The present invention relates to a rocker arm for valve train of an internal combustion engine; more particularly to a rocker arm with an inner arm which selectively pivots relative to an outer arm, and even more particularly to such a rocker arm which includes first and second rollers supported by the inner arm and which includes roller retainers which retain the first and second rollers and which ground lost motion springs to the inner arm.
Variable valve activation mechanisms for internal combustion engines are well known. It is known to lower the lift, or even to provide no lift at all, of one or more valves of an internal combustion engine, during periods of light engine load. Such valve deactivation or valve lift switching can substantially improve fuel efficiency of the internal combustion engine.
A rocker arm acts between a rotating eccentric camshaft lobe and a pivot point on the internal combustion engine, such as a hydraulic lash adjuster, to open and close an engine valve. Switchable rocker arms may be a “deactivation” type or a “two-step” type. The term switchable deactivation rocker arm, as used herein, means the switchable rocker arm is capable of switching from a valve lift mode to a no lift mode. The term switchable two-step rocker arm, as used herein, means the switchable rocker arm is capable of switching from a first valve lift mode to a second valve lift mode, that is greater than no lift. It should be noted that the second valve lift mode may provide one or both of increased lift magnitude and increased lift duration or one or both of decreased lift magnitude and decreased lift duration of the engine valve compared to the first valve lift mode. When the term “switchable rocker arm” is used herein, by itself, it includes both types.
A typical switchable rocker arm includes an outer arm and an inner arm where the inner arm includes an inner arm follower which follows a first profile of a camshaft of the internal combustion engine and where the outer arm may include a pair of outer arm followers which follow respective second and third profiles of the camshaft. The follower of the inner arm and the followers of the outer arm may be either sliding surfaces or rollers and combinations thereof. The inner arm is movably connected to the outer arm and can be switched from a coupled state wherein the inner arm is immobilized relative to the outer arm, to a decoupled state wherein the inner arm can move relative to the outer arm. Typically, the outer arm of the switchable rocker arm is pivotally supported at a first end by the hydraulic lash adjuster which fits into a socket of the outer arm. A second end of the outer arm operates against an associated engine valve for opening and closing the valve by the rotation of an associated eccentric cam lobe acting on the follower of the inner arm. The inner arm is connected to the outer arm for pivotal movement about the outer arm's second end with the follower of the inner arm disposed between the first and second ends of the outer arm. Switching between the coupled state and the decoupled state is accomplished through a lock pin which is slidingly positioned in a lock pin bore of the outer arm. One end of the lock pin is moved into and out of engagement with the inner arm. Consequently, when the lock pin is engaged with the inner arm, the coupled state is achieved. Conversely, when the lock pin is not engaged with the inner arm, the decoupled state is achieved. As shown in U.S. Pat. No. 7,305,951 to Fernandez et al., the disclosure of which is hereby incorporated by reference in its entirety, the other end of the lock pin acts as a piston upon which pressurized oil is applied and vented to affect the position of the lock pin. Also as shown by Fernandez et al., oil is supplied to the lock pin via an oil supply bore which originates in the socket and breaks into the lock pin bore. Other known switchable rocker arms are disclosed in U.S. Pat. No. 7,677,213 to Deierlein and U.S. Pat. No. 7,926,455 to Manther et al. However, alternatives and variations are continually sought in any art.
