequency band comprises two or more bands selected from the group consisting of LTE 12 (698 MHz to 746 MHz), LTE 17 (704 MHz to 746 MHz), LTE 13 (746 MHz to 787 MHz), LTE 14 (758 MHz to 798 MHz), LTE 20 (791 MHz to 862 MHz), GSM850 (824 MHz to 894 MHz), and E-GSM-900 (880 MHz to 960 MHz) bands; and the high frequency band comprises two or more bands selected from the group consisting of DCS1800 (1710 MHz to 1880 MHz), PCS1900 (1850 MHz to 1990 MHz), WCDMA1 (1920 MHz to 2170 MHz), and LTE7 (2500 MHz to 2690 MHz) bands.
  • 17. A multiband antenna apparatus for use in a radio communications device, the antenna apparatus comprising: a radiator structure disposed so as to substantially envelop one lateral end of the device, and configured to be electrically connected to a ground plane of the device;a first and a second feed structure configured to be selectively connected to a radio frequency feed port;a ground structure, configured to be electrically connected to the ground plane; anda metal cup structure disposed proximate one end of the radio communications device and configured to be electrically connected to the ground plane via a first ground element and a second ground element;wherein: the first feed structure is configured to effectuate radio frequency communications within at least one upper frequency band and at least one lower frequency band; andthe second feed structure is configured to effectuate radio frequency communications within the at least one upper frequency band; andthe metal cup structure is configured to form an electromagnetic resonance in at least a third frequency band and a fourth frequency band.
  • 18. The multiband antenna apparatus of claim 17, further comprising a selector apparatus configured to selectively electrically connect one of (i) the first feed structure, or (ii) the second feed structure, to the radio frequency feed port.
  • 19. The multiband antenna apparatus of claim 17, wherein: the ground plane is connected via first and second ground elements, the second ground element being configured to be connected to the ground plane via a switching circuit comprising two or more alternate electrical signal paths each comprising a reactive circuit characterized by a respective impedance value configured to enable selective tuning of an operational band of the radiator structure;the at least one lower frequency band comprises two or more lower frequency bands; andthe operational band is selected from the two or more lower frequency bands.
  • 20. The multiband antenna apparatus of claim 17, wherein: the at least one upper frequency band comprises a first and a second upper frequency band;the ground structure is configured to effectuate radio frequency communications within the second upper frequency band;individual ones of the first feed structure and the second feed structure are configured to effectuate radio frequency communications within the first upper frequency band; andthe radio frequency communications via the first feed structure and the second feed structure are configured to occur in alternate time intervals with one another.
  • 21. The multiband antenna apparatus of claim 17, wherein the metal cup structure is configured to cover one end of the radio communications device, and comprises an opening configured to accept an external connector.
US Referenced Citations (458)
Number Name Date Kind
2745102 Norgorden May 1956 A