Briefly described, and in accordance with the present invention, a rocker arm for transmitting rotational motion from a camshaft to opening and closing motion of a combustion valve in an internal combustion engine includes an outer arm having a first wall and a second wall spaced apart from the second wall such that a central opening is provided between the first wall and the second wall; an inner arm which selectively pivots relative to the outer arm about a pivot shaft axis, the inner arm having a first side which faces toward the first wall and a second side which faces toward the second wall; a first lost motion spring having a first lost motion spring outer arm tang grounded to the outer arm and a first lost motion spring inner arm tang grounded to the inner arm, the first lost motion spring biasing the inner arm to pivot relative to the outer arm in a first direction about the pivot shaft axis; a second lost motion spring having a second lost motion spring outer arm tang grounded to the outer arm and a second lost motion spring inner arm tang grounded to the inner arm, the second lost motion spring biasing the inner arm to pivot relative to the outer arm in the first direction about the pivot shaft axis; a lock pin which moves between 1) a coupled position in which the lock pin prevents the inner arm from pivoting about the pivot shaft axis relative to the outer arm past a predetermined position of the inner arm relative to the outer arm in a second direction which is opposite of the first direction and 2) a decoupled position in which the lock pin permits the inner arm to pivot relative to the outer arm past the predetermined position in the second direction about the pivot shaft axis; a roller shaft supported by the inner arm, wherein the roller shaft extends from the first side of the inner arm toward the first wall of the outer arm and also extends from the second side of the inner arm toward the second wall of the outer arm, the roller shaft being centered about, and extending along, a roller shaft axis which is parallel to the pivot shaft axis; a first roller carried by the roller shaft and rotatable about the roller shaft axis such that the first roller is configured to follow the camshaft, the first roller being located between the first side of the inner arm and the first wall of the outer arm; a second roller carried by the roller shaft and rotatable about the roller shaft axis such that the second roller is configured to follow the camshaft, the second roller being located between the second side of the inner arm and the second wall of the outer arm; a first roller retainer carried by the roller shaft and located between the first roller and the first wall of the outer arm, the first roller retainer having a first roller retainer surface with which the first lost motion spring inner arm tang is engaged to ground the first lost motion spring to the inner arm through the roller shaft; and a second roller retainer carried by the roller shaft and located between the second roller and the second wall of the outer arm, the second roller retainer having a second roller retainer surface with which the second lost motion spring inner arm tang is engaged to ground the second lost motion spring to the inner arm through the roller shaft.
Also briefly described, and in accordance with the present invention, a rocker arm for transmitting rotational motion from a camshaft to opening and closing motion of a combustion valve in an internal combustion engine includes an outer arm having a first wall and a second wall spaced apart from the second; an inner arm which selectively pivots relative to the outer arm about a pivot shaft axis; a lost motion spring having a lost motion spring outer arm tang grounded to the outer arm and a lost motion spring inner arm tang grounded to the inner arm, the lost motion spring biasing the inner arm to pivot relative to the outer arm in a first direction about the pivot shaft axis; a lock pin which moves between 1) a coupled position in which the lock pin prevents the inner arm from pivoting about the pivot shaft axis relative to the outer arm past a predetermined position of the inner arm relative to the outer arm in a second direction which is opposite of the first direction and 2) a decoupled position in which the lock pin permits the inner arm to pivot relative to the outer arm past the predetermined position in the second direction about the pivot shaft axis; a roller shaft supported by the inner arm, wherein the roller shaft extends toward the first wall of the outer arm, the roller shaft being centered about, and extending along, a roller shaft axis; a roller carried by the roller shaft and rotatable about the roller shaft axis such that the roller is configured to follow the camshaft; and a roller retainer carried by the roller shaft and located between the roller and the first wall of the outer arm, the roller retainer having a roller retainer surface with which the lost motion spring inner arm tang is engaged to ground the lost motion spring to the inner arm through the roller shaft.
Also briefly described, and in accordance with the present invention, a rocker arm for transmitting rotational motion from a camshaft to opening and closing motion of a combustion valve in an internal combustion engine includes an outer arm having a first wall and a second wall spaced apart from the second wall such that a central opening is provided between the first wall and the second wall, the first wall having a first spring shaft aperture extending therethrough and the second wall having a second spring shaft aperture extending therethrough; an inner arm which selectively pivots relative to the outer arm about a pivot shaft axis, the inner arm having a first side which faces toward the first wall and a second side which faces toward the second wall; a first lost motion spring having a plurality of coils, thereby defining a first lost motion spring aperture, the first lost motion spring also having a first lost motion spring outer arm tang grounded to the outer arm and a first lost motion spring inner arm tang grounded to the inner arm, the first lost motion spring biasing the inner arm to pivot relative to the outer arm in a first direction about the pivot shaft axis; a second lost motion spring having a plurality of coils, thereby defining a second lost motion spring aperture, the second lost motion spring also having a second lost motion spring outer arm tang grounded to the outer arm and a second lost motion spring inner arm tang grounded to the inner arm, the second lost motion spring biasing the inner arm to pivot relative to the outer arm in the first direction about the pivot shaft axis; a lock pin which moves between 1) a coupled position in which the lock pin prevents the inner arm from pivoting about the pivot shaft axis relative to the outer arm past a predetermined position of the inner arm relative to the outer arm in a second direction which is opposite of the first direction and 2) a decoupled position in which the lock pin permits the inner arm to pivot relative to the outer arm past the predetermined position in the second direction about the pivot shaft axis; a roller shaft supported by the inner arm, wherein the roller shaft extends from the first side of the inner arm toward the first wall of the outer arm and also extends from the second side of the inner arm toward the second wall of the outer arm, the roller shaft being centered about, and extending along, a roller shaft axis which is parallel to the pivot shaft axis; a first roller carried by the roller shaft and rotatable about the roller shaft axis such that the first roller is configured to follow the camshaft, the first roller being located between the first side of the inner arm and the first wall of the outer arm; a second roller carried by the roller shaft and rotatable about the roller shaft axis such that the second roller is configured to follow the camshaft, the second roller being located between the second side of the inner arm and the second wall of the outer arm; and a spring shaft supported by the outer arm such that the spring shaft is located within the first spring shaft aperture and the second spring shaft aperture and such that the spring shaft passes through the first lost motion spring aperture and through the second lost motion spring aperture.