3938161 Sanford Feb 1976 A
4004228 Mullett Jan 1977 A
4028652 Wakino et al. Jun 1977 A
4031468 Ziebell et al. Jun 1977 A
4054874 Oltman Oct 1977 A
4069483 Kaloi Jan 1978 A
4123756 Nagata et al. Oct 1978 A
4123758 Shibano et al. Oct 1978 A
4131893 Munson et al. Dec 1978 A
4201960 Skutta et al. May 1980 A
4255729 Fukasawa et al. Mar 1981 A
4313121 Campbell et al. Jan 1982 A
4356492 Kaloi Oct 1982 A
4370657 Kaloi Jan 1983 A
4423396 Makimoto et al. Dec 1983 A
4431977 Sokola et al. Feb 1984 A
4546357 Laughon et al. Oct 1985 A
4559508 Nishikawa et al. Dec 1985 A
4625212 Oda et al. Nov 1986 A
4652889 Bizouard et al. Mar 1987 A
4661992 Garay et al. Apr 1987 A
4692726 Green et al. Sep 1987 A
4703291 Nishikawa et al. Oct 1987 A
4706050 Andrews Nov 1987 A
4716391 Moutrie et al. Dec 1987 A
4740765 Ishikawa et al. Apr 1988 A
4742562 Kommrusch May 1988 A
4761624 Igarashi et al. Aug 1988 A
4800348 Rosar et al. Jan 1989 A
4800392 Garay et al. Jan 1989 A
4821006 Ishikawa et al. Apr 1989 A
4823098 DeMuro et al. Apr 1989 A
4827266 Sato et al. May 1989 A
4829274 Green et al. May 1989 A
4835538 McKenna et al. May 1989 A
4835541 Johnson et al. May 1989 A
4862181 PonceDeLeon et al. Aug 1989 A
4879533 De Muro et al. Nov 1989 A
4896124 Schwent Jan 1990 A
4907006 Nishikawa et al. Mar 1990 A
4954796 Green et al. Sep 1990 A
4965537 Kommrusch Oct 1990 A
4977383 Niiranen Dec 1990 A
4980694 Hines Dec 1990 A
5016020 Simpson May 1991 A
5017932 Ushiyama et al. May 1991 A
5043738 Shapiro et al. Aug 1991 A
5047739 Kuokkanene Sep 1991 A
5053786 Silverman et al. Oct 1991 A
5057847 Vaeisaenen Oct 1991 A
5061939 Nakase Oct 1991 A
5097236 Wakino et al. Mar 1992 A
5103197 Turunen Apr 1992 A
5109536 Kommrusch Apr 1992 A
5155493 Thursby et al. Oct 1992 A
5157363 Puurunen Oct 1992 A
5159303 Flink Oct 1992 A
5166697 Viladevall et al. Nov 1992 A
5170173 Krenz et al. Dec 1992 A
5203021 Repplinger et al. Apr 1993 A
5210510 Karsikas May 1993 A
5210542 Pett et al. May 1993 A
5220335 Huang Jun 1993 A
5229777 Doyle Jul 1993 A
5239279 Turunen Aug 1993 A
5278528 Turunen Jan 1994 A
5281326 Galla Jan 1994 A
5298873 Ala-Kojola Mar 1994 A
5302924 Jantunen Apr 1994 A
5304968 Ohtonen Apr 1994 A
5307036 Turunen Apr 1994 A
5319328 Turunen Jun 1994 A
5349315 Ala-Kojola Sep 1994 A
5349700 Parker Sep 1994 A
5351023 Niiranen Sep 1994 A
5354463 Turunen Oct 1994 A
5355142 Marshall et al. Oct 1994 A
5357262 Blaese Oct 1994 A
5363114 Shoemaker Nov 1994 A
5369782 Kawano et al. Nov 1994 A
5382959 Pett et al. Jan 1995 A
5386214 Sugawara Jan 1995 A
5387886 Takalo Feb 1995 A
5394162 Korovesis et al. Feb 1995 A
RE34898 Turunen Apr 1995 E
5408206 Turunen Apr 1995 A
5418508 Puurunen May 1995 A
5432489 Yrjola Jul 1995 A
5438697 Fowler et al. Aug 1995 A
5440315 Wright et al. Aug 1995 A
5442366 Sanford Aug 1995 A
5444453 Lalezari Aug 1995 A
5467065 Turunen Nov 1995 A
5473295 Turunen Dec 1995 A
5506554 Ala-Kojola Apr 1996 A
5508668 Prokkola Apr 1996 A
5510802 Tsuru Apr 1996 A
5517683 Collett et al. May 1996 A
5521561 Yrjola May 1996 A
5526003 Ogawa et al. Jun 1996 A
5532703 Stephens et al. Jul 1996 A
5541560 Turunen Jul 1996 A
5541617 Connolly et al. Jul 1996 A
5543764 Turunen Aug 1996 A
5550519 Korpela Aug 1996 A
5557287 Pottala et al. Sep 1996 A
5557292 Nygren et al. Sep 1996 A
5566441 Marsh et al. Oct 1996 A
5570071 Ervasti Oct 1996 A
5585771 Ervasti Dec 1996 A
5585810 Tsuru et al. Dec 1996 A
5589844 Belcher et al. Dec 1996 A
5594395 Niiranen Jan 1997 A
5604471 Rattila Feb 1997 A
5627502 Ervasti May 1997 A
5649316 Prodhomme et al. Jul 1997 A
5668561 Perrotta et al. Sep 1997 A
5675301 Nappa Oct 1997 A
5689221 Niiranen Nov 1997 A
5694135 Dikun et al. Dec 1997 A
5696517 Kawahata et al. Dec 1997 A
5703600 Burrell et al. Dec 1997 A
5709823 Hayes et al. Jan 1998 A
5711014 Crowley et al. Jan 1998 A
5717368 Niiranen Feb 1998 A
5731749 Yrjola Mar 1998 A
5734305 Ervasti Mar 1998 A
5734350 Deming et al. Mar 1998 A
5734351 Ojantakanen Mar 1998 A
5739735 Pyykko Apr 1998 A
5742259 Annamaa Apr 1998 A
5757327 Yajima et al. May 1998 A
5760746 Kawahata Jun 1998 A
5764190 Murch et al. Jun 1998 A
5767809 Chuang et al. Jun 1998 A
5768217 Sonoda et al. Jun 1998 A
5777581 Lilly et al. Jul 1998 A
5777585 Tsuda et al. Jul 1998 A
5793269 Ervasti Aug 1998 A
5797084 Tsuru et al. Aug 1998 A
5812094 Maldonado Sep 1998 A
5815048 Ala-Kojola Sep 1998 A
5822705 Lehtola Oct 1998 A
5852421 Maldonado Dec 1998 A
5861854 Kawahata et al. Jan 1999 A
5874926 Tsuru et al. Feb 1999 A
5880697 McCarrick et al. Mar 1999 A
5886668 Pedersen et al. Mar 1999 A
5892490 Asakura et al. Apr 1999 A
5903820 Hagstrom May 1999 A
5905475 Annamaa May 1999 A
5920290 McDonough et al. Jul 1999 A
5926139 Korisch Jul 1999 A
5929813 Eggleston Jul 1999 A
5936583 Sekine et al. Aug 1999 A
5943016 Snyder, Jr. et al. Aug 1999 A
5952975 Pedersen et al. Sep 1999 A
5959583 Funk Sep 1999 A
5963180 Leisten Oct 1999 A
5966097 Fukasawa et al. Oct 1999 A
5970393 Khorrami et al. Oct 1999 A
5977710 Kuramoto et al. Nov 1999 A
5986606 Kossiavas et al. Nov 1999 A
5986608 Korisch et al. Nov 1999 A
5990848 Annamaa Nov 1999 A
5999132 Kitchener et al. Dec 1999 A
6005529 Hutchinson Dec 1999 A
6006419 Vandendolder et al. Dec 1999 A
6008764 Ollikainen Dec 1999 A
6009311 Killion et al. Dec 1999 A
6014106 Annamaa Jan 2000 A
6016130 Annamaa Jan 2000 A
6023608 Yrjola Feb 2000 A
6031496 Kuittinen et al. Feb 2000 A
6034637 McCoy et al. Mar 2000 A
6037848 Alila Mar 2000 A
6043780 Funk et al. Mar 2000 A
6052096 Tsuru et al. Apr 2000 A
6072434 Papatheodorou Jun 2000 A
6078231 Pelkonen Jun 2000 A
6091363 Komatsu et al. Jul 2000 A
6091365 Derneryd et al. Jul 2000 A
6097345 Walton Aug 2000 A
6100849 Tsubaki et al. Aug 2000 A
6112106 Crowley et al. Aug 2000 A
6121931 Levi et al. Sep 2000 A
6133879 Grangeat et al. Oct 2000 A
6134421 Lee et al. Oct 2000 A
6140966 Pankinaho Oct 2000 A
6140973 Annamaa Oct 2000 A
6147650 Kawahata et al. Nov 2000 A
6157819 Vuokko Dec 2000 A
6177908 Kawahata Jan 2001 B1
6185434 Hagstrom Feb 2001 B1
6190942 Wilm et al. Feb 2001 B1
6195049 Kim et al. Feb 2001 B1
6204826 Rutkowski et al. Mar 2001 B1
6215376 Hagstrom Apr 2001 B1
6218989 Schneider et al. Apr 2001 B1
6246368 Deming et al. Jun 2001 B1
6252552 Tarvas et al. Jun 2001 B1
6252554 Isohatala Jun 2001 B1
6255994 Saito Jul 2001 B1
6268831 Sanford Jul 2001 B1
6281848 Nagumo et al. Aug 2001 B1
6295029 Chen et al. Sep 2001 B1
6297776 Pankinaho Oct 2001 B1
6304220 Herve et al. Oct 2001 B1
6308720 Modi Oct 2001 B1
6316975 O'Toole et al. Nov 2001 B1
6323811 Tsubaki Nov 2001 B1
6326921 Egorov et al. Dec 2001 B1
6337663 Chi-Minh Jan 2002 B1
6340954 Annamaa et al. Jan 2002 B1
6342859 Kurz et al. Jan 2002 B1
6343208 Ying Jan 2002 B1
6346914 Annamaa Feb 2002 B1
6348892 Annamaa Feb 2002 B1
6353443 Ying Mar 2002 B1
6366243 Isohatala Apr 2002 B1
6377827 Rydbeck Apr 2002 B1
6380905 Annamaa Apr 2002 B1