The rocker arm described herein allows for compactness and ease of assembly as will be more readily apparent from a thorough reading of the following description.
This invention will be further described with reference to the accompanying drawings in which:
Referring to the figures, a rocker arm 10 in accordance with the invention is illustrated where rocker arm 10 is presented for illustrative purposes as a deactivation rocker arm but may alternatively be a two-step rocker arm, both of which may generically be referred to as a switchable rocker arm. Rocker arm 10 is included in valve train (not shown) of an internal combustion engine (not shown) in order to translate rotational motion of a camshaft 11 about a camshaft axis 11a to reciprocating motion of a combustion valve (not shown). As is known in the art of combustion valve actuation, camshaft 11 includes a base circle 11b which is centered about camshaft axis 11a and a lifting portion 11c which is eccentric to camshaft axis 11a. In this way, base circle 11b does not induce movement on the combustion valve while lifting portion 11c opens and closes the combustion valve. Rocker arm 10 includes an inner arm 12 that is pivotably disposed in a central opening 16 in an outer arm 14. Inner arm 12 selectively pivots within outer arm 14 on a pivot shaft 18 about a pivot shaft axis 18a such that pivot shaft 18 extends along, and is centered about, pivot shaft axis 18a. Inner arm 12 carries or supports a pair of followers illustrated as a first roller 20a and a second roller 20b carried by a roller shaft 22 that is supported by inner arm 12 such that first roller 20a, second roller 20b, and roller shaft 22 are each centered about, and extend along, a roller shaft axis 24. First roller 20a and second roller 20b are configured to follow base circle 11b and lifting portion 11c, to selectively impart lifting motion on a respective combustion valve. First roller 20a and second roller 20b are each cylindrical and tubular as shown. A plurality of first bearings 26a may rotatably support first roller 20a on roller shaft 22 for following base circle 11b and lifting portion 11c of camshaft 11 while a plurality of second bearings 26b may rotatably support second roller 20b on roller shaft 22 for following base circle 11b and lifting portion 11c of camshaft 11. First bearings 26a and second bearings 26b may be, for example, a plurality of rollers or needle bearings. Outer arm 14 includes a first wall 28a and a second wall 28b which are parallel to each other such that first wall 28a and second wall 28b are perpendicular to roller shaft axis 24 and such that first wall 28a and second wall 28b are spaced apart from each other in the direction of roller shaft axis 24 to define central opening 16 therebetween. A first lost motion spring 30a and a second lost motion spring 30b each act between inner arm 12 and outer arm 14 to pivot inner arm 12 away from outer arm 14 in a first direction, shown as clockwise as viewed in
Outer arm 14 includes an outer arm body 38 at first end 14a and an outer arm bridge 40 at second end 14b. Outer arm body 38 joints first wall 28a and second wall 28b at first end 14a and also defines socket 32 therein. Similarly, outer arm bridge 40 joins first wall 28a and second wall 28b at second end 14b and also defines pad 34 thereon. First wall 28a, second wall 28b, outer arm body 38, and outer arm bridge 40 may comprise a single piece of material which is formed, by way of non-limiting example, casting, forging, machining from solid, combinations thereof, and the like. Proximal to first end 14a, first wall 28a includes a first spring shaft aperture 42a extending therethrough and similarly, second wall 28b includes a second spring shaft aperture 42b extending therethrough, both of which receive a spring shaft 44 such that first spring shaft aperture 42a, second spring shaft aperture 42b, and spring shaft 44 are each centered about, and extend along, a spring shaft axis 44a. Spring shaft 44 interfaces with first spring shaft aperture 42a and second spring shaft aperture 42b in one of a close sliding interface and an interference fit which prevents radial movement of spring shaft 44 within first spring shaft aperture 42a and second spring shaft aperture 42b. Spring