6396444 Goward May 2002 B1
6404394 Hill Jun 2002 B1
6417813 Durham et al. Jul 2002 B1
6421014 Sanad Jul 2002 B1
6423915 Winter Jul 2002 B1
6429818 Johnson et al. Aug 2002 B1
6452551 Chen Sep 2002 B1
6452558 Saitou et al. Sep 2002 B1
6456249 Johnson et al. Sep 2002 B1
6459413 Tseng et al. Oct 2002 B1
6462716 Kushihi Oct 2002 B1
6469673 Kaiponen Oct 2002 B2
6473056 Annamaa Oct 2002 B2
6476767 Aoyama et al. Nov 2002 B2
6476769 Lehtola Nov 2002 B1
6480155 Eggleston Nov 2002 B1
6483462 Weinberger Nov 2002 B2
6498586 Pankinaho Dec 2002 B2
6501425 Nagumo Dec 2002 B1
6515625 Johnson Feb 2003 B1
6518925 Annamaa Feb 2003 B1
6529168 Mikkola Mar 2003 B2
6529749 Hayes et al. Mar 2003 B1
6535170 Sawamura et al. Mar 2003 B2
6538604 Isohatala Mar 2003 B1
6538607 Barna Mar 2003 B2
6542050 Arai et al. Apr 2003 B1
6549167 Yoon Apr 2003 B1
6552686 Ollikainen et al. Apr 2003 B2
6556812 Pennanen et al. Apr 2003 B1
6566944 Pehlke May 2003 B1
6580396 Lin Jun 2003 B2
6580397 Lindell Jun 2003 B2
6600449 Onaka Jul 2003 B2
6603430 Hill et al. Aug 2003 B1
6606016 Takamine et al. Aug 2003 B2
6611235 Barna et al. Aug 2003 B2
6614400 Egorov Sep 2003 B2
6614401 Onaka et al. Sep 2003 B2
6614405 Mikkonen Sep 2003 B1
6634564 Kuramochi Oct 2003 B2
6636181 Asano Oct 2003 B2
6639564 Johnson Oct 2003 B2
6646606 Mikkola Nov 2003 B2
6650295 Ollikainen et al. Nov 2003 B2
6657593 Nagumo et al. Dec 2003 B2
6657595 Phillips et al. Dec 2003 B1
6670926 Miyasaka Dec 2003 B2
6677903 Wang Jan 2004 B2
6680705 Tan et al. Jan 2004 B2
6683573 Park Jan 2004 B2
6693594 Pankinaho et al. Feb 2004 B2
6717551 Desclos et al. Apr 2004 B1
6727857 Mikkola Apr 2004 B2
6734825 Guo et al. May 2004 B1
6734826 Dai et al. May 2004 B1
6738022 Klaavo et al. May 2004 B2
6741214 Kadambi et al. May 2004 B1
6753813 Kushihi Jun 2004 B2
6759989 Tarvas et al. Jul 2004 B2
6765536 Phillips et al. Jul 2004 B2
6774853 Wong et al. Aug 2004 B2
6781545 Sung Aug 2004 B2
6801166 Mikkola Oct 2004 B2
6801169 Chang et al. Oct 2004 B1
6806835 Iwai Oct 2004 B2
6819287 Sullivan et al. Nov 2004 B2
6819293 De Graauw Nov 2004 B2
6825818 Toncich Nov 2004 B2
6836249 Kenoun et al. Dec 2004 B2
6847329 Ikegaya et al. Jan 2005 B2
6856293 Bordi Feb 2005 B2
6862437 McNamara Mar 2005 B1
6862441 Ella Mar 2005 B2
6873291 Aoyama Mar 2005 B2
6876329 Milosavljevic Apr 2005 B2
6882317 Koskiniemi Apr 2005 B2
6891507 Kushihi et al. May 2005 B2
6897810 Dai et al. May 2005 B2
6900768 Iguchi et al. May 2005 B2
6903692 Kivekas Jun 2005 B2
6911945 Korva Jun 2005 B2
6922171 Annamaa Jul 2005 B2
6925689 Folkmar Aug 2005 B2
6927729 Legay Aug 2005 B2
6937196 Korva Aug 2005 B2
6950065 Ying et al. Sep 2005 B2
6950066 Hendler et al. Sep 2005 B2
6950068 Bordi Sep 2005 B2
6950072 Miyata et al. Sep 2005 B2
6952144 Javor Oct 2005 B2
6952187 Annamaa Oct 2005 B2
6958730 Nagumo et al. Oct 2005 B2
6961544 Hagstrom Nov 2005 B1
6963308 Korva Nov 2005 B2
6963310 Horita et al. Nov 2005 B2
6967618 Ojantakanen Nov 2005 B2
6975278 Song et al. Dec 2005 B2
6980158 Iguchi et al. Dec 2005 B2
6985108 Mikkola Jan 2006 B2
6992543 Luetzelschwab et al. Jan 2006 B2
6995710 Sugimoto et al. Feb 2006 B2
7023341 Stilp Apr 2006 B2
7031744 Kuriyama et al. Apr 2006 B2
7034752 Sekiguchi et al. Apr 2006 B2
7042403 Colburn et al. May 2006 B2
7053841 Ponce De Leon et al. May 2006 B2
7054671 Kaiponen et al. May 2006 B2
7057560 Erkocevic Jun 2006 B2
7061430 Zheng et al. Jun 2006 B2
7081857 Kinnunen et al. Jul 2006 B2
7084831 Takagi et al. Aug 2006 B2
7099690 Milosavljevic Aug 2006 B2
7113133 Chen et al. Sep 2006 B2
7119749 Miyata et al. Oct 2006 B2
7126546 Annamaa Oct 2006 B2
7129893 Otaka et al. Oct 2006 B2
7136019 Mikkola Nov 2006 B2
7136020 Yamaki Nov 2006 B2
7142824 Kojima et al. Nov 2006 B2
7148847 Yuanzhu Dec 2006 B2
7148849 Lin Dec 2006 B2
7148851 Takaki et al. Dec 2006 B2
7170464 Tang et al. Jan 2007 B2
7176838 Kinezos Feb 2007 B1
7180455 Oh et al. Feb 2007 B2
7193574 Chiang et al. Mar 2007 B2
7205942 Wang et al. Apr 2007 B2
7215283 Boyle May 2007 B2
7218280 Annamaa May 2007 B2
7218282 Humpfer et al. May 2007 B2
7224313 McKinzie, III et al. May 2007 B2
7230574 Johnson Jun 2007 B2
7233775 De Graauw Jun 2007 B2
7237318 Annamaa Jul 2007 B2
7256743 Korva Aug 2007 B2
7274334 O'Riordan et al. Sep 2007 B2
7283097 Wen et al. Oct 2007 B2
7289064 Cheng Oct 2007 B2
7292200 Posluszny et al. Nov 2007 B2
7319432 Andersson Jan 2008 B2
7330153 Rentz Feb 2008 B2
7333067 Hung et al. Feb 2008 B2
7339528 Wang et al. Mar 2008 B2
7340286 Korva et al. Mar 2008 B2
7345634 Ozkar et al. Mar 2008 B2
7355270 Hasebe et al. Apr 2008 B2
7358902 Erkocevic Apr 2008 B2
7362326 Korva Apr 2008 B2
7375695 Ishizuka et al. May 2008 B2
7381774 Bish et al. Jun 2008 B2
7382319 Kawahata et al. Jun 2008 B2
7385556 Chung et al. Jun 2008 B2
7388543 Vance Jun 2008 B2
7391378 Mikkola Jun 2008 B2
7405702 Annamaa et al. Jul 2008 B2
7417588 Castany et al. Aug 2008 B2
7423592 Pros et al. Sep 2008 B2
7432860 Huynh Oct 2008 B2
7439929 Ozkar Oct 2008 B2
7443344 Boyle Oct 2008 B2
7468700 Milosavlejevic Dec 2008 B2
7468709 Niemi Dec 2008 B2
7498990 Park et al. Mar 2009 B2
7501983 Mikkola Mar 2009 B2
7502598 Kronberger Mar 2009 B2
7564413 Kim et al. Jul 2009 B2
7589678 Perunka et al. Sep 2009 B2
7616158 Mark et al. Nov 2009 B2
7633449 Oh Dec 2009 B2
7663551 Nissinen Feb 2010 B2
7679565 Sorvala Mar 2010 B2
7692543 Copeland Apr 2010 B2
7710325 Cheng May 2010 B2
7724204 Annamaa May 2010 B2
7760146 Ollikainen Jul 2010 B2
7764245 Loyet Jul 2010 B2
7786938 Sorvala Aug 2010 B2
7800544 Thornell-Pers Sep 2010 B2
7830327 He Nov 2010 B2
7843397 Boyle Nov 2010 B2
7889139 Hobson et al. Feb 2011 B2
7889143 Milosavljevic Feb 2011 B2
7901617 Taylor Mar 2011 B2
7903035 Mikkola et al. Mar 2011 B2
7916086 Koskiniemi et al. Mar 2011 B2
7963347 Pabon Jun 2011 B2
7973720 Sorvala Jul 2011 B2
8049670 Jung et al. Nov 2011 B2
8054232 Chiang et al. Nov 2011 B2
8098202 Annamaa et al. Jan 2012 B2
8179322 Nissinen May 2012 B2
8193998 Puente et al. Jun 2012 B2
8378892 Sorvala Feb 2013 B2
8466756 Milosavljevic et al. Jun 2013 B2
8473017 Milosavljevic et al. Jun 2013 B2
8564485 Milosavljevic et al. Oct 2013 B2
8629813 Milosavljevic Jan 2014 B2
20010050636 Weinberger Dec 2001 A1
20020183013 Auckland et al. Dec 2002 A1
20020196192 Nagumo et al. Dec 2002 A1
20030146873 Blancho Aug 2003 A1
20040090378 Dai et al. May 2004 A1
20040137950 Bolin et al. Jul 2004 A1
20040145525 Annabi et al. Jul 2004 A1
20040171403 Mikkola Sep 2004 A1
20050055164 Neff Mar 2005 A1
20050057401 Yuanzhu Mar 2005 A1
20050159131 Shibagaki et al. Jul 2005 A1
20050176481 Jeong Aug 2005 A1
20060071857 Pelzer Apr 2006 A1
20060192723 Harada Aug 2006 A1
20070042615 Liao Feb 2007 A1
20070082789 Nissila Apr 2007 A1
20070152881 Chan Jul 2007 A1
20070188388 Feng Aug 2007 A1
20080059106 Wight Mar 2008 A1
20080088511 Sorvala Apr 2008 A1
20080266199 Milosavljevic Oct 2008 A1
20090009415 Tanska Jan 2009 A1