shaft 44 is fixed to outer arm 14, by way of non-limiting example only, with one or more of interference fit between spring shaft 44 and first spring shaft aperture 42a and second spring shaft aperture 42b, welding, and staking. Proximal to second end 14b, first wall 28a also includes a first pivot shaft aperture 46a extending therethrough and similarly, second wall 28b includes a second pivot shaft aperture 46b extending therethrough. First pivot shaft aperture 46a and second pivot shaft aperture 46b are each centered about, and extend along, pivot shaft axis 18a and each receive a portion of pivot shaft 18 therein in order to support pivot shaft 18 by outer arm 14. Pivot shaft 18 interfaces with first pivot shaft aperture 46a and second pivot shaft aperture 46b in a close sliding interface or an interference fit which prevents radial movement of pivot shaft 18 within first pivot shaft aperture 46a and second pivot shaft aperture 46b. Pivot shaft 18 is fixed to outer arm 14, by way of non-limiting example only, with one or more of interference fit between pivot shaft 18 and first pivot shaft aperture 46a and second pivot shaft aperture 46b, welding, and staking.
Inner arm 12 may be planar as shown and includes an inner arm first side 48a which faces toward first wall 28a and also includes an inner arm second side 48b which is parallel to first side 48a and which faces toward second wall 28b. Inner arm 12 includes an inner arm roller shaft aperture 50 which extends therethrough from first side 48a to second side 48b such that inner arm roller shaft aperture 50 is centered about, and extends along, roller shaft axis 24. Roller shaft 22 extends through inner arm roller shaft aperture 50 such that roller shaft 22 and inner arm roller shaft aperture 50 are sized to interface in a close-slide fit or an interference fit such that roller shaft 22 is prevented from moving radially within inner arm roller shaft aperture 50. Roller shaft 22 extends from first side 48a toward first wall 28a of outer arm 14 and similarly, roller shaft 22 also extends from second side 48b toward second wall 28b of outer arm 14. Roller shaft 22 may be left unfixed within inner arm roller shaft aperture 50 in a close sliding fit, but, may alternatively be fixed to inner arm 12, by way of non-limiting example only, with one or more of interference fit between roller shaft 22 and inner arm roller shaft aperture 50 and welding. Inner arm 12 also includes an inner arm pivot shaft aperture 52 which extends therethrough from first side 48a to second side 48b such that inner arm pivot shaft aperture 52 is centered about, and extends along, pivot shaft axis 18a. Pivot shaft 18 extends through inner arm pivot shaft aperture 52 such that pivot shaft 18 and inner arm pivot shaft aperture 52 are sized to interface in a close-slide fit such that pivot shaft 18 is prevented from moving radially within inner arm pivot shaft aperture 52 while allowing inner arm 12 to pivot about pivot shaft 18.
First lost motion spring 30a and second lost motion spring 30b are each coil torsion springs which are located between first wall 28a and second wall 28b. First lost motion spring 30a includes a plurality of coils, thereby defining a first lost motion spring aperture 54a through which spring shaft 44 passes. Similarly, second lost motion spring 30b includes a plurality of coils, thereby defining a second lost motion spring aperture 54b through which spring shaft 44 passes. In this way, spring shaft 44 guides and retains first lost motion spring 30a and second lost motion spring 30b to outer arm 14 in use. First lost motion spring 30a includes a first lost motion spring outer arm tang 56a at one end thereof which is grounded to outer arm 14 at outer arm body 38 and also includes a first lost motion spring inner arm tang 58a at the other end thereof which is grounded to inner arm 12 as will be described in greater detail later. Similarly, second lost motion spring 30b includes a second lost motion spring outer arm tang 56b at one end thereof which is grounded to outer arm 14 at outer arm body 38 and also includes a second lost motion spring inner arm tang 58b at the other end thereof which is grounded to inner arm 12 as will be described in greater detail later.