20090135066 Raappana et al. May 2009 A1
20090153412 Chiang et al. Jun 2009 A1
20090174604 Keskitalo Jul 2009 A1
20090196160 Crombach Aug 2009 A1
20090197654 Teshima Aug 2009 A1
20090231213 Ishimiya Sep 2009 A1
20100220016 Nissinen Sep 2010 A1
20100244978 Milosavljevic Sep 2010 A1
20100309092 Lambacka Dec 2010 A1
20110128190 Galeev Jun 2011 A1
20110133994 Korva Jun 2011 A1
20110241950 Milosavljevic Oct 2011 A1
20120119955 Milosavljevic et al. May 2012 A1
20120280888 Thiam Nov 2012 A1
20140320358 Wong Oct 2014 A1
Foreign Referenced Citations (88)
Number Date Country
1316797 Oct 2007 CN
10104862 Aug 2002 DE
10150149 Apr 2003 DE
0 208 424 Jan 1987 EP
0 376 643 Apr 1990 EP
0 751 043 Apr 1997 EP
0 807 988 Nov 1997 EP
0 831 547 Mar 1998 EP
0 851 530 Jul 1998 EP
1 294 048 Jan 1999 EP
1 014 487 Jun 2000 EP
1 024 553 Aug 2000 EP
1 067 627 Jan 2001 EP
0 923 158 Sep 2002 EP
1 329 980 Jul 2003 EP
1 361 623 Nov 2003 EP
1 406 345 Apr 2004 EP
1 453 137 Sep 2004 EP
1 220 456 Oct 2004 EP
1 467 456 Oct 2004 EP
1 753 079 Feb 2007 EP
20020829 Nov 2003 FI
118782 Mar 2008 FI
2553584 Oct 1983 FR
2724274 Mar 1996 FR
2873247 Jan 2006 FR
2266997 Nov 1993 GB
2360422 Sep 2001 GB
2389246 Dec 2003 GB
59-202831 Nov 1984 JP
60-206304 Oct 1985 JP
61-245704 Nov 1986 JP
06-152463 May 1994 JP
07-131234 May 1995 JP
07-221536 Aug 1995 JP
07-249923 Sep 1995 JP
07-307612 Nov 1995 JP
08-216571 Aug 1996 JP
09-083242 Mar 1997 JP
09-260934 Oct 1997 JP
09-307344 Nov 1997 JP
10-028013 Jan 1998 JP
10-107671 Apr 1998 JP
10-173423 Jun 1998 JP
10-209733 Aug 1998 JP
10-224142 Aug 1998 JP
10-322124 Dec 1998 JP
10-327011 Dec 1998 JP
11-004113 Jan 1999 JP
11-004117 Jan 1999 JP
11-068456 Mar 1999 JP
11-127010 May 1999 JP
11-127014 May 1999 JP
11-136025 May 1999 JP
11-355033 Dec 1999 JP
2000-278028 Oct 2000 JP
2001-053543 Feb 2001 JP
2001-267833 Sep 2001 JP
2001-217631 Oct 2001 JP
2001-326513 Nov 2001 JP
2002-319811 Oct 2002 JP
2002-329541 Nov 2002 JP
2002-335117 Nov 2002 JP
2003-060417 Feb 2003 JP
2003-124730 Apr 2003 JP
2003-179426 Jun 2003 JP
2004-112028 Apr 2004 JP
2004-363859 Dec 2004 JP
2005-005985 Jan 2005 JP
2005-252661 Sep 2005 JP
20010080521 Oct 2001 KR
20020096016 Dec 2002 KR
511900 Dec 1999 SE
WO 9200635 Jan 1992 WO
WO 9627219 Sep 1996 WO
WO 9801919 Jan 1998 WO
WO 9930479 Jun 1999 WO
WO 0120718 Mar 2001 WO
WO 0129927 Apr 2001 WO
WO 0133665 May 2001 WO
WO 0161781 Aug 2001 WO
WO 2004017462 Feb 2004 WO
WO 2004057697 Jul 2004 WO
WO 2004100313 Nov 2004 WO
WO 2004112189 Dec 2004 WO
WO 2005062416 Jul 2005 WO
WO 2007012697 Feb 2007 WO
WO 2010122220 Oct 2010 WO
Non-Patent Literature Citations (53)
Entry
“An Adaptive Microstrip Patch Antenna for Use in Portable Transceivers”, Rostbakken et al., Vehicular Technology Conference, 1996, Mobile Technology for the Human Race, pp. 339-343.
“Dual Band Antenna for Hand Held Portable Telephones”, Liu et al., Electronics Letters, vol. 32, No. 7, 1996, pp. 609-610.
“Improved Bandwidth of Microstrip Antennas using Parasitic Elements,” IEE Proc. vol. 127, Pt. H. No. 4, Aug. 1980.
“A 13.56MHz RFID Device and Software for Mobile Systems”, by H. Ryoson, et al., Micro Systems Network Co., 2004 IEEE, pp. 241-244.
“A Novel Approach of a Planar Multi-Band Hybrid Series Feed Network for Use in Antenna Systems Operating at Millimeter Wave Frequencies,” by M.W. Elsallal and B.L. Hauck, Rockwell Collins, Inc., 2003 pp. 15-24, waelsall@rockwellcollins.com and blhauck@rockwellcollins.com.
Abedin, M. F. and M. Ali, “Modifying the ground plane and its erect on planar inverted-F antennas (PIFAs) for mobile handsets,” IEEE Antennas and Wireless Propagation Letters, vol. 2, 226-229, 2003.
C. R. Rowell and R. D. Murch, “A compact PIFA suitable for dual frequency 900/1800-MHz operation,” IEEE Trans. Antennas Propag., vol. 46, No. 4, pp. 596-598, Apr. 1998.
Cheng-Nan Hu, Willey Chen, and Book Tai, “A Compact Multi-Band Antenna Design for Mobile Handsets”, APMC 2005 Proceedings.
Endo, T., Y. Sunahara, S. Satoh and T. Katagi, “Resonant Frequency and Radiation Efficiency of Meander Line Antennas,” Electronics and Commu-nications in Japan, Part 2, vol. 83, No. 1, 52-58, 2000.
European Office Action, May 30, 2005 issued during prosecution of EP 04 396 001.2-1248.
Examination Report dated May 3, 2006 issued by the EPO for European Patent Application No. 04 396 079.8.
F.R. Hsiao, et al. “A dual-band planar inverted-F patch antenna with a branch-line slit,” Microwave Opt. Technol. Lett., vol. 32, Feb. 20, 2002.
Griffin, Donald W. et al., “Electromagnetic Design Aspects of Packages for Monolithic Microwave Integrated Circuit-Based Arrays with Integrated Antenna Elements”, IEEE Transactions on Antennas and Propagation, vol. 43, No. 9, pp. 927-931, Sep. 1995.
Guo, Y. X. and H. S. Tan, “New compact six-band internal antenna,” IEEE Antennas and Wireless Propagation Letters, vol. 3, 295-297, 2004.
Guo, Y. X. and Y.W. Chia and Z. N. Chen, “Miniature built-in quadband antennas for mobile handsets”, IEEE Antennas Wireless Propag. Lett., vol. 2, pp. 30-32, 2004.
Hoon Park, et al. “Design of an Internal antenna with wide and multiband characteristics for a mobile handset”, IEEE Microw. & Opt. Tech. Lett. vol. 48, No. 5, May 2006.
Hoon Park, et al. “Design of Planar Inverted-F Antenna With Very Wide Impedance Bandwidth”, IEEE Microw. & Wireless Comp., Lett., vol. 16, No. 3, pp. 113-115, Mar. 2006.
Hossa, R., A. Byndas, and M. E. Bialkowski, “Improvement of compact terminal antenna performance by incorporating open-end slots in ground plane,” IEEE Microwave and Wireless Components Letters, vol. 14, 283-285, 2004.
I. Ang, Y. X. Guo, and Y. W. Chia, “Compact internal quad-band antenna for mobile phones” Micro. Opt. Technol. Lett., vol. 38, No. 3 pp. 217-223 Aug. 2003.
International Preliminary Report on Patentability for International Application No. PCT/FI2004/000554, date of issuance of report May 1, 2006.
Jing, X., et al.; “Compact Planar Monopole Antenna for Multi-Band Mobile Phones”; Microwave Conference Proceedings, 4.-7.12.2005.APMC 2005, Asia-Pacific Conference Proceedings, vol. 4.
Kim, B. C., J. H. Yun, and H. D. Choi, “Small wideband PIFA for mobile phones at 1800 MHz,” IEEE International Conference on Vehicular Technology, 27{29, Daejeon, South Korea, May 2004.
Kim, Kihong et at, “Integrated Dipole Antennas on Silicon Substrates for Intra-Chip Communication”, IEEE, pp. 1582-1585, 1999.
Kivekas., O., J. Ollikainen, T. Lehtiniemi, and P. Vainikainen, “Bandwidth, SAR, and eciency of internal mobile phone antennas,” IEEE Transactions on Electromagnetic Compatibility, vol. 46, 71{86, 2004.
K-L Wong, Planar Antennas for Wireless Communications, Hoboken, NJ: Willey, 2003, ch. 2.
Lindberg., P. and E. Ojefors, “A bandwidth enhancement technique for mobile handset antennas using wavetraps,” IEEE Transactions on Antennas and Propagation, vol. 54, 2226{2232, 2006.
Marta Martinez-Vazquez, et al., “Integrated Planar Multiband Antennas for Personal Communication Handsets”, IEEE Trasactions on Antennas and propagation, vol. 54, No. 2, Feb. 2006.
P. Ciais, et al., “Compact Internal Multiband Antennas for Mobile and WLAN Standards”, Electronic Letters, vol. 40, No. 15, pp. 920-921, Jul. 2004.
P. Ciais, R. Staraj, G. Kossiavas, and C. Luxey, “Design of an internal quadband antenna for mobile phones”, IEEE Microwave Wireless Comp. Lett., vol. 14, No. 4, pp. 148-150, Apr. 2004.