First roller 20a and second roller 20b will now be described in greater detail. First roller 20a is cylindrical and hollow, thereby defining a first roller outer surface 60a which is cylindrical and centered about roller shaft axis 24 and also thereby defining a first roller inner surface 62a which is cylindrical and centered about roller shaft axis 24. First bearings 26a are located within, and ride upon, first roller inner surface 62a and the outer periphery of roller shaft 22, thereby rotatably supporting first roller 20a on roller shaft 22. Similarly, second roller 20b is cylindrical and hollow, thereby defining a second roller outer surface 60b which is cylindrical and centered about roller shaft axis 24 and also thereby defining a second roller inner surface 62b which is cylindrical and centered about roller shaft axis 24. Second bearings 26b are located within, and ride upon, second roller inner surface 62b and the outer periphery of roller shaft 22, thereby rotatably supporting second roller 20b on roller shaft 22.
A first roller retainer 64a is provided in order to retain first roller 20a and first bearings 26a and also in order to ground first lost motion spring inner arm tang 58a to inner arm 12 and similarly, a second roller retainer 64b is provided between second roller 20b and second wall 28b of outer arm 14 in order to retain second roller 20b and second bearings 26b and also in order to ground second lost motion spring inner arm tang 58b to inner arm 12. First roller retainer 64a includes a first roller retainer aperture 66a which extends therethrough such that first roller retainer aperture 66a is centered about, and extends along, roller shaft axis 24 and such that roller shaft 22 extends into first roller retainer aperture 66a. First roller retainer aperture 66a is sized to interface with roller shaft 22 in a close sliding fit such that radial movement of first roller retainer 64a relative to roller shaft 22 is prevented while allowing first roller retainer 64a to rotate freely about roller shaft axis 24 on roller shaft 22. In this way, first roller retainer 64a is carried by roller shaft 22. Alternatively, first roller retainer 64a may be fixed to roller shaft 22, for example, by interference fit or welding, thereby preventing first roller retainer 64a from rotating relative to roller shaft 22. First roller retainer 64a is annular in shape, thereby extending outward from first roller retainer aperture 66a to define a first roller retainer outer periphery 68a which surrounds roller shaft axis 24. First roller retainer outer periphery 68a is sized to cause first roller retainer 64a to be axially aligned, i.e. in the direction of roller shaft axis 24, with first bearings 26a and also to be axially aligned with first roller 20a, however, first roller retainer outer periphery 68a does not extend radially outward from roller shaft axis 24 to a greater extent than first roller outer surface 60a and second roller outer surface 60b. Consequently, first roller 20a and first bearings 26a are constrained axially between inner arm first side 48a and first roller retainer 64a. First roller retainer 64a includes a first roller retainer projection 70a extending axially, i.e. in the direction of roller shaft axis 24, toward first wall 28a. First roller retainer projection 70a includes a first roller retainer surface 72a which engages first lost motion spring inner arm tang 58a such that first lost motion spring inner arm tang 58a engages first roller retainer surface 72a to urge inner arm 12 to rotate about pivot shaft axis 18a in the first direction, i.e. clockwise as viewed in
Similar to first roller retainer 64a, second roller retainer 64b includes a second roller retainer aperture 66b which extends therethrough such that second roller retainer aperture 66b is centered about, and extends along, roller shaft axis 24 and such that roller shaft 22 extends into second roller retainer aperture 66b. Second roller retainer aperture 66b is sized to interface with roller shaft 22 in a close sliding fit such that radial movement of second roller retainer 64b relative to roller shaft 22 is prevented while allowing second roller retainer 64b to rotate freely about roller shaft axis 24 on roller shaft 22. In this way, second roller retainer 64b is carried by roller shaft 22. Alternatively, second roller retainer 64b may be fixed to roller shaft 22, for example, by interference fit or welding, thereby preventing second roller retainer 64b from rotating relative to roller shaft 22. Second roller retainer 64b is annular in shape, thereby extending outward from second roller retainer