P. Salonen, et al. “New slot configurations for dual-band planar inverted-F antenna,” Microwave Opt. Technol., vol. 28, pp. 293-298, 2001.
Papapolymerou, Ioannis et al., “Micromachined Patch Antennas”, IEEE Transactions on Antennas and Propagation, vol. 46, No. 2, pp. 275-283, Feb. 1998.
Product of the Month, RFDesign, “GSM/GPRS Quad Band Power Amp Includes Antenna Switch,”1 page, reprinted Nov. 2004 issue of RF Design (www.rfdesign.com), Copyright 2004, Freescale Semiconductor, RFD-24-EK.
S. Tarvas, et al. “An internal dual-band mobile phone antenna,” in 2000 IEEE Antennas Propagat. Soc. Int. Symp. Dig., pp. 266-269, Salt Lake City, UT, USA.
Wang, F., Z. Du, Q. Wang, and K. Gong, “Enhanced-bandwidth PIFA with T-shaped ground plane,” Electronics Letters, vol. 40, 1504-1505, 2004.
Wang, H.; “Dual-Resonance Monopole Antenna with Tuning Stubs”; IEEE Proceedings, Microwaves, Antennas & Propagation, vol. 153, No. 4, Aug. 2006; pp. 395-399.
Wong, K., et al.; “A Low-Profile Planar Monopole Antenna for Multiband Operation of Mobile Handsets”; IEEE Transactions on Antennas and Propagation, Jan. 2003, vol. 51, No. 1.
X.-D. Cai and J.-Y. Li, Analysis of asymmetric TEM cell and its optimum design of electric field distribution, IEE Proc 136 (1989), 191-194.
X.-Q. Yang and K.-M. Huang, Study on the key problems of interaction between microwave and chemical reaction, Chin Jof Radio Sci 21 (2006), 802-809.
Chiu, C.-W., et al., “A Meandered Loop Antenna for LTE/WWAN Operations in a Smartphone,” Progress in Electromagnetics Research C, vol. 16, pp. 147-160, 2010.
Lin, Sheng-Yu; Liu, Hsien-Wen; Weng, Chung-Hsun; and Yang, Chang-Fa, “A miniature Coupled loop Antenna to be Embedded in a Mobile Phone for Penta-band Applications,” Progress in Electromagnetics Research Symposium Proceedings, Xi'an, China, Mar. 22-26, 2010, pp. 721-724.
Zhang, Y.Q., et al. “Band-Notched UWB Crossed Semi-Ring Monopole Antenna,” Progress in Electronics Research C, vol. 19, 107-118, 2011, pp. 107-118.
Joshi, Ravi K., et al., “Broadband Concentric Rings Fractal Slot Antenna”, XXVIIIth General Assembly of International Union of Radio Science (URSI). (Oct. 23-29, 2005), 4 Pgs.
Singh, Rajender, “Broadband Planar Monopole Antennas,” M.Tech credit seminar report, Electronic Systems group, EE Dept, IIT Bombay, Nov. 2003, pp. 1-24.
Gobien, Andrew, T. “Investigation of Low Profile Antenna Designs for Use in Hand-Held Radios,” Ch.3, The Inverted-L Antenna and Variations; Aug. 1997, pp. 42-76.
See, C.H., et al., “Design of Planar Metal-Plate Monopole Antenna for Third Generation Mobile Handsets,” Telecommunications Research Centre, Bradford University, 2005, pp. 27-30.
Chen, Jin-Sen, et al., “CPW-fed Ring Slot Antenna with Small Ground Plane,” Department of Electronic Engineering, Cheng Shiu University.
“LTE—an introduction,” Ericsson White Paper, Jun. 2009, pp. 1-16.
“Spectrum Analysis for Future LTE Deployments,” Motorola White Paper, 2007, pp. 1-8.
Chi, Yun-Wen, et al. “Quarter-Wavelength Printed Loop Antenna With an Internal Printed Matching Circuit for GSM/DCS/PCS/UMTS Operation in the Mobile Phone,” IEEE Transactions on Antennas and Propagation, vol. 57, No. 9m Sep. 2009, pp. 2541-2547.
Wong, Kin-Lu, et al. “Planar Antennas for WLAN Applications,” Dept. of Electrical Engineering, National Sun Yat-Sen University, Sep. 2002 Ansoft Workshop, pp. 1-45.
“λ/4 printed monopole antenna for 2.45GHz,” Nordic Semiconductor, White Paper, 2005, pp. 1-6.
White, Carson, R., “Single- and Dual-Polarized Slot and Patch Antennas with Wide Tuning Ranges,” The University of Michigan, 2008.
Extended European Search Report dated Jan. 30, 2013, issued by the EPO for EP Patent Application No. 12177740.3.
Related Publications (1)
Number Date Country
20150200463 A1 Jul 2015 US