aperture 66b to define a second roller retainer outer periphery 68b which surrounds roller shaft axis 24. Second roller retainer outer periphery 68b is sized to cause second roller retainer 64b to be axially aligned, i.e. in the direction of roller shaft axis 24, with second bearings 26b and also to be axially aligned with second roller 20b, however, second roller retainer outer periphery 68b does not extend radially outward from roller shaft axis 24 to a greater extent than first roller outer surface 60a and second roller outer surface 60b. Consequently, second roller 20b and second bearings 26b are constrained axially between inner arm second side 48a and second roller retainer 64b. Second roller retainer 64b includes a second roller retainer projection 70b extending axially, i.e. in the direction of roller shaft axis 24, toward second wall 28b. Second roller retainer projection 70b includes a second roller retainer surface 72b which engages second lost motion spring inner arm tang 58b such that second lost motion spring inner arm tang 58b engages second roller retainer surface 72b to urge inner arm 12 to rotate about pivot shaft axis 18a in the second direction, i.e. clockwise as viewed in
Rocker arm 10 is selectively switched between a coupled state and a decoupled state by latching arrangement 36 which is actuated by application and venting of pressurized oil as will be described in greater detail later. In the coupled state as shown in
Latching arrangement 36 will now be described in greater detail. Latching arrangement 36 includes a lock pin bore 74 which is centered about, and extends along, a lock pin bore axis 76 into outer arm body 38. As embodied herein, lock pin bore axis 76 may be parallel to pivot shaft axis 18a. Latching arrangement 36 also includes a lock pin 78 which is slidably disposed in lock pin bore 74. Lock pin 78 selectively engages inner arm 12 as shown in
While latching arrangement 36 has been illustrated herein as defaulting to the coupled position in the absence of hydraulic pressure, it should now be understood that latching arrangement 36 may alternatively be configured to default to the decoupled position in the absence of hydraulic pressure. This may be accomplished, for example, by reversing the direction which lock pin spring 80 acts upon lock pin 78. Furthermore, while latching arrangement 36 has been illustrated as being actuated based upon hydraulic pressure, other forms of actuation are anticipated, for example, by including a solenoid actuator which affects the position of lock pin 78 based on application of an electric current to the solenoid actuator. Also furthermore, while lock pin 46 has been described herein as being located within outer arm 14, it should be understood that lock pin 46 may alternatively be located within inner arm 12 and selectively engage a stop surface of outer arm 14.
Rocker arm 10 as described herein allows for compactness, particularly in the direction of roller shaft axis 24, which is important for packaging within the internal combustion engine. This compactness is achieved, at least in part, by inner arm 12 which is planar, thereby allowing inner arm 12 to be simply made, for example by stamping the desired shape from sheet metal. Rocker arm 10 also allows for ease of assembly, particularly with respect to the assembly of first roller 20a, second roller 20b, roller shaft 22, first roller retainer 64a, and second roller retainer 64b to inner arm 12. More particularly, each of these elements are captured between first lost motion spring inner arm tang 58a and second lost motion spring inner arm tang 58b and also between first wall 28a and second wall 28b such that these elements are axially constrained and maintained in an assembled relationship, thereby eliminating the need for additional retention which would require additional operations and/or materials.
While this invention has been described in terms of preferred embodiments thereof, it is not intended to be so limited, but rather only to the extent set forth in the claims that follow.
Number | Name | Date | Kind |
---|---|---|---|
6668779 | Hendriksma et al. | Dec 2003 | B2 |
7305951 | Fernandez et al. | Dec 2007 | B2 |
7677213 | Deierlein | Mar 2010 | B2 |
7882814 | Spath et al. | Feb 2011 | B2 |
7926455 | Manther et al. | Apr 2011 | B2 |
20070039573 | Deierlein | Feb 2007 | A1 |
20110265751 | Becker | Nov 2011 | A1 |
20120318216 | Kudo | Dec 2012 | A1 |
20120325168 | Nitz | Dec 2012 | A1 |
20150114330 | Kwak | Apr 2015 | A1 |
20170350282 | Suzuki | Dec 2017 | A1 |
20180306073 | McCarthy, Jr. | Oct 2018 | A1 |
20190186304 | McCarthy, Jr. | Jun 2019 | A1 |